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In his recent articles, Bogartz offered a definition of what it means for forgetting rate to be 
independent of degree of original learning. He showed that, given this definition, independence 
is confirmed by extant data. Bogartz also criticized Loftus's (1985b) proposed method for testing 
independence. In this commentary, we counter Bogartz's criticisms and then offer two observa- 
tions. First, we show that Loftus's horizontal-parallelism test distinguishes between two interesting 
classes of memory models: unidimensional models wherein the memory system's state can be 
specified by a single number and multidimensional models wherein at least two numbers are 
required to specify the memory system's state. Independence by Loftus's definition is implied by 
a unidimensional model. Bogartz's definition, in contrast, is consistent with either model. Second, 
to better understand the constraints on memory mechanisms dictated by the mathematics of the 
models under consideration, we develop a simple but general feature model of learning and 
forgetting. We demonstrate what constraints must be placed on this model to make learning and 
forgetting rate independent by Loftus's and by Bogartz's definitions. 

Is forgetting rate independent of degree of original learning? 
There has been an ongoing debate, not merely over the answer 
to this question, but more fundamentally over the method 
that should be used to answer the question. 

Slamecka and McElree (1983; see also, Slamecka, 1985) 
proposed a method for answering this question. Loftus 
(1985a, 1985b) criticized Slamecka and McElree's method 
and proposed a method of his own. Now, Bogartz (1990) 
criticized Loftus's method and proposed a method of his own. 

This article is designed to provide perspective on the entire 
set of issues and to defend Loftus's (1985b) method against 
Bogartz's criticisms. 

Methods for Testing Independence 

There are three steps--one optional and two mandatory--  
in devising a method to answer the question "Is forgetting 
rate independent of degree of original learning?" The first, 
optional step is to construct a memory mechanism embodying 
one's intuitive notion of learning-forgetting independence. 
The second step is to formulate a pattern to which empirical 
data must conform when there is learning-forgetting inde- 
pendence. (If the optional first step has been implemented, 
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this pattern will be diagnostic of whether or not empirical 
data are consistent with the proposed memory mechanism.) 
This pattern constitutes a definition of learning-forgetting 
independence. The third step is to devise a statistical test to 
determine whether empirical data conform to the definition. 

Loftus (1985b) went through all three of these steps. Bogartz 
(1990) skipped the first step and went through only the last 
two. 

Lofius (1985a, 19851?) 

Loftus formulated a memory mechanism embodying his 
concept of learning-forgetting independence. Briefly, the as- 
sumptions of this mechanism were that (a) learning leads to 
stored information in memory, (b) there is a one-to-one 
correspondence between stored information and memory-test 
performance, and (c) during forgetting, the time required for 
information to drop from one level to another depends only 
on the two levels (i.e., not on degree of original learning). 

As Loftus demonstrated, this mechanism implies a defini- 
tion of independence: that forgetting curves issuing from 
different degrees of original learning should be separated by a 
constant amount  of time (i.e., be horizontally parallel), as 
illustrated in Figure 1. In Appendix A, Theorem 1, we prove 
that this independence definition is satisfied if and only if 
performance, P, degree of original learning, O, and forgetting 
time, T, are related by the equation t 

P = m[g(O)e-r], (1) 

Bogartz (1990) proved this same theorem using much stronger 
assumptions than we have. Whereas we used the assumption of 
horizontal parallelism to derive Equation 1, Bogartz used that as- 
sumption together with Equation 2 to derive Equation 1. 
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where m and g are monotonically increasing 2 functions. 
(Thus, for Loftus, Equation 1 is an alternative independence 
definition.) Loftus's proposed test of horizontal parallelism is 
rather primitive: It consists of interpolating smooth curves 
between observed points on empirical forgetting graphs and 
measuring the horizontal separation between different forget- 
ring curves (ignoring considerations of  error variance). Be- 
cause extant forgetting curves are not horizontally parallel, 
Loftus (1985b) concluded that, by his definition of independ- 
ence, forgetting rate depends on degree of original learning. 

Bogartz (1990) 

Bogartz (1990) proposed a different definition of independ- 
ence strictly in terms of a mathematical equation: Degree of 
original learning and forgetting rate are independent if and 
only if P, O, and T are related by the equation 

P = m[g(O)e-:~m], (2) 

where m and g are again monotonically increasing and f is 
also monotonically increasing. Bogartz's test to determine 
whether Equation 2 is consonant with existing data is rather 
sophisticated; it uses the machinery of functional measure- 
ment to determine (a) if Equation 2 can be satisfied and (b) 
given that it can, what the form of f is. Because Bogartz could 
not reject the null hypothesis embodied in Equation 2, he 
concluded that, by his definition of independence, forgetting 
rate is independent of degree of original learning. 

In summary, Bogartz (1990) made two valuable contribu- 
tions. First, he provided a specific equation that fits existing 
data. Second, he provided the statistical machinery required 
for evaluating his equation's fit using traditional statistical 
procedures. We wish to emphasize that this machinery allows, 
ipso facto, a statistical test of Loftus's horizontal-parallelism 
definition, which boils down to a test of whether f (T)  in 
Equation 2 is linear (see Appendix A, Theorem 2). 

Goals  o f  This  Article 

We have three goals in the remainder of this article. Our 
first goal is to answer Bogartz's (1990) criticisms of Loftus's 
(1985a, 1985b) independence definition. Our second goal is 
to characterize Loftus's independence definition in a new 
form and to contrast it with Bogartz's definition. In particular, 
we show that by Loftus's independence definition, independ- 
ence is implied by a special case of what we term a unidimen- 
sional memory model, whereas Bogartz's independence defi- 
nition is consistent with what we term a multidimensional 
memory model. Our third goal is to contrast the difference 
between Loftus's and Bogartz's definitions of independence 
by examining what kinds of forgetting mechanisms have the 
property of forgetting-learning independence as defined by 
Loftus and by Bogartz. Bogartz's independence definition is 
expressed in terms of mathematical descriptions of forgetting, 
whereas Loftus's independence definition is expressed in 
terms of mechanisms of forgetting. (The difference between 
mathematical descriptions and mechanisms is analogous to 
the difference between Kepler's descriptive planetary orbit 
laws and Newton's mechanistic gravitational law.) To provide 
a common frame of reference within which Bogartz's and 
Loftus's definitions may be compared, we develop feature- 
based memory mechanisms that conform to both of their 
independence definitions, respectively. 

Bogartz's Criticism of  the 
Horizontal-Parallelism Method  

Bogartz (1990) provided four criticisms of Loftus's (1985a, 
1985b) horizontal-parallelism method for testing learning- 
forgetting independence. We summarize these criticisms and 
provide responses. We believe that the first three criticisms 
bespeak a possible misapprehension of Loftus's definition 
(Equation 1). If  Equation 1 were incorrectly regarded as 
resulting from (a) adopting Bogartz's independence definition 
(Equation 2) and (b) making assumptions that f (T)  is linear, 
then Bogartz's first three criticisms would be valid. However, 
this is not the genesis of Equation I. In short, Loftus's defi- 
nition of independence does not consist of Bogartz's definition 
plus assumptions; Loftus's definition stands on its own and is 
different from Bogartz's. The fourth criticism, based on sta- 
tistical grounds, is entirely on target; however, Bogartz himself 
provided a solution to it. 

Bogartz's (1990) criticisms follow: 
I. The horizontal-parallelism test is invalid as a means of 

testing learning-forgetting independence. For example Bo- 
gartz (1990) described Wickelgren's (1974) data showing non- 
parallel forgetting curves and remarked that 

Wickelgren's (1974) theory and data..,  pose a significant prob- 
lem for Lolius's approach. According to Lottus's analysis, Wick- 
elgren's results indicate dependence of forgetting rate on initial 
level of learning . . . .  But the underlying assumptions of Wick- 
elgren's model entail independence. (p. 145) 

2 For ease of discourse, we use the term monotonic to mean strictly 
monotonic. 
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What Bogartz seemed to say here is that the horizontal- 
parallelism test is inappropriate as an evaluation of independ- 
ence by Bogartz's definition. This is quite correct. However, 
Loftus's independence definition is different from Bogartz's 
definition (cf. Equations 1 and 2). The horizontal-parallelism 
test is appropriate for evaluating independence by Loftus's 
definition. 

2. Confirmation of horizontal parallelism implies expo- 
nential forgetting. For example, Bogartz (1990) remarked, 

It is shown in [Bogartz's] Appendix B that under rather general 
conditions (additive or multiplicative decomposition of the func- 
tion describing amount of information retained), horizontal ad- 
ditivity implies an exponential forgetting function . . . .  Thus 
although Loftus starts with the notion of independence of rate 
of forgetting from amount of original learning, he winds up 
essentially equating the idea of independence with the existence 
of an exponential forgetting function because his definition does 
not admit independence in the absence of exponential forgetting. 
(p. 143) 

Bogartz is certainly correct, but it is difficult to understand 
why he viewed this property of the horizontal-parallelism 
method as a liability. Any set of data that fails the horizontal- 
parallelism test allows one to rule out a large and particularly 
interesting class 3 of forgetting models. A method's ability to 
rule out a large class of models is customarily viewed as an 
asset. 

3. Loftus assumes a one-to-one correspondence between 
memory information and performance. For example, Bogartz 
remarked, 

But Loftus's approach amounts to preserving a simple decay 
function at the cost of abandoning additivity and independ- 
ence. t411 believe this occurred because he adopted too strong an 
assumption: the assumption that each level of performance 
uniquely identifies one and only one cognitive state . . . .  (p. 143) 

Both Bogartz and Loftus proposed models in which there 
is a one-to-one correspondence between retained information, 
r, and performance. For example, Bogartz stated that "m is a 
monotone increasing function relating observed performance, 
R, to amount of information retained, r" (p. 139) and char- 
acterized this assumption (among others) as being "abstract 
. . .  and noncontroversial." In essence, then, Bogartz and 
Loftus adopted the same one-to-one assumption. 

As we see, there is a more subtle interpretation of the term 
one-to-one correspondence, which is intimately related to the 
difference between Loftus's and Bogartz's independence def- 
initions. Independence by Loftus's definition implies a one- 
to-one correspondence between retained information at any 
time T~ and performance at any later time, T2 > T~. Inde- 
pendence by Bogartz's definition, in contrast, carries no such 
implication. 

4. The statistical test of horizontal parallelism is inade- 
quate. For example, Bogartz (1990) remarked, 

It is not clear . . .  how Loftus would statistically test for the 
presence or absence of horizontal interaction. In the data that he 
has cited, the error variance estimates will all be based on vertical 
variability within a cell . . . .  Performance is measured and varies 
at fixed delay times; delay times are ordinarily not measured at 
fixed performances. There will ordinarily be no estimate of 
horizontal error variance against which to compare horizontal 
interaction effects. (p. 145) 

This criticism was certainly valid when Loftus (1985a, 
1985b) made his original arguments. As we have noted, 
Bogartz (1990) made the very valuable contribution of pro- 
viding a powerful horizontal-parallelism test: As we show by 
proving Theorem 2 in Appendix A, it amounts to testing the 
null hypothesis that f (T)  in Equation 2 is linear in T. 

A New Charac ter iza t ion  of  Loftus 's  Def in i t ion  

Our goal in this section is to recast Loftus's forgetting 
definition in a new light. In particular, we show how memory 
models in general can be divided into unidimensional models 
on the one hand and multidimensional models on the other. 
In a unidimensional model, the state of the memory system 
can be characterized by a single memory dimension, whereas 
in a multidimensional model more than one dimension is 
needed. We show that learning-forgetting dependence by 
Loftus's definition (i.e., failure of the horizontal-parallelism 
test) disconfirms all unidimensional memory models. We end 
this section with a comment on Bogartz's notion of "psycho- 
logical time" and relate this notion to the multidimensional 
character of Bogartz's independence definition. 

Unidimensional Versus Multidimensional 
Memory Models 

There exists a class of models whose fundamental tenet is 
that the state of the memory system is describable as a point 
in a unidimensional space. Learning and forgetting may both 
be described as movements of that point through the unidi- 
mensional space. In other words, the memory system's state 
can be completely specified by a single spatial coordinate (say 
r, the amount  of stored information). 

To understand the nature of such unidimensional models, 
consider the system at some time, To, following original 
learning, O. Stored information at that time is r(O, To). Now 
consider the system at a later time (To + AT), when some 
forgetting has occurred. The critical property of unidimen- 
sional models is that stored information at time (To + AT) 
depends only on the memory system's state at time To and 
on the length of the interval AT. Now, the memory system's 
state at time To is completely specified by the value of r at 
time To. Hence, 

r(O, To + AT) = u[r(O, To), AT], 

where u is monotonically increasing in the first argument and 
monotonically decreasing in the second argument. 

In contrast, in a multidimensional model, the state of the 
memory system is describable as a point in a multidimen- 
sional space. Consequently, the state of the memory system 

3 For the present discussion, by "class of models" we refer to any 
model that posits exponential loss of retained information, plus a 
monotonic function, m, mapping retained information into perform- 
ance. As we see shortly, we actually refer more generally to the class 
of all unidimensional memory models. 

a We must emphasize that this is independence by Bogartz's defi- 
nition, not by Loftus's. 
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cannot be completely specified by a single spatial coordinate. 
The process of  learning and subsequent forgetting may be 
described by a trajectory through multidimensional memory 
space. The essential difference between unidimensional mem- 
ory models and multidimensional models is that a wider 
variety of  learning-forgetting trajectories are possible in the 
multidimensional space. In a unidimensional model, learning 
and subsequent forgetting is like climbing up and then down 
a ladder: The path taken down is identical to the path taken 
up. However, in a multidimensional model, learning and 
subsequent forgetting is like climbing up and then down a 
mountain: The path down may differ from the path up. Thus, 
by a multidimensional model, two people studying the same 
list for differing numbers of  learning trials are like two people 
taking the same path up a mountain but one person going 
further than the other. Once learning stops and forgetting 
begins, the two people may take different paths down the 
mountain. 

A variety of  investigators suggested multidimensional 
models in which the state of  the system is completely described 
by some measure of  retained information and some function 
of  forgetting time, T(e.g., Wickelgren, 1972, 1974; Yost, cited 
in Woodworth & Sehlosberg, 1961; Youtz, 1941). More gen- 
erally, in a multidimensional model, the memory system's 
state cannot be completely specified by the amount, r, of  
retained information. At least one more memory-space co- 
ordinate is needed. Suppose that such a coordinate is denoted 
by s. We will not attempt to specify the nature ofs. In different 
multidimensional models, it might be various things (e.g., in 
the models just mentioned, s is a function of  amount of  
forgetting time). Now the amount, r, of  information retained 
at time (To + AT) is a function of  the state of  the system at 
time To and of  the length of  the interval AT. Because the stale 
of  the system at time To is completely specified by the values 
of the coordinates r and s at time To, we may write, 

r(O, To + AT) = u[r(O, To), s(O, To), AT]. (3) 

We assert that models characterized by Equation 3 exhibit 
a dependence of  forgetting on degree of  original learning. To 
see why this is, suppose that two combinations o f  O and 
T--(O~, T~) and (02, T2)--produce equal performance (and 
thus r) values. We refer to the r value as ro; thus, 

r(O,, T~) = r(02, T2) = ro. 

To characterize the state of  the system after some interval, 
AT, it is necessary to specify the value ofs. The equations are 

r(O,, T, + AT) = u[ro, s(O,, T,), AT] 

and 

r(02, T2 + AT) = u[ro, s(Oz, T2), AT], 

where s(Ot, TO and s(02, T2) can be, and usually are, different 
from one another. 

Forgetting rate may now be identified with the decrease in 
r as one progresses over the time interval AT. The size of  this 
decrease will be different for different values of  s. Because the 
value of  s depends on whether the forgetter was in learning 
condition O, or O2, we conclude that such multidimensional 

models exhibit dependence between original learning and 
forgetting. 

Bogartz's and Loftus's Definitions 

As we show in Appendix B, a unidimensional memory 
model implies horizontal parallelism of  high- and low-learn- 
ing forgetting curves (i.e., implies Loftus's independence def- 
inition). Accordingly, if forgetting curves are not horizontally 
parallel, the entire class of  unidimensional models may be 
ruled out. In the next section, we give examples from the 
literature of  how this feature of  the horizontal-parallelism 
method could be applied. 

Bogartz (1990) amply demonstrated that nonparallel for- 
getting curves are consistent with his independence definition, 
provided his j (T)  is nonlinear. Again by the logic provided in 
Appendix B, independence by Bogartz's definition is consist- 
ent with a multidimensional memory model. 

Two Examples 

Forgetting models can be classified as unidimensional or 
multidimensional. Here we briefly consider two forgetting 
models: those of  Atkinson and Shiffrin (1968) and Wickelgren 
(1972). In each case, the investigators evaluated their models 
by positing a specific relation between an internal construct 
(e.g., amount of  information or trace strength) and the de- 
pendent variable (e.g., recall probability or d ' )  used in a 
memory test, and then determining the model's fit to memory 
data. The point we wish to make here is that this evaluation 
strategy requires an unnecessarily strong model. One must 
formulate both a model of  how the contents of  memory vary 
with study and forgetting time and a model of  how perform- 
ance on memory tests depends on the contents of  memory. 
Essentially, one must formulate a performance submodel even 
if one is principally interested only in acquisition and loss of  
information. Use of the horizontal-parallelism test makes it 
unnecessary to formulate a performance model to test the 
information-acquisition/loss model. 

Atkinson-Shiffrin model. Atkinson and Shiffrin (1968) ex- 
plicitly incorporated both short- and long-term memory proc- 
esses in their model (see also Waugh & Norman, t965). 
Accordingly, to specify the system's state requires two ele- 
ments: the probability that the necessary information is pres- 
ent in short-term memory, and the amount of  task-relevant 
information present in long-term memory. This makes the 
model multidimensional. 

However, each memory store is individually unidimen- 
sional; indeed, the Atkinson-Shiffrin forgetting equations are 
explicitly exponential. This means that if one can arrange 
experimental situations in which use of  only one kind of  
memory or the other can be reasonably assumed, then each 
of  the model's components can be tested individually by the 
horizontal-parallelism test. 

There are many paradigms in the literature in which mem- 
ory performance can be assumed to be based only on long- 
term memory; this, for example, was true of  all paradigms 
considered by Slamecka and McElree (1983), Loftus (1985a), 
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and Bogartz (1990) except the Hellyer paradigm. Demonstra- 
tions that the low- and high-learning-forgetting curves are not 
horizontally parallel is therefore sufficient to disconfirm At- 
kinson and Shiffrin's long-term forgetting assumption. 

It is more difficult (in fact, probably impossible) to arrange 
situations in which recall is based on short-term memory only 
(the best one can do is to try to correct short-term forgetting 
data via some model, e.g., in which retrieval occurs independ- 
ently from short- and long-term memory). In this context, it 
is worthwhile to make an observation about the Hellyer (1962) 
data that were reanalyzed by both Loftus (1985b) and Bogartz 
(1990). These data are uncorrected; 5 hence, recall is undoubt- 
edly based on both short- and long-term memory. It is there- 
fore not surprising that they disconfirm a unidimensional 
model. The question of  whether short-term forgetting can be 
described by a unidimensional model is still open. 

Wickelgren model. Wickelgren (1972, 1974) presented a 
forgetting theory in which, essentially, forgetting rate depends 
on both amount of  retained information and on time since 
learning. This is an example of  a forgetting model that, in 
contrast to the Atkinson-Shiffrin model, is multidimensional 
in long-term forgetting. However, to test his theory (and 
alternative theories to explain his data), Wickelgren made the 
strong assumption that memory performance (measured as 
d ' )  is a linear function of  trace strength. Using this strategy, 
Wickelgren confirmed his model and disconfirmed others, 
including exponential decay. The disconfirmation of  the ex- 
ponential-decay model, however, could have been accom- 
plished without the strong hypothesis linking strength and d ' ;  
all that was required was that the horizontal-parallelism test 
fail. 

In short, Loftus's horizontal-parallelism test provides valu- 
able information about the memory system's structure that 
goes beyond resolution of an issue (learning-forgetting inde- 
pendence) whose definition is subject to disagreement. Al- 
though we do not demand that memory investigators accept 
Loftus's independence definition, we nonetheless believe that 
it would be a suboptimal scientific strategy to refuse to test 
for horizontal parallelism as Bogartz appeared to suggest. 

Nonlinear Transformations and "Psychological Time" 

Bogartz posited a transformation of  physical forgetting 
time, f(T),  which he called "psychological time." In this 
section, we show that (a) Bogartz's psychological time is 
different from the common view of psychological time, (b) 
inclusion of psychological time within Bogartz's model vio- 
lates certain common-sense ideas, and (c) this violation occurs 
because Bogartz insisted that his multidimensional memory 
model incorporates the assumption that forgetting rate is 
independent of  original learning. 

We have no quarrel with the proposition that psychological 
time is a useful construct in some instances. Intuitively, time 
seems to run faster in some situations and slower in others. 
This intuition has been confirmed in numerous laboratory 
experiments (e.g., Ornstein, 1969). 

However, this is not the meaning of  psychological time as 
Bogartz incorporated it in his model. Instead, Bogartz's use 
of the construct allows some psychological process to run at 

different physical rates depending on when in physical time 
it begins. According to Bogartz's model, for instance, forget- 
ting of  some stored information that begins, say, on Wednes- 
day could progress at a faster rate than forgetting of  the same 
stored information when the forgetting begins on Tuesday 
instead. 

Example 

To see why this is, let us consider hypothetical data gener- 
ated by Bogartz's model. Such data, shown in Figure 2 (top 
panel), issue from the equations 

High learning: P = ~10.00e-T °~ 

and 

Low learning: P = ~ - r ° ~ ,  

where T is in days. 
Suppose that two people, Heather and Lois, participate in 

the two different forgetting conditions. Heather is in the high- 
learning condition, and Lois is in the low-learning condition. 
Suppose further that Heather and Lois are identical clones of 
one another, at least with respect to learning and forgetting 
processes. 

At exactly noon on Tuesday, Heather begins forgetting her 
high-learned list. At exactly noon on Wednesday, Lois begins 
forgetting her low-learned list. Note that at noon on Wednes- 
day, Lois and Heather are identical with respect to perform- 
ance and thus with respect to retained information; for both, 
P = 1.92, and r = m -~ (1.92), where m -~ is the inverse of  the 
monotonic function mapping retained information into per- 
formance. This situation is illustrated in Figure 2 (bottom 
panel), wherein the forgetting curves in the top panel of  Figure 
2 are depicted in physical time. Within the context of Bo- 
gartz's independence definition, an oddity becomes apparent 
at noon Wednesday: Although Heather and Lois are identical 
people with identical amounts of  retained information who, 
according to Bogartz, are forgetting at identical rates, they 
will still have different performances (and thus different 
amounts of  retained information) at any later point. At noon 
on Thursday, for example, Heather will have a performance 
of 1.56, whereas Lois will have a performance of  1.16. 

Bogartz's Model Is a Multidimensional Model 

The reason for this apparently strange prediction is that 
Bogartz's model is a multidimensional model that nonetheless 
insists on assuming independence of  original learning and 
forgetting rate. In Bogartz's model, two memory coordinates 
are required to completely specify the state of  the memory 
system at time T. They are the amount, r(O, T), of informa- 
tion retained and the elapsed psychological time f(T).  Thus, 
as proved in Appendix C, 

r(O, T+ AT) = u[r(O, T),f(T), AT]. (4) 

The lack of very long retention intervals in Hellyer's experiment 
precludes correcting them for long-term memory effects. 
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contradicts a basic, common-sense notion of what i t  means 
for two processes to progress at the same rate. 

Feature Models 

Bogartz defined independence of forgetting rate and learn- 
ing strictly in terms of mathematical properties and not in 
terms of any learning-forgetting mechanisms that would em- 
body those properties. To better understand what constraints 
Bogartz's definition places on possible memory mechanisms, 
we now develop a simple feature model of  learning and 
forgetting. We describe three versions of this model: (a) the 
general feature model, (b) a special case of the model that we 
call the Bogartz feature model, and (c) a special case of the 
Bogartz feature model that we call the Loftus feature model. 
We caution that it is not our purpose here to argue for the 
validity of this general feature model. Rather we use it as a 
forum to illustrate constraints on memory mechanisms im- 
posed by formal mathematical models. 
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The top panel shows high- and low-learning forgetting 
curves derived from Bogartz's model. In the bottom panel, the same 
forgetting curves are shown adjusted so that they reflect forgetting in 
physical time. 

Equation 4 demonstrates that, by the multidimensional 
nature of the model, retention at any given time (To + AT) 
is dependent not only on the amount of stored information, 
ro, at time To, but also on To, how long forgetting has been 
progressing. As of Wednesday noon, Heather has been forget- 
ting for a day, whereas Lois has only begun to forget. It is this 
difference between Heather and Lois that causes the subse- 
quent performance differences. 

Thus, beginning at noon Wednesday, identical information 
stores are eroded at rates that depend on when the list was 
originally learned. Given this state of affairs, it makes little 
sense to claim that forgetting rates are the same; such a claim 

General Feature Model 

The general model consists of the following assumptions. 
Each item in a list of to-be-remembered items consists of N 
features. Each feature is learned (and forgotten) in an all-or- 
none manner and independently of every other feature. After 
amount of study O, the probability that a randomly selected 
feature will be learned is g(O). (Of course, the proportion of 
features actually learned after amount of study O is subject to 
chance variability. It is assumed, however, that the number 
of features per item is sufficiently large that any chance 
deviation of the proportion of learned features from g(O) is 
small enough to be negligible.) 

When a feature is learned, it is placed in a feature storage 
unit; each learned feature goes to a different unit. When a 
feature is forgotten, it is lost from the unit. Forgetting, like 
radioactive decay, is exponential. Thus, if a feature is learned 
at time zero, the probability that it will be still be retained at 
time T is e -r/', where t is the decay time for the storage unit 
containing the feature. (Decay time is analogous to "half-life." 
It denotes the time needed for probability of retention to fall 
to 1/e.) 

The storage units vary in quality. Higher quality units have 
longer decay times and hence tend to retain their features 
longer. (It should not be surprising that memory storage units 
could have varying quality. It is harder, for example, to 
manufacture resistors that have precisely the same resistance 
than resistors that deviate randomly from their nominal re- 
sistance.) Because the general feature model's assumptions 
are intended to be nonrestrictive, we assume that a storage 
unit's decay time is a function not only of the unit's quality, 
q, but also of the amount of study O. Thus, a unit's decay 
time may be expressed: t(q, 0). lfO2 > O~, then t(q, 02) > 
t(q, 00. 

Let P¢ denote the proportion of all storage units having 
quality q. It is assumed that when a feature is learned it is 
assigned a storage unit entirely at random. Let r(O, T) denote 
the proportion of features retained after study O and forgetting 
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time T Then, assuming that the number of features is large 
enough to make sampling variability negligible, 

r(O, T) = g(O)~Pqe -r/"'~,°) (5) 

where the sum is over all q. 
The probability that an item will be remembered at time T 

after study O is a function of the proportion of its features 
that are still retained at that time. Specifically, the probability, 
P(O, T), of its being remembered is 

P(O, T) = m[r(O, T)], (6) 

where r(O, T) is given by Equation 5. 

quality variation that does exist is irrelevant. Specifically, 
quality has no effect on decay time. Thus, 

t ( q )  = t 

and 

P(O, T) = rn[g(O)e-r/']. 

Then it follows from Appendix A, Theorem 2, that 

e (o ,  T) = M[G(O)e-r], (11) 

where M and G are monotonic. Equation 11 has the form of 
Lofius's independence definition (Equation 1). 

Bogartz Feature Model  

The special characteristic of this model is that a storage 
unit's decay time is assumed to be unaffected by the amount 
O of study. Thus, 

t ( q ,  O) = t(q). (7) 

Using Equation 7 to rewrite Equation 5 yields 

r(O, T) = g(O)ZPae -r/"q). (8) 

Combining Equations 6 and 8 yields 

P(O, T) = m[g(O)ZPqe-r/'tq)]. (9) 

Equation 9 may be simplified by defining the function 

f (  T) = -ln[ZPqe-r/'(q~]. 

Then, 

e(o,  T ) =  m[g(O)e-'~]. ( lO) 

Equation 10 is Bogartz's independence definition. For that 
reason, we have named this specialized feature model the 
Bogartz feature model. We wish to emphasize, however, that 
this is not Bogartz's original model; it would be unfair to 
Bogartz to claim that it was. Bogartz's model is stated in 
abstract terms without any reference to features. The Bogartz 
feature model is our attempt to construct a memory mecha- 
nism that conforms to the mathematical specification of 
Bogartz's definition. Although it is not Bogartz's model, we 
have found it instructive to see what constraints must be 
placed on a feature model to make it conform to Bogartz's 
equations. 

Note that thef (T)  in Equation 10, which corresponds to 
Bogartz's psychological time, is not a fundamental construct 
in our feature model. Rather it is a mathematical convenience 
introduced to simplify Equation 9 into the form of Equation 
10. 

Loflus Feature Model  

As we have described earlier, Loftus's independence defi- 
nition is stronger than Bogartz's; correspondingly, the Loflus 
feature model is a special case of the Bogartz feature model. 
In the Loftus feature model, there is no variation in storage- 
unit quality. An equivalent way of saying this is that any 

Comparing Definitions 

The Bogartz and Loftus definitions of independence of 
forgetting rate from learning are now compared. 

Bogartz's Definition 

According to Bogartz (1990), forgetting is independent from 
original learning if two functions, h, (of O, original learning) 
and h2 (of T, forgetting time) can combine to express r, 
retained information, as follows: 

r(O, T) = h,(O)h2(T). 

The Bogartz feature model (Equation 8) conforms to this 
condition where 

and 

h,(O) = g(O) 

h2(T)  = XP~e-TY"qL 

Conversely, according to Bogartz, forgetting is dependent on 
original learning if 

r(O, T) = h,(O)h2(O, T). 

The general feature model (Equation 5) conforms to this 
condition where 

h2(O, T) = XPqe -r/"q'°), 

except in the special case where Equation 7 holds; but that 
special case is precisely the Bogartz feature model. 

Consider the conditional probability that a randomly se- 
lected feature will be retained at time T given that it was 
learned. In the general feature model, this conditional prob- 
ability is obtained by dividing Equation 5, the joint probability 
that a feature is learned and retained, by g(O), the probability 
that the feature is learned. Thus, 

P(feature retained at TI feature learned) 

= Y~Pqe -r/'(q'm = hz(O, T). 

In the Bogartz feature model, however, this conditional prob- 
ability is obtained by dividing Equation 8 by g(O), or 

P(feature retained at Tlfeature learned) 

= Y, Poe -r/t(q) = h2(T). 
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Thus, within the context of the general feature model, 130- 
gartz's definition of independence of forgetting from learning 
is satisfied if and only if the conditional probability of a 
feature being retained given that it was learned does not vary 
with O. 

Loftus's Definition 

Loflus's definition of original learning-forgetting rate in- 
dependence is satisfied if and only if 

r(Ol, T,)--- r(02, T2) (12) 

implies 

r(O,, T, + :,73 = r(O2, T2 + :'73. 

In other words, Loftus's definition is satisfied if, in order to 
predict the proportion of features retained at time (T + AT), 
the only information needed is the proportion of features 
retained at time T. Specifically, if one knows r(O, 73, one 
does not need to know O to predict r(O, T + AT). Thus, the 
definition is satisfied if (a) the memory system is unidimen- 
sional and (b) r may be used as the coordinate of the unidi- 
mensional memory space. 

The Loftus feature model satisfies Loftus's learning-forget- 
ting independence definition. However, the Bogartz feature 
model does not satisfy Loftus's definition. To see intuitively 
why this is so, consider that, in the Bogartz feature model, 
the longer forgetting has continued, the higher the average 
quality of the storage units of the surviving features. Features 
stored in low-quality units having short decay times are 
disproportionately forgotten as time passes. Consequently, the 
surviving features tend to be concentrated in the higher quality 
units. 

Both these questions are reasonable to investigate empiri- 
cally. We would not support any contention that one of these 
questions is legitimate to empirically investigate and the other 
one is not. However, for reasons detailed elsewhere in this 
article, it is our contention that it is Loftus's question that is 
best paraphrased "Is forgetting independent of original learn- 
ing?" 

Conclusions 

Bngartz's characterization of different forgetting models 
provides an enormously useful foundation for explicitly com- 
paring the relations among and predictions of such models. 
However, we are troubled that Bogartz (1990) dismissed the 
horizontal-parallelism tests associated with Loftus's independ- 
ence definition, stating, "I reject the use of the horizontal 
interaction as a means of studying the dependence of forget- 
ting rates on amount of learning" (p. 143). As we have tried 
to emphasize, the horizontal-parallelism test, although inap- 
propriate for assessing independence by Bngartz's definition, 
is perfectly appropriate for testing independence by Loftus's 
definition. 

We have seen that there is an intimate relationship between 
Loflus's independence definition on the one hand and uni- 
dimensional memory models on the other. All such models 
can be rejected by a set of data that fails the horizontal- 
parallelism test. We illustrated this ability using two models 
from the literature. 

We developed the feature models to better understand the 
constraints placed on memory mechanisms by Bngartz's and 
Loftus's independence definitions. As we have shown, these 
two definitions place quite different constraints on memory 
mechanisms. 

Why Lois Forgets Faster Than Heather 

Suppose, to illustrate, that Lois had study O~ and forgetting 
time T~, whereas Heather has had study O2 and forgetting 
time/'2. Suppose Equation 12 holds with 02 > O, and/ '2 > 
T~. In other words, Lois and Heather retain the same propor- 
tion of features, but Heather has been forgetting longer. 
Because T2 > T~, the features retained by Heather tend to be 
in higher quality storage units than those retained by Lois. 
Consequently, after an additional t ime AT passes, Heather 
will retain a higher proportion of features than will Lois. In 
other words, knowing the proportion of features retained by 
a subject at a given time does not provide enough information 
to predict the proportion of features retained after an addi- 
tional interval AT passes. 

Bogartz's and Loftus's Questions 

Within the context of a feature model, when Bogartz asks 
whether forgetting is independent of learning, he is essentially 
asking whether there is variation under O of the conditional 
probability of a feature being retained at time T given that it 
was learned. When Loftus asks whether forgetting is inde- 
pendent of learning, he is asking whether retention at time T 
is a perfect predictor of retention at time T + AT. 
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A p p e n d i x  A 

P r o o f s  o f  T w o  T h e o r e m s  

The purpose of  this a l~ud ix  is to prove two theorems that are 
relevant to our horizontal-l~trallelism arguments. 

N o t a t i o n  

There arc three ob~xvable variabl¢~ They are O, m o u n t  of  saudy 
(e.g., time or number of trials); T, forl~-~ting time (e.g., days); and P, 
performance (e.g., recall probability). P is a function of O and T, that 
is, P f  R{O, T). 

A s s u m p t i o n s  

We make four assumptions that, except for Assumption 3, are 
sufficiently weak to be nondebatable. Assumption 3 is at leas~ reason- 
able. The assumptions are as follows: 

I. Continuity: The function R(O, T) is continuous in both O 
and T. 

2. Study never hurts~ IfO2 > O,, then R(02, T) >_ R(O~, T) for 
all T_> 0. 

3. Forgctting always progress¢~ If 72 > T~, then R(O, T2) < 
R(O, T,) for all 0 > O. 

4. What has not been learned cannot be forgotten: Take amount 
of study O ffi 0. If T >  0, then R(0, T) -- Ri0, 0). 

Def in i t ion  

The horizontabparallelism condition is defined as follows. If 02 > 
Oi, then there exists a AT ~ 0 such that 

Rio l ,  T) = RiCh, T + AT), (At) 

for all T > 0. 

T h e o r e m  1: T e x t  E q u a t i o n  1 

T h e o r e m  

Given Assumptions l to 4, the horizontal-parallelism condition 
holds if and only ff there exists a monotonic increasing function m 
and a pnsitive-valued monotonic nondecreasing function, g, such 
that, 

RiO, 73 = m[g(O)e-T], (A2) 

for all O > 0 and all T->0. 

P r o o f  o f  T h e o r e m  

Because it is easy to show that Equation A2 implies horizontal 
~ i s m ,  that pest of the proof is left to the reader. We now show 
that horizontal parallelism implies Equation A2. 

Suppose that horizontal pandlelism holds. This condition implies 
that the time taken to fall from one performance level to another is 
the same fog all forg~ting curves that pass through those two levels. 
So, for all P~ _> P2, define t(P~, P2) to he the amount of time required 
for performance to fall from level PI to level/2. For Pj < P2, defir~ 

tiP,, t'2) = -t(P2, P~). 

Clearly, 

t(P,, 1"3) = t(e,, 1'2) + t(P~, t'3). (A3) 

Choose an arbitrary value of P and denote it Po. In Equation A3, 
make the following substitutions: replace P~ with RiO, 0), P2 with Po, 
and ~'3 with R( O, T). This yidds 

t[R(O, 0), RiO, T)] = t[R(O, 0), eo] + t[eo, R(O, T)]. (A4) 

By definition, the left-hand side of Equation A4 equals T. Now define 
the new function, 

to(P) = t(P, to) = -t(Po, P). 

Then Equation A4 may be rewritten, 

T = to[R(O, 0)] - to[R(O, T)]. (A5) 

Define the functions, 

re(x) = to-'0n x) (A6) 

and 

g(O) = exp[to[R(O, 0)]} for all O > 0. (A7) 

We set x in Equation A6 to 

x = g(O)e -T 

or, from the definition ofg(O) in Equation A7, 

In x = to[R(O, 0)] - T. 

It follows from Equation A5 that, 

In x = to[R(O, 7")]. 

Thus, inserting x into Equation A6 yields 

m[g(O)e-T] = to-'ttdRiO, T)iL 

which, in turn is equal to R(O, T). This completes our proof that 
horizontal parallelism implies Text Equation 1. 
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Theorem 2: Implications of Bogartz's f(T) Being 
Linear or Nonlinear 

N o t a t i o n  

The functions m and M ate monotonically increasing. The fenc- 
lions g and G are l~eitively valued and nummomcally incre~ng.  
The function f i s  differentiable and monotonically increasing. 

T h e o r e m  

Given Assumptions I to 4 listed in Theorem 1, ifR(O, 7") can be 
represented in the form 

R(o, T) = mle(O)e-:c"], (AS) 

andf(T)  is linear, then it can be reFtesented in the form 

R(O, T) ffi M[G(O)e-r]. (A9) 

Conversely, if R(O, T) can be represented in the form of  Equation 
A8 wheTefis nonfinear, then it cannot be represented in the form of 
Equation A9. 

Proof of Theorem 

Suppose Equation A8 holds with f (T)  = a T  + b where a > O. 
Define the functions 

M(x)  = m(X') 

and 

G(O) = [~(O)e-q'/'. 

MlG(O)e-q ffi mlg(O)e"t'~ 

= mlefO)e-/~', l 

= R(O, T). 

This proves the fast half of the theorem. To prove the second half of 
the theorem, it is shown that, ff Equaticms AS and A9 both Imld, then 
f (T)  must be linear. Suppose Eqnafiom A8 and A9 both held. 
Following Bogartz, the variable T is referred to as physical time, 
w ~ f ( T )  is referred t o m  l~cholngical time and is denoted T.. 
Thus. Equation A8 may be rewritten 

R(O, 73 = m[e(O)exp(-T. ) ] .  (AI0) 

It follows from Equation A9 and Theorem I that forgetting curves 
will be horizontally perallel when plotted with ph~ical time on the 
horizontal ~ Sinfilm'iy, it follows from Equation AI0 and Theorem 
I that forgetting curves witl be horizontally parallel when plotted with 
l~ycholngical time T .  on the horizontal ~ Consider the forgetting 
curves for O and (O + AO). These two eurves will be ~ t e d  by a 
constant AT when plotted using physical time. h'kewise, they will be 
sepm-ated by a constant AT. when plotted using psychological time. 
Now 

A T .  = f ( T  + A T ) - f ( T ) .  (Al l )  

Because the separation AT. between the pair of  forgetting curves is 
the same everywbere, it does not vary with T. Let AO approach zero. 
As it does so, AT and AT. aho avtnoach zero, and it foUows from 
Equation AI 1 that their ratio A T . / A T  a l~oaches  the derivative 
df(T)/dT. Because AT. does not vary with T, neither does the 
derivative df(T)/dT. From this, it follows that f (T )  is linear. 

For additional results related to Theorem 2, the reader is referred 
to I2vin¢ (! 970). 

Appendix B 

Proof That a Unidimensional Model Implies Confirmation of the Horizontal-Parallelism Test 

Suppose that a memory system is characterized by a single mem- 
ory-space coordinate. In that case, 

r(O, To + aT)  = u[r(O, To), AT]. (nl )  

Now consider two combinations of original learning and forgetting 
time----(Oj, T0 and (02, T2)---that produce the same stored infor- 
mation, to, that is, 

r(O,, T,) = r(O2, 7"2) = r0. (B2) 

By Equation BI, at time AT later. 

r(O,, T, + AT)  = u[r(O,, T,), AT] = u(ro, AT)  (B3) 

and 

r(O2, T2 + AT) = ulr(O~, Tg, AT] = u(r~ AT). (134) 

Because the fight sides of Equations B3 and 1t4 are equal, the left 
sides are equal as well, that is, 

r(O,, T~ + A T ) =  r(O2, 7"2 + AT). (B5) 

Thus, Equation B2 implies Equation B5. Applying the function m to 
the quantities equated in Equations B2 and 135, and recalfing that 
m[r(x)] =/~x),  

P(O,, T , )=  P(02, 7"2) 

implies that 

e(o, ,  T, + AT) = P(O2, 72 + AT). 

That is, equal performance at times T~ and T2 implies equal perform- 
anc¢ when AT is added to both tiraes. This completes our proof that 
a unidimensional memory model implies horizontally parallel forget- 
ting curves. 

(Appendix C follows on next page) 



926 OBSERVATIONS 

Appendix C 

Proof  of  Text  Equat ion 4 

Bogartz's model is captured by the equation 

r(O, T) ffi g(O)e - ~ .  

Hence, 

ln[r(O, T)] = ln[g(O)] - f(T). 

At time, AT later, 

In[r(O, T + AT)] -- ln[g(O)] - f ( T  + AT) 

or 

ln[r(O, T +  AT)] = ln[t(O, T)] + f ( T ) - f ( T +  AT). 

Clearly, there exists a function h such that 

f(T + AT) = h[f(T), AT]. 

So, 

and 

ln[r(O, T+  AT) = lnIr(O, T)] +f(T) - hLf(T), AT] 

r(O, T + AT) = r(O, T)e tan - htr~n, am, 

which has the form of Equation 4. 
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The "Call for Programs" for the 1991 APA annual convention will be included in the 
October issue of the APA Monitor. The 1991 convention will be held in San Francisco, 
California, from August 16 through August 20. Deadline for submission of program and 
presentation proposals is December 14, 1990. This earlier deadline is required because many 
university and college campuses will close for the holidays in mid-December and because 
the convention is in mid-August. Additional copies of the "Call" will be available from the 
APA Convention Office in October. 

Cal l  for  N o m i n a t i o n s  for  Developmental  Psychology 

The Publications and Communications Board has opened nominations for the editorship of 
Developmental Psychology for the years 1993-1998. Ross D. Parke is the incumbent editor. 
Candidates must be members of APA and should be available to start receiving manuscripts 
in early 1992 to prepare for issues published in 1993. Please note that the P&C Board 
encourages more participation by members of underrepresented groups in the publication 
process and would particularly welcome such nominees. To nominate candidates, prepare a 
statement of one page or less in support of each candidate. Submit nominations to 

Norman Abeles 
Department of  Psychology 
Michigan State University 
Psychology Research Building 
Room 129, Bogue Street 
East Lansing, Michigan 48824 

Other members of the search committee are Frances D. Horowitz, University of Kansas; 
Anne Pick, University of Minnesota; Alexander W. Siegel, University of Houston; and 
Sheldon White, Harvard University. First review of nominations will begin January 15, 
1991. 


