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This article has two purposes. The first is to investi-
gate the effects of stimulus contrast on perception of, and
memory for, visually presented material. The second is

to demonstrate the effectiveness of testing a series of pro-
gressively stronger—that is, nested—theories. We will
discuss these two goals in turn.

Stimulus Contrast

In the course of everyday visual behavior, a person must
frequently detect and identify visual stimuli that are some-
how degraded. For example, deciphering lecture slides in
a brightly lit room, reading traffic signs through a rain-
smeared windshield, and navigating a ski slope while
wearing foggy goggles are all situations in which the vi-
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Processing visually degraded stimuli is a common experience. We struggle to find house keys on dim
front porches, to decipher slides projected in overly bright seminar rooms, and to read 10th-generation
photocopies. In this research, we focus specifically on stimuli that are degraded via reduction of stim-
ulus contrast and address two questions. First, why is it difficult to process low-contrast, as compared
with high-contrast, stimuli? Second, is the effect of contrast fundamental in that its effect is indepen-
dent of the stimulus being processed and the reason for processing the stimulus? We formally address
and answer these questions within the context of a series of nested theories, each providing a succes-
sively stronger definition of what it means for contrast to affect perception and memory. To evaluate
the theories, we carried out six experiments. Experiments 1 and 2 involved simple stimuli (randomly
generated forms and digit strings), whereas Experiments 3–6 involved naturalistic pictures (faces,
houses, and cityscapes). The stimuli were presented at two contrast levels and at varying exposure du-
rations. The data from all the experiments allow the conclusion that some function of stimulus contrast
combines multiplicatively with stimulus duration at a stage prior to that at which the nature of the stim-
ulus and the reason for processing it are determined, and it is the result of this multiplicative combi-
nation that determines eventual memory performance. We describe a stronger version of this theory—
the sensory response, information acquisition theory—which has at its core, the strong Bloch’s-law-like
assumption of a fundamental visual system response that is proportional to the product of stimulus
contrast and stimulus duration. This theory was, as it has been in the past, highly successful in ac-
counting for memory for simple stimuli shown at short (i.e., shorter than an eye fixation) durations.
However, it was less successful in accounting for data from short-duration naturalistic pictures and was
entirely unsuccessful in accounting for data from naturalistic pictures shown at longer durations. We
discuss (1) processing differences between short- and long-duration stimuli, (2) processing differences
between simple stimuli, such as digits, and complex stimuli, such as pictures, (3) processing differ-
ences between biluminant stimuli (such as line drawings with only two luminance levels) and multilu-
minant stimuli (such as grayscale pictures with multiple luminance levels), and (4) Bloch’s law and a
proposed generalization of the concept of metamers.
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sual signal is degraded to one degree or another. It seems,
subjectively, that perceiving degraded stimuli is more dif-
ficult than perceiving undegraded, or clean, stimuli.

Although there are many ways in which visual stimuli
may be degraded, a large body of research indicates that
stimulus contrast, defined as the ratio of foreground to
background luminance, is critical in determining the fun-
damental response of the visual system. This effect can be
seen in the cat’s visual system, wherein retinal ganglion
cells are considerably more sensitive to stimulus contrast
than to absolute light levels (see, e.g., Wandell, 1995,
p. 139). The effect continues up through experiments in
which human sensitivity has been investigated, wherein
contrast sensitivity has varied over a range of approxi-
mately 20:1 as absolute light level has varied over a range
of more than 1,000,000:1 (e.g., van Nes & Bouman, 1967).

Stimulus contrast is often the key experimental variable
in modern vision science (Wandell, 1995). This is largely
because, unlike stimulus intensity, where linearity fails,
a high degree of linearity is observed in neuronal re-
sponses when intensity is fixed and stimulus contrast is
treated as the input variable. This linearity extends be-
yond physiology to perception. For example, Ginsburg,
Cannon, and Nelson (1980) demonstrated that perceived
contrast is a linear function of stimulus contrast for sine-
wave gratings, and Olds and Engel (1998) showed that
object identification is predicted well by a theory within
the context of which responses to different spatial fre-
quency components of independently varying contrasts
are simply summed to determine the overall response.

Whereas a great deal of research has been conducted
to investigate contrast effects on low-level sensory pro-
cesses, there has been considerably less research in
which contrast effects on higher level cognitive pro-
cesses have been investigated. We ask whether some of
the fundamental laws that have been found by vision sci-
entists to characterize simple stimuli in simple situations
(e.g., detection of a monochromatic light patch) may be
extended to more complex stimuli in more complex sit-
uations (e.g., face recognition). In this article, we inves-
tigate contrast effects on visual information acquisition
and visual memory. In our experiments, we presented
stimuli for varying durations at one of two contrast lev-
els, followed by various kinds of memory tests. The main
result from such an experiment is referred to as a per-
formance curve, which relates memory performance to
stimulus duration. By comparing performance curves is-
suing from stimuli shown at different contrasts, the ef-
fects of contrast can be precisely evaluated, as we will
describe in detail below.

We report six experiments. In the first, memory for
random visual forms was tested in a two-alternative
forced-choice (2AFC) recognition test. Each form was
originally viewed under different combinations of dura-
tion and contrast. In addition, the 2AFC test was either
easy or diff icult, and our question could be roughly
framed, Does the effect of contrast on memory perfor-
mance depend on test difficulty? In the second experi-

ment, we combined variation in duration and contrast
with two very different stimulus–task combinations
(STCs). In the first STC, random forms were again used
as stimuli and were tested in a 2AFC procedure. In the
second STC, digit strings were used as stimuli and were
tested by serial recall. Here, our main question could be
roughly framed as follows: Does the effect of contrast
depend on STC? In Experiments 3–6, we incorporated
and compared two types of naturalistic stimuli within
each experiment. In addition, we tested memory for the
stimuli both immediately, via a prospective confidence
rating, and in a later delayed recognition test. In each of
these experiments, we (again roughly) asked, Is the ef-
fect of contrast the same for the two stimulus types and
for the two performance measures?

Nested Theories

What does it mean to claim that the effect of contrast
on memory performance depends or does not depend on
some variable, such as task difficulty, STC, stimulus type,
or test delay? This question is necessarily framed and an-
swered within the context of some theory. Accordingly,
we now turn to the second purpose of this article, which
is to demonstrate the usefulness of postulating a series of
nested theories of some effect. In particular consider a
series of theories, Theory 1 . . . Theory k such that each
Theory k � 1 is nested within, or stronger than, The-
ory k. By this we mean that Theory k � 1 is a special
case of Theory k. For instance, Theory k � 1 might be
identical to Theory k, except that whereas some particu-
lar function in Theory k is assumed to be monotonic, the
corresponding function in Theory k � 1 is assumed to be
linear. Such a theoretical strategy is effective for two
complementary reasons. First, rejection of a theory im-
plies rejection of all nested (i.e., stronger) theories. In
our example, rejection of the monotonic function theory
would also imply rejection of the linear function theory.
Second, confirmation of a theory implies confirmation
of all weaker theories. To use the same example, confir-
mation of a linear function implies confirmation of a
monotonic function.

We now will describe a series of four nested theories
in order to investigate the question, How does stimulus
contrast affect perception and memory? Following our
report of Experiment 1, we will describe in detail how
these four theories, plus an additional theory, are tested.

Basic Assumptions
We first will establish the basic assumptions and a no-

tation within which the theories are couched. We assume,
in particular, that processing a visual stimulus in antici-
pation of a later memory test can be viewed as the accu-
mulation over time of information about that stimulus—
that is, that

I(t) � A(t, C). (1)

Here, I(t) is acquired information about a stimulus. By
Equation 1, I(t) is some function, A, of t, the time fol-
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lowing the stimulus onset, and C, the stimulus contrast.
When the stimulus is shown for some particular stimu-
lus duration d at contrast level C, the total acquired in-
formation about the stimulus is

I � A(d, C). (2)

Performance in any task that measures perception and
memory for the stimulus, then, depends on—that is, is a
monotonic function mT of—acquired information. Thus,

PT � mT (I ), (3)

where PT is performance in Task T. With respect to the
present experiments, variation in T corresponds to the
influence of different test difficulties (Experiment 1),
different STCs (Experiment 2), or different stimulus
types and test delays (Experiments 3–6).

Within the context of the general theory defined by
Equations 1–3, some candidate answers to the question of
how contrast affects perception and memory present them-
selves, such as “different kinds of information are acquired
from low-contrast stimuli than from high-contrast stim-
uli,” or “the same information is acquired, but at a slower
rate, from low-contrast stimuli as from high-contrast
stimuli.” To formalize such answers, we consider four
specific nested theories of how stimulus contrast affects
accumulation of information over time.

Multidimensional Theory
Multidimensional theory, the weakest theory, consists of

the following assumptions: (1) Information, I, is repre-
sented by J different dimensions, and thus, I is a J-element
vector; and (2) the different dimensions of I may be af-
fected in different ways by stimulus contrast; in particular,

Ij � A[d, gj (C)], (4)

where Ij is the value of the jth informational dimension, gj
is a function such that gj (C) is a scalar, and A is mono-
tonically increasing in all arguments. Performance in
Task T is then obtained by

PT � m T [I ] � m T [I1, I2, . . . , IJ], (5)

where mT is a function that is monotonic in all arguments.
Numerous sorts of multidimensional theories have ap-

peared in the memory literature over the past 4 decades,
where dimensions have consisted, for example, of short-
term versus long-term memory (Atkinson & Shiffrin,
1968), levels of processing (Craik & Lockhart, 1972),
multiple memory “attributes” (Underwood, 1969), con-
volution theories (Hintzman, 1984; Murdock, 1982,
1993), verbal versus imaginal codes (Paivio, 1969, 1971),
strength-fragility theory (Wickelgren, 1972, 1974), im-
plicit versus explicit memory (Schacter & Tulving, 1994),
and, related to the present work, strength-certainty the-
ory (Busey, Tunnicliff, Loftus, & Loftus, 2000), which
we will describe in more detail below.

Multidimensional theory is our weakest theory. Is it
valid? The assumptions of multidimensional theory seem

sufficiently general to be almost self-evident. To con-
firm them, one need only find that memory performance
increases with both stimulus duration and stimulus con-
trast. In the world of visual psychophysics, virtually any
performance measure in any experiment improves with
contrast (e.g., Graham, 1989; Olzak & Thomas, 1986),
and much the same has been found with visual memory
tasks (Loftus, 1985c; Loftus, Kaufman, Nishimoto, &
Ruthruff, 1992; Loftus & Ruthruff, 1994). Likewise, per-
formance almost invariably increases with increasing du-
ration (e.g., Kaswan & Young, 1963; Laughery, Alexander,
& Lane, 1971; Loftus, Busey, & Senders, 1993; Rumel-
hart, 1970; Shibuya & Bundesen, 1988).

Nevertheless, these findings are not absolutely univer-
sal, and circumstances can be concocted in which even
these assumptions can be shown to be false. An excellent
example has been provided by Nairne (1988), who demon-
strated that interfering with encoding processes via a re-
duction in stimulus duration can lead to an increase, not
a decrease, in memory performance. In a simple naming
task, Nairne presented masked words at two durations: a
short duration that led to 50% naming accuracy and a
long duration that led to 100% naming accuracy. A large
retention advantage was found for the short-duration
words on a surprise recognition test, whereas no such ad-
vantage was found for recall. Nairne compared these re-
sults with the generation effect, in which people show bet-
ter memory performance for items that are self-generated
during study than for those that are only read (e.g.,
Slamecka & Graf, 1978). He hypothesized that as a re-
sult of insufficient processing time for the short-duration
words, participants engaged in a data-driven generation
process that led to greater performance on a test that is
sensitive to data-driven processing—for example, recog-
nition. If the effect is due to an increase in data-driven
processing, interfering with encoding should lead to in-
creased performance on any test that is sensitive to such
processing. In an extension of Nairne’s original study,
Hirshman and Mulligan (1991) replicated the naming
task with short- and long-duration words and replaced
the follow-up recognition test with a perceptual identifi-
cation task. Counter to the prediction of Nairne’s hy-
pothesis, no advantage was found for the short-duration
words in the perceptual identification task, suggesting
that the recognition advantage was not due to data-driven
processes but, rather, to conceptually driven processes.
The conclusion appears to be that in some circumstances,
the vigor of observers’ postperceptual stimulus process-
ing can be made inversely dependent on the physical
quality of the stimulus—a kind of overcompensation ef-
fect. It appears that this phenomenon does not happen
ordinarily; nevertheless, that it does happen sometimes
places boundaries on even this weakest of our theories.

Unidimensional Theory
Unidimensional theory is a special case of multidi-

mensional theory in which there is only a single dimen-
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sion. Thus, information, I, is a one-element vector—that
is, information can be represented by a single number, or

I � A[d, g(C)], (6)

and performance in Task T is obtained by

PT � m T (I ) (7)

Numerous theories make the implicit assumption of
unidimensionality. Examples are strength theories (e.g.,
Norman, 1966) and logogen theory (Morton, 1969).
Basic signal detection theory entails an underlying uni-
dimensional scale of strength or familiarity; however,
because two numbers, strength and criterion, are neces-
sary to generate performance, the complete theory is
two-dimensional, not unidimensional.

Multiplicative Theory
The remaining two theories retain the unidimension-

ality assumption and entail successively more specific
instantiations of the function g in Equation 6.

Multiplicative theory assumes that the function A com-
bines duration d and some function of contrast g(C) multi-
plicatively to produce the single value of information—
that is,

I � A[d � g(C)], (8)

with performance on Task T as described in Equation 7.
Multiplicative theory has been confirmed in several

studies reported by Loftus (1985c; see also Sperling,
1986) and by Loftus et al. (1992, Experiment 3), wherein
complex naturalistic color pictures were used as stimuli
and were tested using both a prospective confidence rat-
ing acquired after each study trial and a long-term yes–no
recognition procedure. In a related experiment in which
degradation was accomplished by imposition of random
noise, rather than by contrast reduction, multiplicative
theory was again confirmed in a recognition task (Lof-
tus et al., 1992, Experiment 4).

Bloch’s Law
Multiplicative theory assumes that information is a

function of the product of duration d and some function
of contrast g(C). A more specific version of this theory
assumes that information is a function simply of the
product (d � C)—that is, that g(C) � C. Thus, acquired
information is obtained by

I � A(d � C), (9)

and performance is described in Equation 7. This theory is
akin to Bloch’s law, wherein below a critical duration, per-
ception, as measured in any task, is determined solely by
the product of stimulus luminance and stimulus duration—
that is, by total stimulus energy.

The Notion of a Fundamental Effect of Contrast
In perception and memory tasks, variables differ in

terms of where in the cognitive system they exert their

effects. Suppose, for example, that an observer were asked
to encode a stimulus, either by using rote rehearsal or by
generating a mental image. This processing type strat-
egy would be construed as having its effect at a relatively
high level in the cognitive system; the variable’s effect
would be influenced, for example, by the nature of the
stimulus and the observer’s intent in processing the stim-
ulus, among other things.

The last three theories we have discussed, from unidi-
mensional to Bloch’s law, all place the contrast effect at
a low level in the system. That is, if contrast and duration
simply combine to generate a single number, the value of
contrast itself is lost at an early stage. Informally, it can
be construed as a “dumb” variable whose effect is inde-
pendent of the nature of the stimulus or the reason for
processing the stimulus (e.g., the eventual task for which
the stimulus will be relevant).

EXPERIMENTS

To evaluate these theories, we carried out six experi-
ments, all using a memory task for visually presented
material. In Experiments 1 and 2, we used simple stim-
uli (digits and random forms), which were what we de-
fine to be biluminant: They were composed of only two
luminance values, a foreground and a background;
hence, a given stimulus could be characterized by a sin-
gle contrast value, which is essentially the ratio of the
two luminances. In Experiments 3–6, we used naturalis-
tic grayscale images (faces, houses, and cityscapes) as
stimuli. Each of these multiluminant stimuli used the full
range of 256 grayscale values; hence, there was no sin-
gle contrast value, and definition of contrast was some-
what more complex, as will be described below. In all six
experiments, we addressed the question, Is the effect of
contrast on memory performance the same for both lev-
els of a third independent variable? The answer to this
question will, as we shall see, allow us to identify which
of the nested theories described earlier are confirmed
and which are disconfirmed.

Experiment 1
Task Difficulty

In Experiment 1, computer-generated random forms
were shown for different durations and contrasts and
were then tested in a 2AFC recognition test. Task diffi-
culty was manipulated by varying the similarity between
a target and its associated distractor.

Method
Observers. The observers were 6 University of Washington un-

dergraduates and graduates. Each reported normal or corrected-to-
normal vision and was paid $60.

Stimuli. The stimuli were random computer-generated line draw-
ings (hereafter, forms) created in MATLAB as follows. For each
form, seven sets of x–y coordinates within a 50 (columns) � 58
(rows) pixel matrix were chosen at random and connected, in the
order they were chosen, by six straight lines. The seventh point was
not connected back to the first. For each target form, two corre-
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sponding distractor forms were created—one for the easy test and
one for the difficult test. Thus, there were three versions of each
form—the target and its two corresponding distractors. We will
refer to these as stimulus triads, an example of which is shown in
Figure 1. Distractors were created by altering one set of target co-
ordinates by some number of pixels, which we term delta. For the
easy distractors, delta was set to 11 pixels, whereas for the difficult
distractors, delta was set to 7 pixels. The coordinate to be altered
was chosen at random for each pair of distractors, excluding the two
end coordinates, 1 and 7. For half the distractor pairs, delta was
added to both the x- and the y-values of the altered coordinates,
whereas for the other half, the delta value was subtracted from both
the x- and the y-values of the altered coordinates.

Apparatus. The stimuli were displayed on a 17-in. Macintosh
ColorSync monitor with a screen refresh rate of 13.5 msec, driven
by a Power Macintosh G3 computer. The experiment was written
and executed in MATLAB, using the libraries provided in the
Psychophysics Toolbox (Brainard, 1997) and the Video Toolbox
(Pelli, 1997). The experimental lab room was dimly illuminated
during the experiment. All the stimuli were shown against a uni-
form gray background whose luminance was 8.6 cd/m2.

Design. There were 20 conditions in the experiment: 5 stimulus
durations � 2 contrasts � 2 difficulty levels. Because we wanted to
achieve roughly equal performance ranges for the two contrast lev-
els, the duration ranges were different for the high and the low con-
trasts: For the low-contrast conditions, durations ranged from 40.5
to 148.5 msec in equal increments, whereas for the high-contrast
conditions, durations ranged from 13.5 to 121.5 msec in equal incre-
ments. Stimulus contrast was defined to be (LMax � LMin)/(LMax �
LMin) where LMax is the maximum luminance and LMin is the mini-
mum luminance. Specific contrast values varied among observers
to accommodate a range of observer ability but were held constant

in the two tasks for each individual observer. Table 1, columns 3
and 4, shows the high- and low-contrast values for each of the 6 ob-
servers. The relevance of the two rightmost columns of Table 1 will
be discussed in a later section.

Each observer completed at least four sessions of data collection,
preceded by at least two practice sessions. Each session involved 10
blocks of form recognition trials. Each block consisted of 40 stim-
ulus trials, 2 in each of the 20 conditions.

Procedure. Each trial began with a fixation point displayed in the
center of the screen for 250 msec, accompanied by a warning tone.
Following the fixation point, the target stimulus was presented for the
exposure duration appropriate to that trial. Five hundred milliseconds
after target offset, the target and its corresponding distractor (easy or
difficult) were displayed side by side on the screen, where they re-
mained until a response was made. The observer’s task was to identify
which of the two test stimuli was the previously presented target. The
observer entered one of six response options, corresponding to defi-
nitely left, probably left, maybe left, maybe right, probably right, and
definitely right. Feedback was given in the form of a tone—2000 Hz
if the observer was correct and 500 Hz if the observer was incorrect.

Randomization and counterbalancing. Conditions were
counterbalanced across 20-block chunks. For each 20-block chunk,
40 stimuli were rotated through each of the 20 conditions. Condi-
tion order for each of the 40 stimuli within a set was initially ran-
domized, with the constraint that each of the 20 conditions occurred
twice. Then, for 20 consecutive 40-trial blocks, each form was ro-
tated through all 20 conditions; thus, each of the 40 forms was
shown once during each block. The ordering of the forms within
each block was randomized. A unique stimulus set of 40 form tri-
ads was used for each 20-block chunk completed by an observer.
Table 1, column 2 shows the number of blocks run by each observer.

Recall that on each test trial, a pair of stimuli was displayed: the
target and its corresponding distractor (easy or difficult). Of the two
stimuli in a pair, the choice of which stimulus was displayed as the
target prior to test was determined by a virtual coin flip on each trial.
This was done to prevent the observers from learning a particular
target in each stimulus triad. The observers were informed at the
outset of the experiment that although they would see the same
stimulus pairs repeated across blocks, on any particular trial, of the
two forms in the pair, the form chosen to be the target would vary.

Results
Proportion correct, corrected for the 50% guessing rate,

was computed for each of the 20 conditions and averaged
across sessions for each observer. Figures 2A (easy task)
and 2B (difficult task) show mean performance as a func-
tion of exposure duration (log scale) for the two contrast
levels, averaged across the 6 observers. The error bars,
which are mostly obscured by the curve symbols, repre-
sent standard errors. Numerous aspects of Figure 2—the
reason for plotting performance on a log duration scale,
the genesis of the theory lines through the data points, the
rectangles on panels A and B, each enclosing two data
points, and panels C and D in their entirety—will be de-
scribed below. For the moment, we note that, as was ex-
pected, performance increases with increasing duration,
is higher for high than for low contrast, and is higher in the
easy than in the difficult condition.

Evaluation of Theories
We now will turn to an evaluation of the theories de-

scribed earlier. In the process, we will describe in detail
what each theory predicts about our data.

Target Easy
Distractor

Difficult
Distractor

Figure 1. Example of a form stimulus triad used in Experi-
ment 1.

Table 1
Observer Information for Experiment 1

Number of Low High Contrast
Observer Blocks Contrast Contrast Ratio k (Best Shift)

S.K.C. 160 0.043 0.073 1.698 3.320
E.C.U. 40 0.043 0.073 1.698 3.004
E.M.H. 60 0.058 0.088 1.517 2.460
J.C.M. 70 0.058 0.088 1.517 2.460
C.A.W. 160 0.073 0.104 1.425 2.460
J.S.F. 80 0.073 0.104 1.425 2.460

M 0.056 0.086 1.547 2.694

Note—The “Contrast Ratio” is the ratio of high contrast to low con-
trast. The “k (Best Shift)” column shows the ratio of durations required
to achieve equal performance in the low-contrast, as compared with the
high-contrast, condition. Note that k is constrained to be the same for
both the easy and the difficult form recognition tasks.
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Multidimensional theory. Multidimensional theory
makes only the assumptions that all the elements of in-
formation, I, increase with both increasing duration and
increasing contrast and that performance increases with
increasing information. To confirm multidimensional
theory, it is therefore sufficient to note that for both the
easy and the difficult tasks, performance increases with
increasing duration and luminance.

Unidimensional theory. By unidimensionality theory,
stimulus duration and stimulus contrast are combined into
a single number representing acquired information, I, and
performance is a monotonic function of I. In Experiment 1,
there were two performance measures—one for the easy
task, PE, and one for the difficult task, PD—and there were,
correspondingly, two monotonic functions, mE and mD,
that mapped I to PE and PD (see Equation 7 above).

To describe unidimensionality theory’s predictions, we
use what is referred to as a state-trace analysis, described
in detail by Bamber (1979; see also Busey et al., 2000;

Loftus & Bamber, 1990; Loftus & Irwin, 1998; Palmer,
1986a, 1986b). In the Appendix we provide a brief tuto-
rial describing state-trace analysis. Applied to the pres-
ent data, the general idea is this. Consider two different
duration � contrast conditions, (d1, C1) and (d2, C2), that
lead to equal performance, PE, on the easy task. The pre-
diction is that these same two conditions must also lead to
equal performance, PD, on the difficult task. The logic be-
hind this prediction is that if the two conditions, (d1, C1)
and (d2, C2), produce the same value of PE, then accord-
ing to the unidimensional model, these two conditions
must have produced the same value of information,

(10)

where, mE
�1 is the inverse of mE. Because the two condi-

tions produce the same value of information, they must
also produce the same performance on the difficult task,
PD � mD[mE

�1(PE )]. Loftus et al. (1992, Experiment 3)
showed this to be the case for picture recognition where

I m P= -
E E

1( ) ,

Figure 2. Experiment 1 data. (A and B) Response probability corrected for guessing as a function of stimulus
duration (log scale). (C) Difficult performance as a function of easy performance (state-trace plot). (D) The low-
contrast curves from the top two panels have been shifted leftward by identical amounts, corresponding to a fac-
tor of 2.694 (for visual clarity, the “easy” curves have been shifted upward by 0.30). With this shift, the high-
contrast and the low-contrast curves align quite well for both difficulty levels. Solid and dotted lines in panels A–D
represent theoretical fits of the sensory response, information acquisition theory described in the text. All error
bars (most of them obscured by the plot symbols) represent standard errors.
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the joint effects of luminance and duration were mea-
sured on two tasks: prospective confidence and yes–no
recognition.

To gain an intuition for this prediction, consider the
40-msec high-contrast and the 121-msec low-contrast
conditions for the easy task. Mean performances for
these two conditions are enclosed in the rectangle in Fig-
ure 2A. Because these two conditions are approximately
equal in the easy task condition, they are predicted to
also be equal in the difficult task condition. It is evident
that they are, as is shown by the rectangle in Figure 2B,
which encloses the same two conditions. Thus, the equal-
ity, in both difficulty conditions, of these two conditions
constitutes a confirmation of unidimensional theory.

The success of state-trace analysis does not require
that one be lucky enough to find pairs of duration � con-
trast conditions that happen to produce identical perfor-
mances. The formal rationale for this assertion is de-
scribed in Bamber (1979), and an intuitive treatment of
it is provided in our Appendix. Essentially, one assumes
that the measured points are samples from an underlying
continuous function whose form can be estimated from
the data. The unidimensional theory’s prediction is eval-
uated using what is referred to as a state-trace plot,
which is a scatterplot, over experimental conditions, of
one performance measure (in this case, difficult task per-
formance) against another performance measure (in this
case, easy task performance). If the continuous function
were measured, the scatterplot would, by unidimensional
theory, form a continuous monotonic function, with
higher valued points corresponding to greater informa-
tion (i.e., longer duration and higher contrast) condi-
tions. Because the continuous function is not measured
completely but is only sampled—the sample correspond-
ing here to the chosen set of stimulus durations for the
two contrast levels—we must estimate the underlying
function by “connecting the dots” in the scatterplot. Uni-
dimensional theory’s prediction remains that the sam-
pled scatterplot points will be monotonic over all 10
points in the scatterplot—that is, across both the high-
and the low-contrast conditions.

The state-trace plot for Experiment 1 is shown in Fig-
ure 2C. As in the other Figure 2 panels, the filled curve
symbols represent high-contrast conditions, whereas the
open symbols represent low-contrast conditions. On a
state-trace plot, two contrast � duration conditions that
are equal for both the easy and the difficult tasks would
appear as two points in the scatterplot that fall almost en-
tirely atop one another. The two such conditions that we
have just discussed indeed appear as two (almost) over-
lapping points enclosed by the rectangle in Figure 2C. It
is evident that the Figure 2C scatterplot is, for all intents
and purposes, monotonic, thereby confirming unidi-
mensional theory.

Just as the data points from panels A and B are trans-
posed to panel C, the theoretical curves (whose genesis
is to be explained soon) are likewise transposed. The two

theoretical curves corresponding to high and low con-
trast also fall virtually atop one another, thereby indicat-
ing that the theory that generates these curves incorpo-
rates the assumption of unidimensionality.

Multiplicative theory. Multiplicative theory assumes
that stimulus contrast and stimulus duration combine
multiplicatively to produce information—that is, that

I � A[d � g(C)]. (11)

Consider, as we did above, two pairs of duration–
contrast combinations, (d1, C1) and (d2, C2), that produce
the same easy performance value, PE. We have just ar-
gued that any unidimensional theory implies that (d1, C1)
and (d2, C2) must then have produced equal values of I.
Therefore, by Equation 11,

A[d1 � g(C1)] � A[d2 � g(C2)]. (12)

Applying the inverse of the function A to Equation 12,
taking logarithms of each side, and rearranging terms,

log(d1) � log(d2) � � log(k), (13)

where log(k)—and thus, k � g(C2)/g(C1)—is a constant.
That is, the difference between the logarithms of d1 and
d2 (the durations that produce equal performance levels
for contrasts C1 and C2) is predicted by the multiplicative
theory to be constant. Another way of characterizing this
prediction is to note that, when plotted on a log-duration
scale, performance curves for the two contrast values
must be horizontally parallel, separated by a constant,
log(k). Equation 13 includes no task difficulty compo-
nent, which indicates that the single constant, log(k), ap-
plies to both the easy and the difficult tasks. Note that if
lowering stimulus contrast from a higher value, C2, to a
lower value, C1, confirms the multiplicative theory, a
natural intuitive interpretation emerges—that the same
perceptual processes are occurring with the lower con-
trast as with the higher contrast, but at a rate that is
slower by a factor of k.

A casual inspection of the pairs of performance curves
shown in Figures 2A and 2B indicates that they are at
least roughly horizontally parallel and separated by
about the same amount. To evaluate the multiplicative
theory, we carried out the following procedure. For each
of the 6 observers, we iterated through a progression of
k values. For each k value, we shifted the low-contrast
data points from Figure 2, panels A and B, to the left by
log(k). We then judged which k value produced the best
simultaneous alignment of the low- and the high-contrast
data points. This part of the procedure yielded the data
in the “k (Best Shift)” column of Table 1. We then com-
puted the mean k value across observers (2.694) and used
it to left-shift the mean low-contrast data from Figure 2,
panels A and B. The results are shown in Figure 2, panel D
for both the easy task data and the difficult task data (note
that to avoid visual confusion, the two easy condition
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curves have been shifted upward by 0.30 to make them
readily distinguishable from the two difficult condition
curves). It is evident that the single shift value produces
reasonably, although not perfectly, aligned data points for
both the easy and the difficult curve pairs. We conclude
that multiplicative theory is weakly confirmed. Following
a more detailed analysis below, in conjunction with our
discussion of a specific quantitative theory, we will have
more to say about the fit of the multiplicative theory.

Bloch’s law. Bloch’s law is that information and,
therefore, performance are determined by (i.e., are a
monotonic function of ) the product of duration and con-
trast. This means that if contrast is increased by some
factor, k, duration must be decreased by the same factor,
k, to achieve equal performance. To see why this is, con-
sider Equation 12 above and make the Bloch’s law as-
sumption that g(C) � C. Suppose contrasts C2 and C1
are such that C2/C1 � k. Applying A�1, the inverse of
function A, and rearranging terms produces d1/d2 �
C2/C1 � k.

This prediction is evaluated via the data shown in
Table 1, where columns 5 and 6 show the contrast ratio
C2/C1, and k (Best Shift), which corresponds to d1/d2.
The prediction clearly fails. For each of the 6 observers,
the estimated k value is considerably greater than the
physical high- to low-contrast ratio. Averaged across ob-
servers, the k value is greater than the contrast ratio by a
factor of approximately 1.74 (95% confidence interval �
�0.13). In short, increasing contrast produces a perfor-
mance improvement that is considerably greater than
would be predicted if stimulus information were based
on the simple product of contrast and duration.

The Loftus and Busey sensory response, informa-
tion acquisition theory. Because Bloch’s law holds in
some low-level tasks, it provides a starting point—a kind
of plausible null hypothesis—for predicting the precise
effect of contrast on perception and memory tasks. As
we have just seen, it failed. We now consider the possi-
bility that Bloch’s law, nevertheless, still governs the ef-
fect of contrast on information acquisition, but in a dis-
guised fashion. As an analogy, consider Newton’s law of
gravitation, which states that a falling object accelerates
at a constant rate. In fact, an object falling in an atmos-
phere will be observed to accelerate at a decreasing rate
(eventually ceasing to accelerate when it reaches what is
called terminal velocity). However, no one would conclude
from this observation that Newton’s laws are discon-
firmed; rather, one would note that an additional factor,
air friction, is preventing the Newton’s law prediction
from being met.

Perhaps, in similar fashion, Bloch’s law truly de-
scribes the way in which contrast and duration combine
into information, but its workings are obscured by some
other process. One such possibility is that there is a con-
trast threshold involved in perception of our stimuli such
that the effect of contrast “begins at” some greater-than-
zero level. To provide a rough intuition about what we

mean by this, suppose that, from the visual system’s
point of view, a stimulus contrast of 0.03 corresponded
to zero—that is, that the system did not respond to con-
trasts less than 0.03. Now consider two contrast levels,
0.12 and 0.06. From the experimenter’s point of view, the
ratio of these two contrast levels is 2:1, whereas from the
visual system’s point of view, the ratio is (0.12 �
0.03):(0.06 � 0.03) � 3:1. Therefore, the visual system
could still be responding linearly to its representation of
contrast, but not to the experimenter’s representation of
contrast.

Loftus and his colleagues (Busey & Loftus, 1994,
1998; Loftus et al., 1993; Loftus & McLean, 1999; Lof-
tus & Ruthruff, 1994; Massaro & Loftus, 1996) have de-
veloped a theory that incorporates exactly this threshold
assumption. The theory, called the sensory response, in-
formation acquisition (SRIA) theory, describes percep-
tion and memory of relatively simple stimuli shown at
relatively low contrast levels. This theory is described in
detail in numerous published articles (see Busey & Lof-
tus, 1994, for the most complete description). We de-
scribe its essence here, demonstrate how it relates to
nested Theories 1–4 described above, and apply it to the
present data.

Description of the SRIA theory. The theory begins
with a representation of some briefly presented stimulus
as a temporal waveform, f (t), relating stimulus contrast
to time t since stimulus onset. For stimuli presented on a
CRT, as in the present experiments, f (t) would consist of
a series of scallops, each scallop corresponding to a sin-
gle screen refresh. However, as has been shown by Busey
and Loftus (1994, Appendix D), given the nature of the
human visual system and the timing of CRT refresh rates,
a very good approximation can be generated with the sim-
plifying assumption that f (t) is rectangular with a width
equal to d (the stimulus duration) and a height equal to
C (the stimulus contrast).

The physical stimulus is assumed to initiate a sensory
response function, a(t), obtained by convolving f (t) with
the impulse response function, which is the system’s the-
oretical response to an infinitely brief stimulus. The im-
pulse response function is assumed to be a gamma func-
tion that is a convolution of n exponentials, each with a
decay time of t msec (Watson, 1986). Given specifica-
tion of d and C, therefore, the sensory response function
has the same two free parameters, n and t, as the impulse
response function. On the basis of past data, we always
set n to 9, whereas t remains a free parameter. Examples
of sensory response functions for different contrasts and
durations are shown in Figure 3. The top panel shows
functions based on a contrast of C � 0.10, whereas the
bottom panel shows functions based on a contrast of C �
0.05. Note that C simply scales a(t); thus, the C � 0.10
functions are twice the height of the corresponding C �
0.05 functions.

At any given time t since stimulus onset, information
is assumed to be acquired from the stimulus at some rate
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r(t), whose magnitude is based in part on the instanta-
neous value of a(t). Note that I(t), the integral over time
of r(t), is the proportion of stimulus information ac-
quired at time t. It is further assumed that there is a sen-
sory threshold such that whenever a(t) is below thresh-
old, r(t) is zero. This threshold, designated q, is set, for
illustrative purposes, to 0.03 and is shown in the two
panels of Figure 3; thus, q is a second free parameter in
the theory. For ease of exposition, a new function, aQ(t)
is defined to be aq(t) � [a(t) � q] for a(t) � q and 0 for
a(t) � q.

The information acquisition rate, r(t) is, more specif-
ically, assumed to be proportional to the product of aq(t)
and [1 � I(t)], the proportion of stimulus information not
acquired by time t. The constant of proportionality is
termed 1/c, where c is a third free parameter in the the-

ory. Given these assumptions, an equation can be written
for stimulus information, which is,

(14)

where Aq(t) is the integral under aq(t) from 0 to t. Note
that the total amount of stimulus information acquired
on a trial is obtained by letting t equal infinity; thus,

(15)

where Aq(�) is the total area under Aq(t) (see Loftus &
McLean, 1999, pp. 396–397, for formal derivations of
Equations 14 and 15).

Within the theory’s context, I(�) is determined by
stimulus duration and stimulus contrast, plus the con-
strained parameter n � 9 and the free parameters t, q,
and c. To complete the theory’s application to the pres-
ent data, we need a function mapping I(�) to proportion
correct for the easy and the difficult tasks. To do so, we
must consider more carefully what is signified by the
term information. Past applications of this theory have
been to experiments in which study variables—for ex-
ample, the shape of f (t)—were manipulated and a single
memory task (e.g., digit recall) was used. Therefore, the
term information could be roughly interpreted as pro-
portion of stimulus features acquired, and the intuitively
reasonable assumption was made that proportion correct
on the memory test was equal to acquired information.
This assumption served quite well, inasmuch as past fits
of the theory to the data have been most excellent.

The present experiment is different in that there are
two memory tasks, difficult and easy. Given that these
two tasks are designed to and do yield different perfor-
mance levels, it is obviously inadequate to assume that
proportion correct is simply equal to I(�); this would in-
correctly imply equal performance for the difficult and
the easy tasks. To solve this problem, we allow different
c values, cD and cE, that correspond to the two memory
tasks. This means that Equation 15 must be modified to
index task difficulty—that is,

(16)

where the index T refers to task difficulty and can be ei-
ther D or E.

This modification violates a simplistic intuition about
what is meant by acquired information, for the following
reason. The experimental design is such that an observer
seeing a stimulus during the study phase of a trial does
not even know whether the trial is a difficult or an easy
trial; this knowledge cannot become apparent until the
test portion of the trial. So how can acquired informa-
tion be different depending on whether the test will even-
tually be difficult or easy? (It sounds like precognition!)
The answer is that acquired information in memory is
not a static entity, like acquired money in a bank account;
rather, information must be viewed as task relevant. One
might maintain a presumed-to-be-static theoretical con-
struct, such as proportion of acquired features; however,

I e A c
T

T( ) . ,( )/• = - - •1 0 q

I e A c( ) . ,( )/• = - - •1 0 q

I t e A t c( ) . ,( )/= - -1 0 q

Figure 3. Sensory response, information acquisition theory:
sensory response functions for three durations (50, 100, and
150 msec) and two contrast levels (0.10 and 0.05). The curves are
obtained by convolving the impulse-response function generated
by parameters n and t with the original, physical, stimulus con-
trast function f(t). The sensory threshold q, here set at 0.03, allows
computation of the above-threshold area A�(�) for each of the six
curves.
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the value of proportion of acquired features differs de-
pending on the task—and it is the value of the acquired
features that I(�) refers to in Equation 16. To use a sim-
ple example, suppose that either low-contrast digits or a
blank field had been briefly presented. Presentation of a
digit would yield some information; however this infor-
mation would have a different value if the task was one
of simply detecting whether a digit versus a blank was
presented than it would if the task was identifying which
digit was presented.

Asymptotic performance. Ideally, we could simply
equate observed performances PE and PD in the easy and
the difficult tasks, to IE(�) and ID(�), respectively. Alas,
we cannot, because by Equation 16, IT(�) asymptotes at
1.0. That is, Aq (�) can become arbitrarily large—for ex-
ample, as stimulus duration increases—and as it does so,
IT(�) approaches 1.0. Form recognition data, however,
do not asymptote at 1.0. Instead, for reasons that are be-
yond the scope of this article, they invariably asymptote
at some lower value. Therefore, at the very least, we
must include an asymptote in the theory in order that the
theory adequately predicts performance. Indeed, again
for reasons that are beyond the scope of this article, the
easy and the difficult tasks may asymptote at different
levels, which would imply two separate asymptotes. The
issue of whether one or two asymptotes are used is irrel-
evant to the main point of this article; somewhat arbi-
trarily, we chose to use two asymptotes in the data fits
shown in Figure 2.

Theory fit. There are four basic free parameters in the
theory: t, a parameter of the impulse response function;
q, the sensory threshold; and cE and cD, just described. In
addition, there can be either one asymptote (which we
term Y ) or two asymptotes corresponding to the two
tasks (which we term YE and YD); thus, the theory has ei-
ther five or six free parameters. We fit the theory to the
6 observers individually, using a minimum root-mean

square error (RMSE) fit criterion. Each fit was carried
out twice, once using a single asymptote and again using
two asymptotes. The results of the data fits are shown in
Table 2. The predicted theoretical curves were averaged
across observers to provide the mean predictions shown
as curves through the data points in Figure 2. The RMSEs
between the mean data and the mean predictions were
0.048 and 0.033 for the one- and the two-asymptote fits,
respectively.

How well does the SRIA theory fit? The average mean
square error of the data is 0.012, which means that the
F values corresponding to the theory null hypothesis are
3.928 and 2.727 for the one- and the two-asymptote fits,
respectively. This allows us to statistically reject the SRIA
theory as not being sufficient to describe the data points.
However, a glance at the data fits in Figures 2A and 2B,
along with the barely visible standard errors, makes it
evident that we can reject the theory only because the data
have enormous statistical power. Another way to evalu-
ate the theory–data fit is to calculate the over-conditions
Pearson r2 between the data and the theoretical predic-
tions, which are .970 and .987 for the one- and the two-
asymptote fits, respectively. Thus, the theory captures a
very large proportion of between-conditions variance.

Which fit measure should we take most seriously? It
is axiomatic that any theory, no matter how closely it ap-
proximates reality, cannot fit an empirical data set per-
fectly, which means that if enough statistical power is
brought to bear, the theory will always be disconfirmed
via an F or a related statistic. A correlation between the-
ory and data, on the other hand, behaves quite differ-
ently: To the degree that the theory correctly describes
reality, the underlying (i.e., population) correlation will
be high, and with greater statistical power, the obtained
correlation will be a better estimate of the population
correlation. Thus, a high correlation in conjunction with
high power provides a reasonable basis for the claim that

Table 2
Stimulus Response, Information Acquisition Theory 

Parameter Fits to the Experiment 1 Data

Parameter Value

Observer t q cE cD Y YE YD RMSE

One-Asymptote Fit

S.K.C. 3.759 0.035 0.603 1.081 0.830 � � 0.060
E.C.U. 5.820 0.034 0.243 0.503 0.839 � � 0.106
E.M.H. 4.803 0.040 0.698 1.140 0.812 � � 0.084
J.C.M. 4.227 0.044 0.375 1.314 0.669 � � 0.088
C.A.W. 3.040 0.048 0.886 2.663 0.649 � � 0.064
J.S.F. 1.286 0.050 1.382 3.059 0.703 � � 0.075

Two-Asymptote Fit

S.K.C. 3.763 0.035 0.618 0.956 � 0.850 0.790 0.061
E.C.U. 5.823 0.034 0.265 0.451 � 0.861 0.803 0.108
E.M.H. 4.720 0.042 0.741 0.580 � 0.884 0.675 0.062
J.C.M. 3.944 0.048 0.293 0.549 � 0.698 0.533 0.077
C.A.W. 2.910 0.054 0.718 0.885 � 0.675 0.467 0.042
J.S.F. 1.762 0.059 0.870 0.873 � 0.717 0.497 0.058

Note—RMSE, root-mean square error.
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“the theory fits” even if a high F ratio demonstrates what
would be agreed to by all a priori—that no theory, no
matter how good it is, can be perfect. On these bases, we
assert that the correlations are better measures, and we
conclude that the theory fits the data reasonably well.

Discussion

There are two important take-home messages from
Experiment 1. First, the data allow us to confirm a uni-
dimensional theory with respect to the way in which con-
trast affects memory for visually presented material. It is
reasonable to conclude that duration and contrast com-
bine at an early information-processing stage to produce
a single number (information) upon which immediate
2AFC recognition memory for random forms is based.
Confirmation of a unidimensional theory allows us to
assert, on the basis of a firm definitional foundation, that
contrast affects the easy and the difficult tasks in the
same way: That is, the effect of contrast can be construed
to be only on the generation of a information value—
which is irrelevant to task difficulty—and it is this in-
formation value that then determines, in different ways,
eventual performance on the two tasks. A simple way of
saying this is that contrast affects the easy and the diffi-
cult tasks in the same way.

Second, we have, with reasonable success, fit a specific
quantitative theory to the data. This theory incorporates
unidimensionality. Because of its property of allowing a
nonzero threshold, it does not generally predict Bloch’s
law; nor, as we shall see in a later section, does it even
predict a multiplicative effect, which is why we tempered
our conclusions about the confirmation of the multi-
plicative theory indicated in Figure 2D. It does, however,
incorporate some very Bloch’s-law-like and, accord-
ingly, some very multiplicative-theory-like properties,
which we will discuss in more detail following our re-
port of Experiment 2.

Experiment 2
Form Recognition Versus Digit Recall

Experiment 1 showed that reducing contrast affects
performance equally on both an easy and a difficult form
recognition task. However, the design of the experiment
was such that the nature of the easy–difficult manipula-
tion could not become apparent until the 2AFC test. That
is, the easy–difficult manipulation was not relevant at the
time that the form was originally viewed, and for this
reason, it is perhaps not surprising that the stimulus con-
trast effect was the same. In Experiment 2, we imple-
mented a manipulation that was relevant at study as well
as at test. In particular, instead of having two test diffi-
culty levels, we had two entirely different STCs. One STC
consisted of random forms tested in a 2AFC recognition
procedure, as in Experiment 1, whereas the other STC
consisted of digit strings tested by serial recall. Thus,
Experiment 2 was conceptually similar to Experiment 1,
where STC was substituted for task difficulty. Our basic

question was analogous to that posed in Experiment 1: Is
the contrast effect the same for the two STCs, where “the
same” is as defined by the various theories.

Method
The method was similar to that used in Experiment 1. The prin-

cipal change was that instead of using two form recognition diffi-
culty levels, we used two STCs: form recognition and digit recall.

Observers
Observers. The observers were 7 University of Washington un-

dergraduates and graduates. Each reported normal or corrected-to-
normal vision and was paid $180.

Stimuli. Two sets of stimuli were used in Experiment 2: random
forms and four-digit number strings. A total of 336 forms were cre-
ated in Experiment 2, using the same stimulus creation methods as
those described in Experiment 1. The delta value for Experiment 2
varied among observers (10–14 pixels), to accommodate a range of
observer ability, but was held constant for each individual observer.
The second stimulus set consisted of four-digit strings. Each string
was created randomly, selecting digits with replacement, just prior
to the start of the trial on which it was to be used. Digit strings were
displayed on the screen at a 20-pixel font height.

Apparatus. The computer, monitor, and display software were
the same as those in Experiment 1.

Design. There were 28 conditions: 7 stimulus durations � 2 con-
trasts � 2 STCs. As in Experiment 1, because we wanted to achieve
roughly equal performance ranges for the two contrast levels, the
duration ranges were different for the high and the low contrasts:
Again, for the low-contrast conditions, durations ranged from 40.5 to
148.5 msec in equal increments, whereas for the high-contrast con-
ditions, durations ranged from 13.5 to 121.5 msec in equal incre-
ments. Again, specific contrast values varied between observers, 
to accommodate a range of observer ability, but were held constant
in the two tasks for each individual observer. Table 3, columns 
2 and 3, shows the high- and low-contrast values for each of the 
7 observers.

Each observer first participated in two practice sessions, one for
digits and the other for forms, and then participated in 16 data col-
lection sessions. During each session, each observer completed
seven blocks of form recognition trials, followed by five blocks of
digit recall trials, or vice versa. The form-trials/digit-trials order al-
ternated over sessions. Each block consisted of 42 stimulus trials, 2
in each of the 28 conditions. Thus, over the course of the experiment,
each observer completed 4,704 form recognition trials and 3,360
digit recall trials. The 4,704 form recognition trials consisted of the

Table 3
Contrast Information for Experiment 2

Low High Contrast
Observer Contrast Contrast Ratio k (Best Shift)

T.M.B. 0.043 0.073 1.698 2.305
S.K.C. 0.043 0.073 1.698 2.535
J.R.S. 0.043 0.073 1.698 2.192
L.E.P. 0.043 0.073 1.698 2.872
M.M.R. 0.043 0.073 1.698 2.472
K.D.L. 0.058 0.088 1.517 2.086
C.A.W. 0.058 0.088 1.517 1.984

M 0.047 0.077 1.646 2.349

Note—The “Contrast Ratio” column indicates the ratio of high contrast
to low contrast. The “k (Best Shift)” column shows the ratio of dura-
tions required to achieve equal performance in the low-contrast, as
compared with the high-contrast, condition. Note that k is constrained
to be the same for forms and digits.
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rotation of all 336 target forms through the 14 contrast /duration con-
ditions. The 3,360 digit recall trials consisted of 240 replications of
each of the 14 conditions.

Procedure. The procedure for the form recognition task was the
same as that in Experiment 1. For the digit recall task, each trial
began with a 250-msec display of a fixation point accompanied by
a warning tone, followed 500 msec later by the target stimulus. The
observers then used the number pad on the keyboard to type in four
digits, guessing if necessary. Immediately following each response,
visual feedback was given in the form of four Xs and Os corre-
sponding to incorrect and correct digits in the string. To be coded
as correct, both digit identity and position in the string had to be
correct. For example, if the stimulus was 9323 and the observer en-
tered 9228, feedback would read OXOX.

In the form recognition part of the experiment, the conditions
were counterbalanced as in Experiment 1. In the digit recall part of
the experiment, each of the 14 conditions occurred three times dur-
ing each 42-trial block. Because digit stimuli were created ran-
domly prior to each trial, there was no need to counterbalance them.

Results
Digit recall was scored as number of digits correctly

reported in their correct serial positions. For both the form

recognition and the digit recall tasks, proportion correct,
corrected for the guessing rates of 0.5 for forms and 0.1
for digits, was computed for each of the 14 conditions
and was averaged across sessions for each observer. Fig-
ures 4A and 4B show mean performance as a function of
exposure duration for the two contrast levels, averaged
across the 7 observers for form recognition and digit re-
call. As was expected, performance in both tasks increased
with stimulus duration and was greater for high contrast
than for low contrast.

Evaluation of Theories
To test our series of nested theories, we carried out the

same analyses as that in Experiment 1.
Unidimensional theory. Figure 4C shows the state-

trace plot: Form recognition is plotted as a function of
digit recall. Again, low- and high-contrast conditions are
represented by open and closed symbols. For all intents
and purposes, the state-trace plot is monotonic, thereby
confirming a unidimensional theory.

Figure 4. Experiment 2 data. (A and B) Response probability corrected for guessing as a function of stimulus
duration (log scale). (C) Difficult performance as a function of easy performance (state-trace plot). (D) The low-
contrast curves from the top two panels have been shifted leftward by an identical amount, corresponding to a
factor of 2.35 (for visual clarity; the “digits” curves have been shifted upward by 0.30). With this shift, the high-
contrast and the low-contrast curves align essentially perfectly for both digits and forms. Solid and dotted lines
in panels A–D represent theoretical fits of the sensory response, information acquisition theory described in the
text. All error bars (most of them obscured by the plot symbols) represent standard errors.
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Multiplicative theory. As in Experiment 1, we car-
ried out a shifted-curve analysis to test the multiplicative
theory. The results are shown in Table 3, rightmost col-
umn. For each observer, we shifted both the form recog-
nition and the digit recall low-contrast curves horizon-
tally, on a log-duration scale, and determined the shift
magnitude that afforded the optimal overlap of the low-
and the high-contrast curves. We then calculated the
mean shift, which corresponded to a linear duration scal-
ing factor of 2.349. Figure 4D shows the low-contrast
curves left-shifted by this amount (with the two digit
curves shifted upward for visual clarity). It is apparent
that they overlap reasonably well, although by no means
perfectly, with their high-contrast counterparts, thereby
again weakly confirming a multiplicative theory. Again,
we will qualify this conclusion in conjunction with our
discussion of the SRIA theory.

Bloch’s law theory. The Bloch’s law prediction was
evaluated as it was in Experiment 1, now via the data
shown in the two rightmost columns of Table 3, and
again failed. For each of the 7 observers, the estimated
d1/d2 � k value was greater than the physical high- to
low-contrast ratio. Averaged across observers, the k
value was greater than the contrast ratio by a factor of
approximately 1.43 (95% confidence interval � �0.15).
Again, increasing contrast produced a performance im-
provement that was greater than would be predicted if
stimulus information had been based on the product of
contrast and duration.

SRIA theory. To apply the SRIA theory to the pres-
ent data, we again fixed n, the number-of-stages impulse
response function parameter, at 9. We let t, the other im-
pulse response function parameter, and q, the sensory re-
sponse threshold, vary as free parameters. We allowed
separate values of c and the asymptote Y for forms and
digits. The individual-fit data are shown in Table 4 for
the individual observers, and the predicted performance
is included with the data in Figure 4, panels A–C. For
the average data, the theory–data RMSE is 0.024.

How well does the SRIA theory fit? The average mean
square error of the data is 0.007, yielding an F value of
3.38, which allows us to statistically reject the SRIA the-
ory as being insufficient to describe the data. Neverthe-
less, the Pearson r2 between the data and the theoretical

predictions is .996: As in Experiment 1, the theory–data
correspondence is extremely close, and again we can re-
ject the theory only because of the enormous statistical
power.

Discussion

The results of Experiment 2 are, frankly, surprising. We
began with two very different kinds of stimuli, random
forms and digit strings, and subjected them to two very
different memory tasks: 2AFC recognition versus recall.
The only common element was the identical duration–
contrast design structure. One might suppose on intuitive
grounds that the effect of anything—and of contrast in
particular—would be somehow different for the two dif-
ferent STCs. And yet to a very high degree of precision,
the contrast effect was identical. This identity was demon-
strated at a general level in the state-trace plot (Figure 4C),
which confirmed a unidimensional theory, and at a more
specific level in the SRIA theory fits, just discussed.

Placement of the SRIA Theory Within Nested
Theories 1–4

The SRIA theory has been remarkably successful in
accounting for data from Experiments 1 and 2, as well as
those from numerous previously published data sets
(Busey & Loftus, 1994, 1998; Loftus & Irwin, 1998;
Loftus & McLean, 1999; Loftus & Ruthruff, 1994; Mas-
saro & Loftus, 1996). We now consider where the SRIA
theory fits within the context of the four nested theories
that we described above: multidimensional theories, uni-
dimensional theories, multiplicative theories, and Bloch’s
law theories. We first will show why the SRIA theory is
an example of a unidimensional theory, and then we will
address the somewhat more complicated issue of whether
it may be construed as a Bloch’s law theory. This context
within which the SRIA theory may be viewed will be
helpful in interpreting its eventual application to the
complex-stimuli data of Experiments 3–6. In what fol-
lows, we shall, somewhat arbitrarily, illustrate our points
by using Experiment 1 as an example; it should be un-
derstood that analogous arguments would apply to its ap-
plication to Experiment 2.

The SRIA theory is a unidimensional theory. By
the SRIA theory, contrast and duration are combined at

Table 4
Stimulus Response, Information Acquisition Theory 

Parameter Fits to the Experiment 2 Data

Parameter Value

Observer t q cF cD YF YD RMSE

T.M.B. 5.262 0.027 0.873 1.037 0.740 0.973 0.044
S.K.C. 5.599 0.032 0.804 0.862 0.823 0.978 0.034
J.R.S. 4.991 0.030 0.364 0.568 0.841 0.960 0.036
L.E.P. 4.841 0.034 0.797 0.906 0.713 0.955 0.039
M.M.R. 5.321 0.031 0.586 0.685 0.649 1.000 0.039
K.D.L. 4.815 0.043 0.649 0.568 0.647 0.960 0.036
C.A.W. 5.898 0.039 0.784 1.006 0.664 1.001 0.050

Note—RMSE, root-mean square error.
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an early stage via the parameters n, t, and q, to produce
a single number, Aq (�) (see Figure 3). Then computation
of information depends only on Aq (�). Thus, it is per-
fectly possible for two conditions—a short-duration
high-contrast condition and a long-duration low-contrast
condition—to lead to the same Aq (�) value. Two such
conditions would be indistinguishable from the perspec-
tive of any process, such as response generation, that de-
pended on Aq (�) without access to the original values of
duration and contrast. In short, the SRIA theory is a uni-
dimensional theory, with Aq (�) constituting the single
value that is produced by combining duration and con-
trast. This unidimensional property is demonstrated by
the overlapping low- and high-contrast theoretical state-
trace curves in Figures 2C and 4C.

Is the SRIA theory a Bloch’s law theory? A key
property of sensory response functions generated by the
SRIA theory is that they are linear with respect to both
contrast and duration. As a consequence, the total area
under a sensory response curve, A(�), is proportional to
(and actually, in the present treatment, equal to) the area
under the original f (t) function F(�). Because f (t) is rec-
tangular, with a width equal to d and a height equal to C,
F(�) is simply the product of duration and contrast.

The zero-threshold special case: The SRIA theory is a
Bloch’s law theory. An implication of this property is
that if the sensory threshold q were zero, the theory
would be a Bloch’s law theory. This is illustrated in Fig-
ure 5. Consider first the solid and the dashed-dotted a(t)
functions that correspond to two contrast–duration con-
ditions: C � 0.10, d � 50 msec and C � 0.05, d �

100 msec. These two conditions have the same contrast �
duration product (5.00) and, accordingly, the same F(�)
values. Therefore, as is indicated in Figure 5, the total areas
under these two a(t) curves are equal as well: They also are
both equal to 5.00. This example illustrates Bloch’s law:
Doubling the duration requires halving the contrast for
equal values of A(�) and, hence, equal performance.

Greater-than-zero threshold: The SRIA theory is nei-
ther a Bloch’s law nor a multiplicative theory. However,
if the threshold is greater than zero—in the Figure 5 ex-
ample, q � 0.04—the situation is different. The above-
threshold area under the high-contrast short-duration
curve is 2.14, whereas the above-threshold area under
the low-contrast long-duration curve is only 0.69. This
illustrates a general principle that holds for any greater-
than-zero threshold: For two different stimuli whose
contrast � duration product is the same, the above-
threshold area is greater for the shorter high-contrast
stimulus than for the longer low-contrast stimulus. In the
Figure 5 example, to achieve 0.05-contrast performance
equal to that in the 0.10-contrast condition, duration
must be more than doubled: It must increase to about
245 msec—that is, it must be raised by a factor of almost
5:1 to compensate for the 2:1 contrast decrease.

Indeed, with a greater-than-zero threshold, the SRIA
theory is not even a multiplicative theory. This is illus-
trated in Figure 6. We first consider a continuum of high-
contrast (C � 0.10) base durations ranging from 50 to
400 msec and calculate by what ratio this base duration
must be increased in order for a C � 0.05 stimulus to
match above-threshold area and, thus, performance for var-

Figure 5. Illustration of why the sensory response, information acquisition theory
is a Bloch’s law theory for zero threshold, but not a Bloch’s law theory for greater-
than-zero thresholds. For a threshold of q � 0, the C � 0.10, d � 50 and the C � 0.05,
d � 100 conditions yield the same area under the sensory response curve (5.00) and,
therefore, lead to the same performance; in general, to maintain equal performance,
duration must be increased by the same factor as that by which contrast is decreased.
For a threshold greater than zero—q � .04, in this example—the low-contrast dura-
tion needs to be increased from 50 to 245 msec in order to maintain the same above-
threshold area and, thus, the same performance.
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ious threshold values. Figure 6A shows the ratio of match-
ing low-contrast to high-contrast durations as a function
of base duration for four q values ranging from zero to
0.04. With q � 0, the theory is, as has just been de-
scribed, a Bloch’s law theory that yields a constant ratio
equal to the ratio of high to low contrast—in this case,
0.10/0.05 � 2.0. A q of 0.04 is, in a sense, at the other ex-
treme, in that q � 0.04 is close to the actual low-contrast
value of 0.05. This is relevant because the contrast value,
C, represents the maximum possible value of a(t). There-
fore, if q exceeds C, a(t) can never exceed threshold, and
performance can never exceed chance. When C is close
to q, the theory becomes highly nonmultiplicative, in
that the matching-durations ratio is still rising notably
even with base durations as high as 150 msec.

Figure 6B shows similar calculations for the 6 ob-
servers in Experiment 1. For each observer, we used that
observer’s estimated t and q parameters, along with their
high- and low-contrast values, to generate equivalent-
performance low-contrast durations for the high-contrast
base durations in the general range of the durations used
in Experiment 1 (20–160 msec). Data are shown for the
individual observers, as well as for the mean over ob-
servers. It is evident that the curves all rise over the du-
rations that we used, implying that the theory predicts
departures from multiplicativity. This prediction is at
odds with the seemingly well-behaved shifted curves
shown in Figures 1D and 3D. As it turns out, the SRIA
theory predicts curves that align reasonably well, but not
perfectly. This is shown in Figure 6C, where the mean
predicted performance curves are shown shifted by the
amount that the empirical curves were shifted in Fig-
ure 2D: As can be seen, the overlap between the high-
contrast and the low-contrast curves, although reason-
able, is not perfect, particularly at short durations.

It is clear, in short, that in its predictions about re-
sponse probability, the SRIA theory, although unidi-
mensional, is neither a Bloch’s law nor a multiplicative
theory when q � 0. However, at the heart of the theory
is a very simple assumption, which is that contrast and
duration do combine multiplicatively and, indeed, in a
Bloch’s law fashion to produce the area under the a(t)
function. At the risk of some hubris, we return to our
analogy with physical laws. A complete theory designed
to predict the rate at which an object falls in the atmos-
phere would require assumptions about the effects of air
friction and would predict a somewhat complex function
relating the object’s velocity to time since the object
began to fall; however, at the heart of this function would
be a simple law: Objects in a vacuum fall at a constantly
increasing rate.

Experiments 3–6
Complex Stimuli

Experiments 3–6 were similar in concept and in de-
sign to Experiments 1 and 2 in that they entailed semi-
factorial combinations of stimulus duration and stimu-

Figure 6. Illustration of why the sensory response, information
acquisition (SRIA) theory with greater-than-zero thresholds is
not a multiplicative theory. (A) Theoretical illustration with four
q values. (B) Data from individual observers based on estimated
parameters. In panels A and B, the bottom, flat curve shows the
Bloch’s law prediction. (C) SRIA theory predictions of best-
shifted data of Figure 2D.
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lus contrast, along with some third variable akin to dif-
ficulty in Experiment 1 and STC in Experiment 2. There
were two main changes in Experiments 3–6. First, the
stimuli were grayscale naturalistic pictures. Second,
memory was tested in a delayed yes–no recognition pro-
cedure, in addition to being tested immediately follow-
ing each stimulus presentation via a prospective confi-
dence judgment.

In Experiments 1 and 2, the main question was, es-
sentially, What is the effect of contrast, and how is it sim-
ilar over task difficulty (Experiment 1) or STC (Experi-
ment 2)? In each of Experiments 3–6, we asked two
analogous questions. First in each of Experiments 3–6,
the same contrast and duration levels were applied to two
different stimulus types (e.g., faces and cityscapes); thus,
we can ask, To what degree is the effect of contrast sim-
ilar over the two stimulus types? The second question ad-
dressed in Experiments 3–6 was, Is the effect of contrast
the same for the two performance measures, immediate
prospective confidence and delayed recognition perfor-
mance? More formally, the unidimensional theories de-
scribed earlier assume that as part of the process of per-
ception, duration and contrast combine into a single value
called information, which then, via monotonic functions,
determines immediate performance. To extend these the-
ories to longer term memory performance, it must fur-
ther be assumed that a long-term memory representation
of a picture is formed, that the quality (however defined;
see, e.g., Gillund & Shiffrin, 1984, Hintzman, 1987, and
Murdock, 1993, for examples) of this long-term represen-
tation is monotonically related to original information,
and that long-term recognition performance is monoto-
nically related to the quality of the long-term represen-
tation. As was discussed earlier, the latter assumption is
not always met: It is possible to structure an experiment
in which shorter durations actually lead to higher recog-
nition performance in a later, surprise test (Nairne, 1988).
However, as also was discussed, this assumption is usu-
ally met: In the vast majority of picture recognition ex-
periments, longer durations and/or higher contrasts lead
to better performance.

Busey et al. (2000) reported an experiment addressing
these issues that was similar to Experiments 3–6. They
used a face recognition paradigm in which study duration
was varied and three dependent variables—prospective
confidence, recognition accuracy, and retrospective
confidence—were measured. The difference between
Busey et al.’s experiment and the present Experiments 3–6
is that Busey et al. substituted rehearsal for contrast: For
15 sec following the offset of each studied face, observers
were either required to rehearse or were prevented from
rehearsing the appearance of the face that they had just
seen. Although rehearsal increased both prospective
confidence and eventual recognition performance, the
two measures did not issue from the same unidimensional
structure: Roughly speaking, prospective confidence in-
creased following rehearsal considerably more than was
warranted given its eventual effect on performance.

Busey et al. offered a theory of these results wherein 
rehearsal raised the value of not one, but two internal
constructs, which they labeled “strength” and “certainty.”
Prospective confidence was then a joint monotonic func-
tion of strength and certainty, whereas recognition per-
formance and retrospective confidence depended on
strength only.

If the contrast effect for naturalistic scenes is the same
as that for simple stimuli (Experiments 1 and 2), we would
expect a different result from that obtained by Busey et al.
(2000): In particular, we expect the contrast effect to be the
same for prospective confidence and recognition perfor-
mance, and as well, we would expect the contrast effect to
be the same for different stimulus types. In short, we would
expect contrast, a low-level sensory variable, to behave dif-
ferently from rehearsal, a high-level cognitive variable.

Method
The experimental designs were identical for Experiments 3–6;

the only thing that changed among them was the nature of the stimuli.
Observers. A total of 662 observers participated in Experi-

ments 3–6, distributed across the four experiments as shown in
Table 5, column 2. The observers were recruited from the Univer-
sity of Washington observer pool and received course credit for par-
ticipating in a single session that lasted approximately 40 min. No
observer served in more than one of the experiments. In each ex-
periment, the observers were run in 24 groups, each of which
ranged in size from 6 to 8 observers.

Stimuli. Five sets of naturalistic stimuli, obtained from various
sources, were digitized as grayscale images and were normalized
with respect to luminance in such a way that the pixel values for
each image spanned the full intensity range from 0 to 255. All the
stimuli were 450 pixels high and, except for members of one of the
stimulus sets (celebrity faces; see below), 400 pixels wide. The
stimulus sets were as follows.

1. Computer-generated (CG) faces. The FACES “Identikit” ap-
plication was used to generate a set of 144 faces, 73 males and 71
females, examples of which are shown in Figure 7, row 1. The faces
were quite realistic and included wide variations in hairstyle, face
shape, facial hair, and all basic facial features—for example, eyes,
nose, or mouth.

2. Hooded faces. These were 144 photos of Indiana University
students, 54 males and 90 females, examples of which are shown in
Figure 7, row 2. No face included any facial hair. All the faces were
hooded so that there was no discernable hairstyle variation among
the faces.

3. Houses. These were 144 photos of similar houses in a middle-
class Seattle neighborhood, examples of which are shown in Fig-
ure 7, row 3.

4. Cityscapes. These were 144 heterogeneous cityscapes scanned
from various books and magazines, examples of which are shown
in Figure 7, row 4. They included skylines, individual buildings,
street scenes, sports stadiums, and bridge/water scenes.

Table 5
Experiments 3–6 Design Information

No. of Subsession 1 Subsession 2
Experiment Observers Stimuli Stimuli

3 171 CG faces hooded faces
4 167 CG faces houses
5 154 CG faces cityscapes
6 170 CG faces celebrity faces

Note—CG, computer generated.
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5. Celebrity faces. These were 144 photos of reasonably well
known celebrities, 90 males and 54 females, examples of which are
shown in Figure 7, row 5. They were mostly obtained from the In-
ternet, although some were scanned from books and magazines.
Like all the other stimuli, the celebrity faces were 450 pixels high;
unlike the other stimuli, however, their widths varied from 294 pix-
els (John Travolta) to 466 pixels (Marilyn Monroe).

Apparatus. The stimuli were displayed on a flat-white wall via
a 60-Hz LCD projector interfaced to a Macintosh G4 running under
MATLAB. The observers sat in eight seats arranged in two rows of
four. The stimuli subtended visual angles of 26º or 44º vertically
depending on whether the observer sat in the back or the front row,
and except for the celebrity faces, their horizontal extent varied 34º
or 57º over pictures. Picture luminance ranged from 0.2 cd/m2 (at
a zero grayscale value) to 14.8 cd/m2 (at a 255 grayscale value). When
no picture was displayed (a blank screen) the screen was at a 128
grayscale value, which corresponded to a luminance of 3.7 cd/m2.
Each observer was equipped with a keypad for responding.

Design. Each experimental session incorporated two subsessions.
The CG faces were always used as the stimuli in the first sub-
session, whereas another stimulus set was used in the second sub-
session, as is indicated in Table 5, columns 3–4. Except for the dif-
ferent stimuli, the two subsessions were identical. The basic unit of
each subsession is called a tray, honoring its physical slide-tray an-
cestry. A tray contained 24 pictures (virtual “slides”), and each sub-
session involved six trays; hence, there were 144 pictures in each

subsession, or 288 pictures in all. Each tray constituted an inde-
pendent replication that had nothing to do with counterbalancing
considerations. The selection of six as the number of trays was dic-
tated by (1) the amount of time in an experimental session and
(2) the limited number of hooded face pictures that we had available.

For each tray within each subsession, 12 target pictures were
shown in a study phase, followed by all 24 of the tray pictures (i.e.,
the 12 just-viewed targets plus 12 never-seen distractors) in a test
phase. The targets were shown in the same order for all the groups
in a given experiment. Likewise, all the test pictures were shown in
the same order for all the groups in a given experiment; also at test,
the target pictures, although of course intermingled with distrac-
tors, appeared in the same order as they had at study.

Each target stimulus fell into one of 12 study conditions. Each
study condition was defined by a combination of one of two stim-
ulus contrasts and one of six stimulus durations.

As has been described by Peli (1990), the definition of contrast
is somewhat arbitrary in grayscale pictures. There are numerous
such definitions. Contrast energy is the average squared deviation
between individual pixels and the mean luminance. Peli has offered
a definition of band-limited contrast, computed at successive
nonoverlapping spatial frequency bands. We computed both of
these, plus several others, for all our stimuli. A problem arises,
which is that the ordering of mean contrast across stimulus sets dif-
fers slightly depending on which definition of contrast is used. Ac-
cordingly we used a simple, generic definition: Each picture was

Computer-
Generated
Faces

Hooded Faces

Houses

Cityscapes

Celebrity
Faces

Figure 7. Examples of the stimuli used in Experiments 3–6.
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first scaled so that its grayscale value ranged from 0.0 to 1.0—that
is, from minimum to maximum values. Then, to attain a desired
contrast C, every pixel was adjusted by i¢ � (i � C) � [1 � (C/2)],
where i and i¢ are the original and the new grayscale intensity lev-
els. The two contrasts used in Experiments 3–6 were 0.03 (low con-
trast) and 0.20 (high contrast). Within each contrast level were six
durations. For low contrast, the durations were 50, 99, 150, 250,
450, and 750 msec, whereas for high contrast, the durations were
17, 33, 50, 83, 150, and 250 msec.

During the study phase of a given tray, each of the 12 study con-
ditions was assigned to one of 12 target stimuli. At test, all the stim-
uli were shown at full contrast.

Procedure. An experimental session began with the display of
four practice CG faces shown in a randomly selected 4 of the 12
study conditions, along with detailed study instructions and gen-
eral test instructions. Following the first study phase, detailed test
instructions were provided. Following the six trays in the first ex-
perimental subsession, the observers had a brief break while the
second stimulus set was loaded. They then saw four practice exam-
ples of the stimulus set to be used in the second subsession. Fol-
lowing a brief reminder of study and test instructions, they then pro-
ceeded through the six trays of the second subsession.

Each study trial consisted of a 1,000-msec fixation cross that ap-
peared at the center of the screen, accompanied by a 1000-Hz warn-
ing tone. After the fixation-cross/warning-tone, there was a 300-msec
blank screen and, then, the target picture at its assigned contrast
level for its assigned duration, followed by the blank screen. After a
poststimulus offset delay of 500 msec, signaled by a beep, the ob-
servers rated their confidence that they would be able to subsequently
recognize the picture on a 4-point scale, where 1 was definitely no,
2 was probably no, 3 was probably yes, and 4 was definitely yes.
The scale, with its verbal labels, was displayed perpetually at the
top of the screen during the study phase. The observers responded
using their keypads. For ease of responding, the actual keypad keys
used were 4, 5, 6, and �, corresponding to the four verbal labels.
These four nominal responses were converted into a scale of 1–4
when they were recorded. If anyone typed in an illegal response, a
noxious sound issued forth from the computer, and all the observers
were asked to respond again. After everyone had responded, the test
picture vanished, and there was a half-second, blank screen pause
prior to the onset of the next study trial.

Each test trial began with the display of a test picture. Following
a postonset delay of 800 msec, signaled by a beep, the observers
were asked to provide a confidence rating of 1–4 that the test pic-
ture was one that they had seen during the previous study phase.
The test picture remained visible until everyone had provided a
valid response. The scale labels and the response keys were identi-
cal to those for the study confidence rating and, as at study, were
perpetually in view. The procedures for dealing with illegal re-
sponses and for moving along to the next test trial were the same as
those at study. Note that the main recognition measure was, there-
fore, retrospective confidence. Given the results of Busey et al.
(2000), it may be assumed that retrospective confidence and any
other reasonable measure of recognition accuracy—for example,
hit rate or d¢—measured the same thing; that is, they would be
monotonic functions of one another. For clarity of discourse, we
will henceforth use the term recognition performance, instead of
retrospective confidence, to denote performance at test.

Randomization and counterbalancing. Prior to the start of
each experiment, the 144 pictures for each of the two stimulus sets
used in that experiment were randomly assigned to the 6 trays for
the two subsessions. Counterbalancing was carried out indepen-
dently for each of the total 12 trays and for each tray, as follows.
Prior to the start of the experiment, the 24-tray pictures were ran-
domly divided into two sets (A and B). Recall that each experiment
involved 24 groups of observers. For the 12 odd groups, the A pic-

tures were used as targets and the B pictures as distractors, and vice
versa for the even groups. The 12 study slides were shown in the
same order over the 12 groups that saw them as targets. The 12 con-
ditions occurred in random order across the 12 study trials. This
condition order was rotated over the 12 groups that saw it as a tar-
get, so that over the 12 groups, each target picture was shown once
in each of the 12 conditions.

Results and Discussion
Because Experiments 3–6 were identical in structure,

the results for each are provided in identical formats in
Figures 8–11. We will describe Figure 8 in detail and
then Figures 9–11 more briefly.

Experiment 3: Results. In Experiment 3, CG faces
were compared with hooded faces. Our goal in Experi-
ment 3 was to compare the contrast effects for two sets of
conceptually similar naturalistic pictures that differed in
recognition difficulty—much as, in Experiment 1, we
compared two form recognition tests that differed in dif-
ficulty. Here, we had anticipated that hooded faces would
be more difficult to recognize because the hooded faces
contained considerably less distinguishing information
than did the CG faces (see Figure 7, top two rows).

Figure 8 shows the results of Experiment 3. The six
panels provide the following information. The top two
panels show performance curves: mean prospective con-
fidence (top left) and recognition performance (top right)
as functions of exposure duration. There are four perfor-
mance curves within each panel, representing the four
combinations of two contrasts and two stimulus types.
Note that upward-facing solid triangles represent high
contrast, whereas downward-facing open triangles rep-
resent low contrast. Solid lines in this and other, analo-
gous figures for Experiments 4–6 represent CG faces,
whereas dashed lines represent the other stimulus type
used in the experiment—here, hooded faces. As was an-
ticipated, for both performance measures, high-contrast
pictures are better than low-contrast pictures, and CG
faces are better than hooded faces. Prospective confi-
dence increases monotonically with exposure duration
for both stimulus types. Recognition performance in-
creases monotonically, except for low-contrast CG faces,
the performance curve for which asymptotes after about
300 msec (an asymptote that was replicated in Experi-
ments 4–6). Because of the shorter durations we used for
the high-contrast conditions, we cannot tell whether
recognition performance would similarly asymptote after
about 300 msec. Nevertheless, the low-contrast asymp-
tote that we observe, subtle though it is, is important for
inferring the general effects of contrast on naturalistic
pictures, and we shall have more to say about it in a later
section.

The middle two panels of Figure 8, analogous to panel C
of Figures 2 and 4, show state-trace plots that are de-
signed to answer the question, Are the two stimulus types
affected in the same way by contrast? Here, hooded face
performance is plotted against CG face performance for
prospective confidence (left middle panel) and recogni-
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tion performance (right middle panel). For prospective
confidence, there is some separation of the low- and the
high-contrast curves, which may be interpreted as fol-
lows. Consider two separate duration–contrast condi-
tions that are equivalent for CG faces (i.e., vertically
aligned, as exemplified by the vertical rectangle). For
these two conditions, the high-contrast condition produces

higher prospective confidence for the hooded faces,
which indicates that at least for longer exposure dura-
tions, contrast affects hooded faces more than it affects
CG faces. For recognition performance (right middle
panel), however, there is no curve separation whatsoever:
The function is essentially completely monotonic over
both low- and high-contrast conditions. This replicates

Figure 8. Experiment 3 data: computer-generated (CG) faces and hooded faces. Error bars represent
standard errors.
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the results of Experiments 1 and 2 and is consistent with
the proposition that the CG faces and the hooded faces,
although quite different in appearance and physical struc-
ture and quite different in terms of recognition perfor-
mance level, are, as measured by recognition performance,
affected in the same way by stimulus contrast.

The bottom two panels of Figure 8 show state-trace
plots designed to answer the question, Are the two types
of memory measures, prospective confidence and recog-
nition performance, affected in the same way by con-
trast? These panels show recognition performance plot-
ted against prospective confidence for CG faces (bottom
left panel) and for hooded faces (bottom right panel). For
hooded faces, the function is perfectly monotonic: The
two performance measures can be construed as being af-
fected in the same way by contrast. For the CG faces, there
is one clear departure from monotonicity: the longest du-
ration low-contrast point. This departure reflects an al-
ready discussed property of the curves in the top panel:
For prospective confidence, the low-contrast CG face
curve increases monotonically with exposure duration,
whereas for recognition performance, this same curve
asymptotes after about 300 msec.

Experiment 3: Discussion. Experiment 3 replicates
Experiments 1 and 2: As is shown in the right middle
panel, the state-trace plot of the two stimulus types is
monotonic, thereby confirming that contrast affects two
quite different kinds of naturalistic faces in the same way.

Of our two performance measures, prospective confi-
dence and recognition performance, only recognition
performance was a genuine test, in the sense that perfor-
mance depended entirely on information stored in mem-
ory. Prospective confidence, on the other hand, although
depending in part on short-term information about the
just-seen target picture, can also depend in part on meta-
cognitive judgments about the relation between the na-
ture of the stimulus and/or presentation conditions and
the accuracy of future memory performance. In particu-
lar, there is evidence for two such metacognitive judg-
ments in the Figure 8 data. The first is seen in the sepa-
ration of the two contrast curves for CG faces and
hooded faces in the left middle panel: Essentially, the ob-
servers gave more weight to high contrast for hooded
faces than for CG faces. Here, it is likely that the ob-
servers had so little distinguishing information for each
hooded face that stimulus contrast played a greater role
than it did for CG faces, which were considerably more
heterogeneous. The second apparent contribution of a
metacognitive judgment is seen in the separation of the
two contrast curves for the prospective confidence and
recognition performance in the bottom left panel. Here,
it is likely that the observers believed that increased du-
ration always leads to better recognition performance,
and this belief was reflected by their monotonically in-
creasing prospective confidence functions for CG faces
(top left panel). As it turns out, however, the observers
were incorrect; their actual recognition performance did
not increase beyond an exposure duration of 300 msec

(upper right panel). That this was true for CG faces and,
as we shall see, for houses, cityscapes, and celebrity faces
as well, was unexpected for us, as well as for the ob-
servers, and the reasons for it are unknown.

Experiment 4: Results. In Experiment 4, CG faces
were compared with houses. Our goal in Experiment 4
was to use two sets of conceptually dissimilar naturalis-
tic pictures that were approximately the same in hetero-
geneity and, hence, in recognition difficulty (see Fig-
ure 7, rows 1 and 3).

Figure 9 shows the results of Experiment 4. The results
are largely consistent with those in Experiments 1–3. As
is shown in the middle right panel, contrast appears to
affect the two stimulus types in the same way. As in Ex-
periment 3, prospective confidence for CG faces increased
monotonically with exposure duration, whereas recogni-
tion performance asymptoted at about 300 msec; this
same effect occurred with houses (compare the upper
two Figure 9 panels, with the corresponding systematic
lacks of monotonicity in the bottom two panels).

Experiment 4: Discussion. Experiment 4 replicated
Experiments 1–3, indicating that even with two concep-
tually different stimulus types—faces and houses—con-
trast affects recognition performance in the same way.
Experiment 4 also demonstrates another stimulus type,
homogenous houses, for which recognition-relevant
memory performance does not appear to be acquired
after about 300 msec of viewing time.

Experiment 5: Results. In Experiment 5, CG faces
were compared with cityscapes. Our goal in Experi-
ment 5 was to compare two sets of conceptually dissim-
ilar naturalistic pictures, one of which (CG faces) was
quite homogenous, whereas the other of which (cityscapes)
was quite heterogeneous (see Figure 7, rows 1 and 4).

Figure 10 shows the results of Experiment 5. The results
are largely consistent with those in Experiments 1–4. As
is shown in the middle right panel, contrast appears to
affect the two stimulus types in the same way. As in Ex-
periments 3 and 4, prospective confidence for CG faces
increased monotonically with exposure duration, whereas
low-contrast recognition performance asymptoted at
about 300 msec. In Experiment 5, there was also a recog-
nition performance asymptote, albeit at a higher dura-
tion, for cityscapes.

Experiment 5: Discussion. Experiment 5 replicated
Experiments 1–4, indicating that again with two concep-
tually different stimulus types—CG faces and cityscapes—
contrast affects recognition performance in the same
way. Experiment 5 also demonstrates another stimulus
type, heterogeneous cityscapes, for which recognition-
relevant memory performance does not appear to be ac-
quired after some asymptotic viewing duration—in this
case, around 500 msec.

Experiment 6: Results. Experiment 6 departed from
Experiments 1–5 in that it used a stimulus set—celebrity
faces—each member of which was encodable with a ver-
bal label (e.g., at test, a photo of Jennifer Lopez could be
recognized as having been seen at study either by the vi-
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sual representation of her face or by the verbal label cor-
responding to her name). Because the potential encoding
of celebrity faces is different in this respect from the po-
tential encoding of CG faces, we anticipated that we
might detect a difference in contrast effects on the two
stimuli.

Nevertheless, we did not. Celebrity faces were, unsur-
prisingly, predicted by the observers to be more recog-
nizable than CG faces, and equally unsurprisingly, they
were. As is shown in Figure 11 top panels, both prospec-
tive confidence and recognition performance were con-
siderably higher for celebrity faces than for CG faces.

Figure 9. Experiment 4 data: computer-generated (CG) faces and houses. Error bars represent standard errors.
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Nevertheless, as is shown in the middle right panel, the
contrast effect was identical for the two kinds of faces. In-
deed, Experiment 6 showed very clean and regular data:
With the exception of the single nonmonotonic point in
each of the bottom two panels, characteristic of all of Ex-

periments 3–6, the data indicate that (1) contrast affected
CG faces and celebrity faces in the same way at both
study and test (middle two panels) and (2) contrast af-
fected study and test performance in the same way for
both stimulus types (bottom two panels).

Figure 10. Experiment 5 data: computer-generated (CG) faces and cityscapes. Error bars represent standard
errors.
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Experiment 6: Discussion
Experiment 6 replicated Experiments 1–5, indicating

that with two kinds of faces differing considerably in their
potential study strategies and, commensurately, their rec-
ognizability—CG faces and celebrity faces—contrast af-

fects recognition performance in the same way. Experi-
ment 6 also demonstrates another stimulus type, celebrity
faces, for which recognition-relevant memory perfor-
mance does not appear to be acquired after some asymp-
totic viewing duration—in this case, around 500 msec.

Figure 11. Experiment 6 data: computer-generated (CG) faces and celebrity faces. Error bars represent stan-
dard errors.
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Experiments 3–6: Discussion
For each of Experiments 3–6, we addressed two inter-

related questions about the effect of contrast on natural-
istic scenes: Is the contrast effect the same for immediate
prospective confidence ratings and delayed recognition
performance, and is the contrast effect the same for
prospective confidence ratings for CG faces and each of
the four other stimulus types?

Conceptual differences between prospective confi-
dence and recognition performance. It is worthwhile
to reiterate that the two variables used in Experi-
ments 3–6—prospective confidence and recognition per-
formance—differ in an important respect. Immediately
after study presentation, at the time a prospective confi-
dence rating is provided, the observer knows the contrast
level and the approximate duration of the just-seen pic-
ture. This means that prospective confidence can, in prin-
ciple anyway, be influenced by metacognitive judgments,
such as “I saw this for a long time, so I’ll give it a high rat-
ing.” Recognition performance, on the other hand, is a
genuine memory test, which cannot depend directly on
the nature of the original display conditions; if, for in-
stance, an observer realized that a test picture was origi-
nally displayed at a long exposure duration, the observer
would then know that the test picture must have been a
target to begin with and could respond accordingly. In
other words, recognition performance must depend only
on information stored in memory about the test picture.
In this sense, recognition performance is akin to the
2AFC form recognition test and the digit recall test of Ex-
periments 1 and 2. The latter tests were also genuine tests
of what was stored in memory, so that knowledge of dis-
play conditions could not influence performance.

Prospective confidence. Because prospective confi-
dence is not a performance measure in the same sense as
is recognition performance, we will not depend on it
strongly for theory assessment. We do, however, have a
number of observations about the prospective confi-
dence data.

Each of Figures 8–11 provides information about
prospective confidence in the left middle panel and in
the two bottom panels. The left middle panel allows one
to assess whether prospective confidence for the two
stimulus types may be construed as issuing from a uni-
dimensional theory—one in which contrast and duration
combine into a single number that is passed to subse-
quent stages of the perceptual system and, thence, deter-
mines the magnitude of the prospective confidence. The
two bottom panels allow one to assess whether the two
performance measures, prospective confidence and recog-
nition performance, may be construed as being based on
the same unidimensional trace for the two stimulus
types. In all cases, a unidimensional theory would imply
monotonic functions.

In 8 of the 12 relevant panels over the four figures,
there are departures from monotonicity. We have dis-
cussed them and have noted that they probably issue
from metacognitive judgments of various sorts. Thus,

these nonmonotonicities inform us that prospective con-
fidence may be construed as being based on more than
one dimension—information acquired from the stimulus
plus metacognitive judgments.

Although these occasional departures from monoto-
nicity are undeniable, they are small. It is instructive 
to compare the prospective-confidence–recognition-
performance scatterplots (Figures 8–11, bottom panels)
with analogous ones reported by Busey et al. (2000, Ex-
periment 1). This experiment, described earlier, used a
face recognition procedure much like that in our Experi-
ments 3–6, except that rehearsal was varied in place of
stimulus contrast. Figure 12 shows prospective confidence
as a function of recognition performance. It is obvious that
the plot over all 10 data points is highly nonmonotonic.
The nonmonotonicity is systematic: The rehearsal data
points are displaced to the right from the no-rehearsal data
points. That is, if one considers two duration � rehearsal/
no-rehearsal points that are equal for recognition perfor-
mance, the shorter rehearsal condition is given a higher
prospective confidence rating. This finding implies that,
when making a prospective confidence judgment, ob-
servers ascribe more importance to rehearsal than is war-
ranted in terms of rehearsal’s eventual effect on recogni-
tion performance. Clearly, more than one dimension is
required to describe these data. Busey et al. postulated,
as an example explanatory model, that prospective confi-
dence was determined by two dimensions, which they
termed “strength” and “certainty,” whereas recognition
performance was determined only by a single dimension,
strength. In their treatment, strength was influenced by
both duration and rehearsal, whereas certainty was in-
fluenced only by rehearsal.

For our data, the prospective-confidence–recognition-
performance scatterplots are nothing like this; in compar-
ison with the Figure 12 data, they are almost completely
monotonic. Apparently, rehearsal strongly influences

Figure 12. State-trace plot from Busey, Tunnicliff, Loftus, and
Loftus (2000): recognition performance as a function of prospec-
tive confidence.
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metacognitive judgments, whereas contrast may be con-
strued as a more basic perceptual variable whose effect is
confined almost exclusively to basic sensory processes.

Recognition performance: Assessment of nested
theories. At the outset of this article, we described a set
of four nested theories—multidimensional, unidimen-
sional, multiplicative, and Bloch’s law—that could po-
tentially describe the effect of contrast. For Experi-
ments 1 and 2, we clearly confirmed the unidimensional
theory, found weak confirmation of multiplicative the-
ory, and disconfirmed Bloch’s law theory. To what de-
gree can we assess these theories with respect to Exper-
iments 3–6? To answer this question, we will confine
ourselves to recognition performance, which, as just was
described, can be construed as a “pure” test of memory,
unsullied by possible metacognitive judgments.

Unidimensional theory. For each of Figures 8–11, we
consider the right middle panels, which show the state-
trace plots analogous to those in Figures 2C and 4C for
Experiments 1 and 2. As with Experiments 1 and 2, in
which simple stimuli were used, Experiments 3–6, with
complex stimuli, confirm unidimensional theory: For
Figures 2C and 4C and for Figures 8–11, middle right
panels, the low-contrast and the high-contrast data points
fall almost entirely atop one another.

Multiplicative theory. Recall that for Experiments 1 and
2, we assessed the degree to which shifting low-contrast
performance curves to the left allowed them to align with
the corresponding high-contrast performance curves.
This enterprise yielded reasonable correspondence (see
Figures 2D and 4D), thereby providing some support for
multiplicative theory. Although we could, in principle,
do the same thing for Experiments 3–6, there is another
aspect of the data that allows us to unambiguously reject
multiplicative theory, which is that the high-contrast and

the low-contrast test performance curves almost cer-
tainly asymptote at different levels, as is indicated in Fig-
ures 8–11, top right panels.

That this finding disconfirms multiplicative theory is
simple to demonstrate. To do so, we begin by averaging the
CG faces data over Experiments 3–6. Note that such aver-
aging is reasonable because CG faces were shown first and
under identical circumstances over Experiments 3–6.
These averaged data are shown in Figure 13 (the theoreti-
cal curves will be described below). Now consider any
high-contrast condition for which recognition performance
exceeds low-contrast asymptotic performance (e.g., the
highest duration high-contrast condition). According to a
multiplicative model, such performance would be

PH � m[d1 � g(CH )], (17)

where d1 and CH are the longest high-contrast duration
and the highest contrast, respectively, and m and g are
monotonic functions. Now consider the low-contrast
value CL and define the ratio r � g(CH )/g(CL ); thus,
g(CH ) � g(CL ) � r. Accordingly,

d1 � g(CH ) � (d1 � r) � g(CL ) � d2 � g(CL ), (18)

where d2 � d1 � r. Applying the function m to the left
and right sides of Equation 18,

m[d1 � g(CH )] � m[d2 � g(CL )], (19)

which, by Equation 17, are equal to PH. In short, by a
multiplicative theory, one can always find a sufficiently
high duration, d2, that, when combined with any low
contrast, will produce performance equal to any shorter
duration combined with any arbitrary high contrast. Dif-
ferent asymptotes imply that two such matching dura-
tions cannot be found, thereby disconfirming a multi-
plicative model.

In Experiments 1 and 2, we confirmed something close
to a multiplicative theory, whereas in Experiments 3–6,
we have soundly disconfirmed a multiplicative theory.
Why is there this difference between the simple stimuli
of Experiments 1 and 2 and the naturalistic stimuli of
Experiments 3–6? Past data provide some clues. Loftus
(1985c) confirmed multiplicative theory with hetero-
geneous naturalistic scenes that varied in contrast. Lof-
tus et al. (1992) found much the same result, also with
naturalistic scenes. However, these confirmations oc-
curred with short durations (less than about 300 msec,
the duration of an eye fixation); at longer exposure du-
rations, the predictions of the multiplicative theory
began to fail. The suggestion here is that for complex
scenes, multiplicative theory holds only within the dura-
tion of an eye fixation. This makes sense. Both in the
present and in past experiments, the first eye fixation
was at a controlled part of the scene (the part indicated
by the prestimulus fixation point). This first fixation was
used both for acquiring information from the scene and
for planning the next fixation’s location. If low-contrast
visual information provided a poorer basis for deciding
where the next fixation should be than did high-contrast

Figure 13. Sensory response, information acquisition (SRIA)
theory fit to computer-generated test data (mean over Experi-
ments 3–6). Best SRIA theory fit is shown by the solid line (for
high-contrast conditions) and the dashed line (for low-contrast
conditions).
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information, it would follow that subsequent fixations
would be on systematically less informative areas of the
picture in low-contrast, as compared with high-contrast,
pictures. Therefore, in addition to information’s being
acquired more slowly in the low-contrast pictures, the in-
formation itself was less valuable. This is a form of fail-
ure of a multiplicative theory, a central tenet of which is
that slower information acquisition is the only conse-
quence of low contrast.

In Experiments 1 and 2, the maximum stimulus dura-
tion was 160 msec, so all stimulus presentations were
within the duration of an eye fixation. Perhaps in Exper-
iments 3–6, a multiplicative theory would describe the
short-duration stimuli. Accordingly, we consider short
durations only; that is, for the moment, we ignore the
low-contrast 450- and 750-msec data points, leaving only
data based on durations ranging from 50 to 250 msec for
the low-contrast data and from 17 to 250 msec for the
high-contrast data.

We evaluated a multiplicative model as we did for Ex-
periments 1 and 2; that is, we investigated the degree to
which the low-contrast curve, when scaled leftward,
could be made to align with the high-contrast curve. We
began by considering the CG face recognition performance
data averaged over the four experiments and determined
the factor that produced the best shift; this factor was
8.5. We then scaled all f ive recognition performance
low-contrast curves—those for CG faces, hooded faces,
houses, cityscapes, and celebrity faces—leftward by this
same factor of 8.5. The results are shown in Figure 14.
Figure 14 has multiple uses; the theory curves and the
small box in the lower right of each panel involve SRIA
theory fits and will be described below. For the moment,
however, they should be ignored while we focus on the
data points and make two conclusions. First, with the
minor exception of cityscapes, the alignments are quite
good for all five stimulus types. This is remarkable given
that the same scaling factor was used for all of them.
Second, when the alignments are slightly off, as they are
for hooded faces and celebrity faces, the two sets of data
points are horizontally parallel, so that a slight additional
horizontal shift would bring them into alignment; that is,
a multiplicative theory would still describe them, but
with a shift factor slightly greater than 8.5. Thus, for
short durations, the data for these five stimulus types are
reasonably well described by a multiplicative theory.

Bloch’s law theory. As was indicated, the factor by
which the short-duration curves were shifted to bring
them into alignment was 8.5 (this factor would be slightly
more if the best alignment were sought for the hooded
faces, cityscape, and celebrity faces data). The ratio of
the two actual stimulus contrasts was 0.20/0.03 � 6.67.
Therefore, as with Experiments 1 and 2, the shift factor
exceeds the contrast ratio, thereby disconfirming a
Bloch’s law account of the data.

The SRIA theory. As was discussed earlier, the SRIA
theory is not generally a multiplicative theory, although

a multiplicative assumption (indeed, a Bloch’s law as-
sumption) is central to it. Is it possible to adequately fit
the SRIA theory to the full data from Experiments 3–6?
We began with the CG data, which, averaged as it is over
all four of Experiments 3–6, have considerable statistical
power. To create a performance measure compatible with
SRIA theory predictions, we converted the recognition
performance confidence ratings, which, recall, were on
a 1–4 scale, to proportions (both hits for the targets and
false alarms for the distractors) using the equation H or
FA � (Conf � 1)/3, where Conf is the confidence rating
and H or FA is the resulting probability (a hit or a false
alarm). We then corrected the hits for the false alarm
rate, using p � (H � FA)/(1 � FA), as in Loftus and
McLean (1999). The data fit is shown in Figure 13, and
the details of the fit are provided in Table 6, row 1.

For this data set, the SRIA theory clearly fails. The
RMSE is 0.115, which, when compared with the stan-
dard error of 0.025, produces an F(8,920) of 21.15. As
with Experiments 1 and 2, this F value is not particularly
meaningful, because of the very high experimental power;
more meaningful is the fact that the r 2 between the data
and the theory points is only .766. Because the estimated
value of q is 0, this version of the SRIA theory is, for
reasons described earlier, a multiplicative theory (indeed
a Bloch’s law theory), and the reason for its failure is the
same as that provided by Equations 18–20: According to
this SRIA theory with q � 0, high-contrast and low-
contrast performance curves must asymptote at the same
level. It is evident from Figure 13 that this is the reason
that the fit is poor.

By the arguments we made earlier, it is reasonable to
believe that the SRIA theory may fit the short-duration
data even if it fails for the complete data set. Accord-
ingly, we fit it to the short-duration data for all five stim-
ulus types. The details of the fits are provided in Table 7,
rows 2–6, and the fits themselves are shown in Figure 14
in two ways: First, the theoretical predictions are repre-
sented by the solid (high contrast) and dashed (low con-
trast) lines through the data points. Second, the scatter-
plot relating theoretical predictions to the data points
over the 10 short-duration conditions is shown at the bot-
tom right of each panel, along with the associated data
theory Pearson r 2.

It is apparent in three ways that the SRIA theory does
not fit the data particularly well. First and second, except
for hooded faces and houses, the F values for the fits are
quite large, and/or the r2 values are low. Third, for all the
stimulus types, the small embedded scatterplots show
systematic deviations from the 1.0 linear slope that rep-
resents perfect theory–data correspondence.

We considered one more possibility why the SRIA
theory may not fit the data. As was discussed earlier, a
definition of contrast is problematic with the present
multiluminant stimuli composed of the full grayscale
range, rather than of only two luminance values. Perhaps
the definition we selected is incorrect. Accordingly, we
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refit the data from each of the five short-duration com-
plex stimuli sets, with the addition of the high-contrast
to low-contrast ratio as a free parameter. The resulting
fits, expressed as data-theory r 2s are shown in Table 6,
rightmost column. Although the fits improve (as they

must with the additional free parameter), they are still
not uniformly good.

Our conclusion is that these complex stimuli data can-
not be fit by the SRIA theory with anything like the pre-
cision that the simple stimuli data from Experiments 1

Figure 14. Theory evaluation for Experiments 3–6 short-duration recognition performance. Each panel shows
low-contrast and high-contrast performance as a function of duration (log scale). For the multiplicative theory
evaluation, each low-contrast curve has been scaled to the left by the same factor (8.5). For the sensory response,
information acquisition (SRIA) theory evaluation, theory lines (dashed for low contrast, solid for high contrast)
show the best fit, and the small inserted figures show the scatterplots relating SRIA theory predictions to data
points over the 10 short-duration conditions (within the small scatterplots, the r2 values are the data–theory cor-
relations, and the diagonal lines indicate perfect theory–data correspondence).



224 HARLEY, DILLON, AND LOFTUS

and 2 could be fit (see Figures 2 and 4). Despite this
glass-half-empty view, however, there is also a glass-
half-full view, according to which the theory is not to-
tally without merit in its application to these data. This
can be seen in two ways. First, as is indicated in Fig-
ure 14, the fits, although not perfect, are at least reason-
able; in particular, the data-theory r 2s are all above .90.
Second, as is indicated in Table 6, the parameter values
are well behaved: The values of sensory parameters t and
q, which we would expect to remain relatively invariant
over stimulus sets, are indeed extremely close; variation
across the five stimulus sets is, instead, reflected in dif-
ferent values of c and the asymptote.

GENERAL DISCUSSION

We assessed the effects of stimulus contrast on percep-
tion and memory for two quite different classes of visual
stimuli: simple biluminant stimuli (digits and random
forms) and complex multiluminant stimuli (naturalistic
photos of different sorts). Table 7 summarizes the degree
to which the set of nested theories described in our intro-
duction, along with the SRIA theory, can account for the
data of both the simple stimuli (Experiments 1 and 2)
and the complex stimuli (Experiments 3–6). For multi-
plicative theory and Bloch’s law theory, Table 7 is verti-
cally divided into data involving only durations shorter

Table 7
Summary of the Degree to Which Various Theories Are Supported

Theory Simple Stimuli Complex Stimuli

Unidimensional theory Strong support. Monotonic state-trace plots are shown Strong support. Monotonic state-trace plots are shown 
in Figures 2C and 4C. in Figures 8–11, right middle panels.

Multiplicative theory: Weak support. See Figures 2D and 4D. In each case, Strong support. See Figure 13. For each of the five 
shorter-than-an-eye scaling the low-contrast data points to the left brings stimulus types, scaling the low-contrast data points to
fixation durations them into reasonable alignment with the high-contrast the left by a common factor of 8.5 brings them into 

data points. close-to-perfect alignment with the high-contrast data 
points.

Bloch’s law theory Failure. See Tables 1 and 3, columns 4 and 5. The mean Failure. The best-shift factor (8.5) exceeds the 
best-shift factors exceed the mean physical contrast physical contrast ratio (6.667). 
ratios: For Experiment 1, 2.604 versus 1.547; for 
Experiment 2, 2.349 versus 1.639.

SRIA theory: Strong support. See Figures 2 and 4, panels A and B. Weak support. See Figure 13. Fits are poor; data–theory 
shorter-than-an-eye Theory fits are extremely good, as is indicated by the scatterplots are systematically nonlinear; data–theory 
fixation durations data–theory correlations: .987 for Experiment 1 and correlations range from .909 to .982; fit quality 

.996 for Experiment 2. decreases with increased data range. However, 
theoretical parameter values were well behaved 
across the five stimulus sets.

Multiplicative theory: Technically unknown. Longer durations were not used. Failure. See Equations 18–20 and associated text. 
longer-than-an-eye-fixation However, performance was close to asymptote for the Multiplicative theory cannot account for different 
durations longest durations, so if longer durations had been used, low-contrast and high-contrast asymptotes.

the degree of support for multiplicative would likely not
have been affected.

SRIA theory: Technically unknown. Longer durations were not used. Failure. See Figure 12. The SRIA theory cannot 
longer-than-an-eye-fixation However, performance was close to asymptote for the account for different low-contrast and high-contrast 
durations longest durations, so if longer durations had been used, asymptotes.

the theory would likely have fit.

Table 6
Stimulus Response, Information Acquisition Theory Parameter Fits to Experiments 3–6 

Along With Fit Parameters

Condition n t q c Y RMSE F r2 Adj. r2

CG faces: all data 9 9.987 0.000 4.917 0.411 0.115 21.15 .766 –
CG faces: short durations 9 9.991 0.000 6.083 0.460 0.075 9.12 .935 .935
Hooded faces: short durations 9 9.226 0.004 14.272 0.255 0.025 0.57 .982 .990
Houses: short durations 9 9.998 0.000 9.998 0.374 0.049 1.25 .963 .974
Cityscapes: short durations 9 9.995 0.000 9.98 0.625 0.106 5.23 .945 .975
Celebrity faces: short durations 9 9.842 0.000 2.977 0.836 0.128 11.31 .909 .925

Note—The r2 value represents the theory–data correlation with the low-contrast to high-contrast ratio fixed at its
physical value (6.667). The “Adj. r 2” value is the theory–data correlation when the low-contrast to high-contrast ratio
is a free parameter. RMSE, root-mean square error.
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than 250 msec (the approximate duration of an eye fixa-
tion) versus durations longer than 260 msec that likely
involve multiple eye fixations.

Table 7 is pretty much self explanatory and can be
summarized as follows.

1. For all the data, unidimensional theory is unam-
biguously confirmed.

2. Multiplicative theory is weakly confirmed in the
case of simple stimuli and strongly confirmed in the case
of short-duration complex stimuli. We use the term
strongly confirmed for multiplicative theory applied to
short-duration complex stimuli, for two reasons. First as
is shown in Figure 14, a single scaling factor (k � 8.5)
brought the low-contrast and the high-contrast curves
into almost perfect alignment for all five complex stim-
ulus sets. Second, the small remaining discrepancies
could have been essentially eliminated with slightly dif-
ferent scaling factors.

3. For all the data, Bloch’s law theory is unambigu-
ously disconfirmed.

4. The SRIA theory is strongly confirmed for simple
stimuli. In the case of short-duration complex stimuli,
the SRIA theory fits are marginal, although the param-
eter values are well behaved.

5. Both multiplicative theory and the SRIA theory are
unambiguously disconfirmed for long-duration complex
stimuli.

Implications of a Unidimensional Process

As was just noted, for both simple and complex stim-
uli, our results allow precise confirmation of a unidi-
mensional theory: In all cases, the data were consistent
with the proposition that stimulus duration and stimulus
contrast combine at an early perceptual stage and that
subsequent memory performance is then based on this
combination; that is, neither duration nor contrast affects
performance in isolation. The interpretation of these re-
sults is that contrast is a low-level variable that operates
at a stage prior to that at which the system “knows” what
stimulus is being analyzed or why such analysis is taking
place. We note that this does not necessarily mean that
the contrast level of some stimulus is not stored as part of
the memory representation; rather, it simply means that it
does not play a direct role in recognition performance.

Simple Versus Complex Stimuli

There were several differences between the simple and
the complex stimuli both in terms of the observed pat-
tern of results and in terms of the nature of the theories
describing perception of them.

Asymptotic Performance
With simple stimuli, stimulus contrast did not appear

to affect asymptotic performance level. There are three
bases for this conclusion. First, an inspection of Fig-
ures 2 and 4 indicate that, with the longest exposure du-
rations, performance in both contrast conditions is close

to what appear to be equal asymptotes. Second, the digit
recall task was such that the low-contrast, as well as the
high-contrast, stimuli were always completely perceiv-
able given enough time and, therefore, any less-than-1.0
asymptote results from careless or motor errors on the
observer’s part. On an a priori basis, there is no reason to
expect that such errors would be influenced by stimulus
contrast. Third, the SRIA theory assumes a common as-
ymptote for low-contrast and high-contrast stimuli; thus,
the almost-perfect confirmation of the theory for Exper-
iments 1 and 2 lends credence to this assumption.

With complex stimuli, asymptotic performance is
strongly dependent on stimulus contrast. The basis for
this conclusion comes from an inspection of the upper
right panels of Figures 8–11. For all five stimulus sets,
low-contrast recognition performance asymptoted or al-
most asymptoted after a duration of approximately
250 msec, at a level that was considerably less than that
of the highest high-contrast performance.

Fit of the SRIA Theory
There was another clear and consistent difference be-

tween the simple stimuli and the short-duration complex
stimuli: The SRIA theory fit data issuing from simple
stimuli—random forms and digits—essentially per-
fectly, and as was indicated earlier, it has done so con-
sistently over a wide variety of circumstances (Busey &
Loftus, 1994, 1998; Loftus et al., 1993; Loftus & Ruth-
ruff, 1994). Why, then, did the SRIA theory fit the short-
duration complex stimuli data so much less well. We will
consider and reject three simple possibilities.

A poor definition of “contrast.” First, the simple
stimuli both in Experiment 1 and 2 and in all the earlier
referenced studies contained only two luminance levels,
and the definition of contrast was, therefore, quite sim-
ple and presumably valid. The definition of contrast was
considerably less straightforward for our multiluminant
pictures, whose luminance levels spanned the full 0–255
range. However, even if our definition of contrast was not
correct, and the high-contrast to low-contrast ratio is al-
lowed to vary as a free parameter, the fit of the SRIA the-
ory to the short-duration complex-stimuli data is not
greatly improved (compare Table 6, two rightmost
columns). So, a poor definition of contrast is not a suffi-
cient explanation.

An inappropriate dependent variable. Second, per-
haps we used an inappropriate dependent variable. Re-
call that the SRIA theory produces a value of informa-
tion that then must be mapped to whatever dependent
variable is measured in an experiment. With digit recall,
it is reasonable to assume simply that there is an identity
match: If X% of the information is acquired from the
stimulus display, then X % of the digits are reported.
However for the random-form data of Experiments 1 and
2, a simple corrected-for-guessing hit rate was used as
the dependent variable, and the fit was still essentially
perfect.
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Simple stimuli versus pictures. Third, perhaps en-
coding and remembering pictures is sufficiently different
from encoding and remembering simple stimuli that the
same theory cannot be used to describe both. However,
Loftus and McLean (1999) fit the SRIA theory simulta-
neously to a set of four picture recognition data sets issu-
ing from four experiments whose designs were very dif-
ferent. Loftus and McLean also assumed information from
the theory to equal hit rate corrected for false alarm rate,
using the same formula that we used for fitting the recog-
nition performance data here. Similarly, Olds and Engel
(1998) confirmed the SRIA theory by using corrected-
for-guessing identification of black-and-white simple
objects. This provides evidence that picture recognition
data per se are not necessarily outside the theory’s do-
main and provides additional evidence that a corrected-
for-guessing hit rate is not entirely inappropriate as a de-
pendent variable, as far as the theory is concerned.

Biluminant versus multiluminant stimuli. In short,
the poor fit of the SRIA theory cannot be due to a poor
definition of contrast; it is unlikely that it is due to our
choice of dependent variable, and it is unlikely that it oc-

curs because we are using picture recognition. By a pro-
cess of elimination, it would appear that the SRIA theory
is incapable of describing data based on multiluminant
stimuli such as the ones we used in Experiments 3–6.
This makes sense. The SRIA theory makes the funda-
mental assumption that, associated with a stimulus is a
single value of contrast that, in conjunction with dura-
tion, dictates the form of the single sensory response
function. With multiluminant stimuli, there is no single
value of contrast. Instead, there are multiple edges at
varying contrast levels, which define features that have
varying degrees of importance and relevance and idio-
syncratic roles in encoding the picture for later recogni-
tion. Moreover, as contrast is reduced, some features that
are low contrast to begin with fall below threshold,
whereas other, higher contrast features do not. It is pos-
sible that by (1) analyzing each individual picture with
respect to its various internal contrast levels, (2) apply-
ing the SRIA theory simultaneously to these various lev-
els, (3) assessing the roles of the features defined by the
various edges defined by these varying contrast levels,
and (4) using the results to generate a measure of infor-

Figure 15. Two pairs of equal-product stimuli. Panel A shows short-
duration stimuli that may be considered literal metamers; they are (vir-
tually) identical in all respects. The two stimuli in panel B have identical
areas but are not identical in any other respects. Nevertheless, they may
be considered metamers with respect to any measure (such as memory
performance in the sensory response, information acquisition theory)
that depends only on the area under the function.
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mation that can be sensibly related to the dependent vari-
able, the SRIA theory could be successfully applied to
multiluminant stimuli. However, that particular daunting
enterprise is beyond the scope of this article.

Bloch’s Law and Informational Metamers

Earlier, we discussed Bloch’s law as the simplest way
of describing the effect of contrast on memory perfor-
mance and showed how, at the core of the SRIA theory
beats a Bloch’s law heart. Here, we will make some final
remarks about the implications of a Bloch’s law theory
and its place within a more general theory of perception
and information acquisition.

Bloch’s law, as typically treated, incorporates the no-
tion of a critical duration, termed dc . This duration, typ-
ically estimated at around 100 msec, is the upper limit
wherein Bloch’s law holds for detection; that is the du-
ration at which the product of duration and luminance
strictly determines contrast. At durations higher than dc,
Bloch’s law begins to break down; that is, high-luminance
short stimuli are detected better than equal-product
lower luminance longer stimuli.

Although Bloch’s law has typically been applied to the
relation between duration and stimulus luminance, it has
also been applied to the relation between duration and
stimulus contrast. Although many of the same principles
hold, the critical duration has been generally found to be
lower—approximately 20–50 msec rather than 100 msec—
with contrast than with luminance (Gorea & Tyler, 1986;
Musselwhite & Jeffreys, 1982; Spekreijse, Van der Tweel,
& Zuidema, 1973).

What causes the Bloch’s law breakdown? In Figure 15,
we show sensory response functions, generated by the
SRIA theory for two pairs of what we term equal prod-
uct stimuli: For each pair, the product of duration and
contrast is the same (duration � contrast � 1.00 in
panel A and 10.00 in panel B). It is apparent that in
panel A, the two physically different stimuli generate
(virtually) identical sensory response functions. There-
fore, any dependent measure that depends on the sensory
response function, be it detection, identification, mem-
ory, or anything else, must in principle be (virtually)
identical for the two stimuli. In particular, Bloch’s law
would hold. The two stimuli in panel B, however, have
very different shapes. Therefore, it is in principle possi-
ble for a dependent measure to be different for the two
stimuli. For example, if detection depended on the peak
value of the curve, detection would be better for the short
bright stimulus than for the dimmer longer one—just as
is found in Bloch’s law studies.

Borrowing from color vision, we may term the two stim-
uli in panel A metamers. Like classical color metamers,
the information distinguishing the two stimuli is lost at
the beginning of the sensory-perceptual-cognitive sys-
tem, and no way of tapping the mental representation of
them could reconstruct which was which. The panel B
stimuli are not metamers in this sense. Nevertheless, any
dependent measure that depends only on the area under

the curve—such as memory performance in the SRIA
theory—will be identical for these two stimuli. Kahne-
man and Norman (1964) directly compared the critical
duration for Bloch’s law (using luminance). They found
that dc was approximately 100 msec for a brightness-
matching task, which might reasonably be determined by
the height of the sensory response function, whereas it
was considerably longer, up to 347 msec, for a stimulus
identification task that, like performance in the present
experiments, might reasonably be determined by the area
under the curve.

It is, therefore, appropriate to term these kinds of stim-
ulus pairs informational metamers: They lead to differ-
ent representations in early stages of the system (where
the sensory response functions reside) but to the same
representation at later parts of the system (where infor-
mation of whatever is the determinant of memory per-
formance resides). Further discussion of such informa-
tional metamers is beyond the scope of this article. We
would like to close by saying, however, that just as an un-
derstanding of color metamers enabled a quantum leap
in developing a coherent color vision theory, incorporat-
ing the notion of informational metamers into theories
of perception and memory could greatly assist us in the-
oretical development within these disciplines.

REFERENCES

Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A pro-
posed system and its control processes. In K. W. Spence & J. T.
Spence (Eds.), The psychology of learning and motivation (Vol. 2,
pp. 90-197). New York: Academic Press.

Bamber, D. (1979). State trace analysis: A method of testing simple the-
ories of causation. Journal of Mathematical Psychology, 19, 137-181.

Bogartz, R. S. (1976). On the meaning of statistical interactions. Jour-
nal of Experimental Child Psychology, 22, 178-183.

Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision,
10, 433-436.

Busey, T. A., & Loftus, G. R. (1994). Sensory and cognitive compo-
nents of visual information acquisition. Psychological Review, 101,
446-469.

Busey, T. A., & Loftus, G. R. (1998). Binocular information acquisi-
tion and visual memory. Journal of Experimental Psychology:
Human Perception & Performance, 24, 1188-1214.

Busey, T. A., Tunnicliff, J., Loftus, G. R., & Loftus, E. F. (2000).
Accounts of the confidence–accuracy relation in recognition mem-
ory. Psychonomic Bulletin & Review, 7, 26-48.

Craik, F. I. M., & Lockhart, R. F. (1972). Levels of processing: A
framework for memory research. Journal of Verbal Learning & Ver-
bal Behavior, 11, 671-684.

Gillund, G., & Shiffrin, R. M. (1984). A retrieval model for both
recognition and recall. Psychological Review, 91, 1-67.

Ginsburg, A. P., Cannon, M. W., & Nelson, M. A. (1980). Suprathresh-
old processing of complex visual stimuli: Evidence for linearity in
contrast perception. Science, 208, 619-621.

Gorea, A., & Tyler, C. W. (1986). New look at Bloch’s law for con-
trast. Journal of the Optical Society of America A, 3, 52-61.

Graham, N. (1989). Visual pattern analyzers. New York: Oxford.
Hintzman, D. L. (1984). MINERVA 2: A simulation model of human

memory. Behavior Research Methods, Instruments, & Computers,
16, 96-101.

Hirshman, E., & Mulligan, N. (1991). Perceptual interference im-
proves explicit memory but does not enhance data-driven processing.
Journal of Experimental Psychology: Learning, Memory, & Cogni-
tion, 17, 507-513.



228 HARLEY, DILLON, AND LOFTUS

Kahneman, D., & Norman, J. (1964). The time–intensity relation in
visual perception as a function of observer’s task. Journal of Exper-
imental Psychology, 68, 215-220.

Kaswan, J., & Young, S. (1963). Stimulus exposure time, brightness,
and spatial factors as determinants of visual perception. Journal of
Experimental Psychology, 65, 113-123.

Laughery, K. R., Alexander, J. F., & Lane, A. B. (1971). Recogni-
tion of human faces: Effects of target exposure time, target position,
pose position, and type of photograph. Journal of Applied Psychol-
ogy, 55, 477-483.

Loftus, G. R. (1978). On interpretation of interactions. Memory &
Cognition, 6, 312-319.

Loftus, G. R. (1985a). Consistency and confoundings: Reply to
Slamecka. Journal of Experimental Psychology: Learning, Memory,
& Cognition, 11, 817-820.

Loftus, G. R. (1985b). Evaluating forgetting curves. Journal of Exper-
imental Psychology: Learning, Memory, & Cognition, 11, 396-405.

Loftus, G. R. (1985c). Picture perception: Effects of luminance level
on available information and information extraction rate. Journal of
Experimental Psychology: General, 114, 342-356.

Loftus, G. R., & Bamber, D. (1990). Weak models, strong models, uni-
dimensional models, and psychological time. Journal of Experimen-
tal Psychology: Learning, Memory, & Cognition, 16, 916-926.

Loftus, G. R., Busey, T. A., & Senders, J. W. (1993). Providing a sen-
sory basis for models of visual information acquisition. Perception &
Psychophysics, 54, 535-554.

Loftus, G. R., & Irwin, D. E. (1998). On the relations among different
measures of visible and informational persistence. Cognitive Psy-
chology, 35, 135-199.

Loftus, G. R., Kaufman, L., Nishimoto, T., & Ruthruff, E. (1992).
Effects of visual degradation on eye-fixation durations, perceptual
processing, and long-term visual memory. In K. Rayner (Ed.), Eye
movements and visual cognition: Scene perception and reading
(pp. 203-226). New York: Springer-Verlag.

Loftus, G. R., & McLean, J. E. (1999). A front end to a theory of pic-
ture recognition. Psychonomic Bulletin & Review, 6, 394-411.

Loftus, G. R., & Ruthruff, E. R. (1994). A theory of visual information
acquisition and visual memory with special application to intensity–
duration tradeoffs. Journal of Experimental Psychology: Human Per-
ception & Performance, 20, 33-50.

Massaro, D., & Loftus, G. R. (1996). Sensory storage: Icons and
echoes. In E. L. Bjork & R. A. Bjork (Eds.), Handbook of perception
and cognition (Vol. 10, pp. 68-101). New York: Academic Press.

Morton, J. (1969). The interaction of information in word recognition.
Psychological Review, 76, 165-178.

Murdock, B. B. (1982). A theory for the storage and retrieval of item
and associative information. Psychological Review, 89, 609-626.

Murdock, B. B. (1993). TODAM2: A model for the storage and re-
trieval of item, associative, and serial order information. Psycholog-
ical Review, 100, 183-203.

Musselwhite, M. J., & Jeffreys, D. A. (1982). Pattern-evoked poten-
tials and Bloch’s law. Vision Research, 22, 897-903.

Nairne, J. S. (1988). The mnemonic value of perceptual identification.

Journal of Experimental Psychology: Learning, Memory, & Cogni-
tion, 14, 248-255.

Norman, D. A. (1966). Acquisition and retention in short term mem-
ory. Journal of Experimental Psychology, 72, 369-381.

Olds, E. S., & Engel, S. A. (1998). Linearity across spatial frequency
in object recognition. Vision Research, 38, 2109-2118.

Olzak, L. A., & Thomas, J. P. (1986). Seeing spatial patterns. In K. R.
Boff, L. Kaufman, & J. P. Thomas (Eds.), Handbook of perception
and human performance: Vol. 1. Sensory processes and perception
(pp. 7.1-7.56). New York: Wiley.

Paivio, A. (1969). Mental imagery in associative learning and memory.
Psychological Review, 76, 241-263.

Paivio, A. (1971). Imagery and verbal processes. New York: Holt,
Rinehart, & Winston.

Palmer, J. C. (1986a). Mechanisms of displacement discrimination
with and without perceived movement. Journal of Experimental Psy-
chology: Human Perception & Performance, 12, 411-421.

Palmer, J. C. (1986b). Mechanisms of displacement discrimination
with a visual reference. Vision Research, 26, 1939-1947.

Peli, E. (1990). Contrast in complex images. Journal of the Optical So-
ciety of America, 7, 2032-2040.

Pelli, D. G. (1997). The Video Toolbox software for visual psychophysics:
Transforming numbers into movies. Spatial Vision, 10, 437-442.

Rumelhart, D. E. (1970). A multicomponent theory of the perception
of briefly exposed visual displays. Journal of Mathematical Psy-
chology, 7, 191-218.

Schacter, D. L., & Tulving, E. (Eds.) (1994). Memory systems. Cam-
bridge, MA: MIT Press.

Shibuya, H., & Bundesen, C. (1988). Visual selection from multi-
element displays: Measuring and modeling effects of exposure dura-
tion. Journal of Experimental Psychology: Human Perception & Per-
formance, 14, 591-600.

Slamecka, N. J., & Graf, P. (1978). The generation effect: Delineation
of a phenomenon. Journal of Experimental Psychology: Human
Learning & Memory, 4, 592-604.

Spekreijse, H., Van der Tweel, L. H., & Zuidema, T. (1973). Contrast
evoked responses in man. Vision Research, 13, 1577-1601.

Sperling, G. (1986). A signal-to-noise theory of the effects of lumi-
nance on picture memory: Comment on Loftus. Journal of Experi-
mental Psychology: General, 115, 189-192.

Underwood, B. J. (1969). Attributes of memory. Psychological Re-
view, 76, 559-573.

van Nes, F. L., & Bouman, M. A. (1967). Spatial modulation transfer in
the human eye. Journal of the Optical Society of America, 57, 401-406.

Wandell, B. A. (1995). Foundations of vision. Sunderland, MA: Sin-
auer Associates.

Watson, A. B. (1986). Temporal sensitivity. In K. R. Boff, L. Kaufman,
& J. P. Thomas (Eds.), Handbook of perception and human perfor-
mance (Vol. I, pp. 6.1-6.43). New York: Wiley.

Wickelgren, W. A. (1972). Trace resistance and the decay of long-
term memory. Journal of Mathematical Psychology, 9, 418-455.

Wickelgren, W. A. (1974). Single-trace fragility theory of memory
dynamics. Memory & Cognition, 2, 775-780.

APPENDIX

Here, we will provide a short tutorial on the logic and
methodology of state-trace analysis. For an excellent, detailed,
and readable treatment, the reader is referred to Bamber (1979).
Our goals here are to provide specific examples of both a uni-
dimensional theory and a multidimensional theory and to show
how a single-dimension theory is tested using a data set simi-
lar to those in Experiments 1–6. We provide explicit equations
corresponding to the two theories so the interested reader can
follow along numerically with the help of Excel, MATLAB,
Mathematica, S�, or any other application capable of numeri-
cal manipulation. We hasten to point out that these equations

are not meant to be taken seriously as actual models of psy-
chological events; rather, they were chosen mainly for exposi-
tional simplicity.

An Example Experiment
We base this tutorial on an experiment reported by Busey

et al. (2000, Experiment 1) concerning the relation between
confidence and accuracy in face recognition. Methodologically,
their experiment was very much like our Experiments 3–6. A
series of target faces were shown in a study phase. In a subse-
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quent test phase, the targets were randomly intermingled with
distractors, and the resulting set of test pictures was shown one
by one in an old–new recognition procedure. At study, two in-
dependent variables were manipulated: exposure duration and
rehearsal. By the rehearsal manipulation, observers either were
required to visually rehearse or were prevented from rehearsing
each just-seen target picture for 15 sec following target offset.

There were three performance measures: prospective confi-
dence, for which, following each study trial, the observer pro-
vided a rating of 1–4 as to whether he or she would subsequently
recognize the face; recognition, for which, on each test trial, the
observer provided an old–new recognition response; and retro-
spective confidence, for which, following each test trial, the ob-
server provided a rating of 1–4 as to whether he or she believed
the old–new recognition response to have been correct.

In what follows, we will provide idealized versions of the ex-
periment and the results. We construct two hypothetical sce-
narios. In the first, or full, scenario, there is an extremely large
number of exposure durations: Duration ranges from 1 to
500 msec in 1-msec intervals. Thus, it is possible to map out
what is essentially the continuous underlying curve relating the
performance measures to exposure duration. The second, or
sample, scenario constitutes a more realistic approximation to

this or any other experiment, in which six exposure durations
(10, 50, 100, 150, 200, and 300 msec) are used.

The top panels of Figure A1 show the hypothetical results of
both scenarios: The three dependent variables are plotted as
functions of duration, with separate curves for rehearsed and
nonrehearsed conditions. The full-scenario data (with 500 ex-
posure duration conditions) are depicted as smooth curves,
whereas the sample scenario data (with 6 exposure duration
conditions) are depicted by curve symbols. Qualitatively, there
is nothing surprising about the data. All three performance
measures behave similarly: They rise with exposure duration
and are better for rehearsed than for nonrehearsed conditions.

The major question was, Can confidence (both prospective
and retrospective) and recognition performance be construed
as measuring the same underlying internal state; that is, can a
single unidimensional measure be construed as determining all
three measures? The answer obtained by Busey et al. (2000)
was that retrospective confidence and recognition performance
could be so construed but prospective confidence and recogni-
tion performance could not: The relation between retrospective
confidence and recognition performance could be described
with a single-dimension theory, whereas the relation between
prospective confidence and recognition performance required

APPENDIX (Continued)

Figure A1. Hypothetical data from the exposure duration � rehearsal/no-rehearsal experiment. Top panels: main
data in the form of three dependent variables as functions of exposure duration. Bottom panels: state-trace plots in the
form of recognition performance plotted, over conditions, as a function of prospective confidence (bottom left) and ret-
rospective confidence (bottom right). The bottom right state-trace plot depicts a confirmation of single-dimension the-
ory, whereas the bottom left state-trace plot depicts a disconfirmation of single-dimension theory.
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a two-dimensional theory. We now describe these two theories
and their predictions.

Retrospective Confidence: Confirmation of a Single-
Dimension Theory

We begin with retrospective confidence. The relation be-
tween retrospective confidence and recognition performance is
adequately described by a single-dimension theory, which is
shown in the top panel of Figure A2. Here, the left and right
gray boxes represent observables (duration, d, and rehearsal, R,
are on the left, whereas recognition performance, RP, and ret-
rospective confidence, RC, are on the right). The “black box”
in the center depicts the unobservable manner in which the in-
dependent variables combine and then determine performance.
Here, d and R are combined into a unidimensional construct, in-
formation [I ], by a function, f, which is monotonic in both ar-
guments. Both recognition performance and retrospective con-
fidence are then monotonic functions, mRP and mRC of I. The
specific equation f for combining rehearsal and duration to ob-
tain information is

(A1)

where d is exposure duration in milliseconds. The monotonic
equations m for obtaining recognition performance and retro-
spective confidence from information are

(A2)

and

(A3)

An idealized prediction: The full scenario. To understand
the prediction of the unidimensional theory, it is useful to con-
sider the full scenario. Consider recognition performance—the
middle curve at the top of Figure A1. Choose any point on the re-

hearsal curve—say, the 100-msec point. We call it the (100-msec,
R) point. Recognition performance at the (100-msec, R) point is
approximately 0.551. Now we ask, How much exposure duration
is required to achieve the same performance level in the no-
rehearsal condition? The answer is 200 msec. We call this the
(200-msec, NR) condition. Both of these points, along with a de-
piction of their equality, are indicated on the upper middle panel
in Figure A1. Because the (100-msec, R) and the (200-msec, NR)
conditions produce the same recognition performance, 0.551,
they must, by the unidimensional theory, have produced the same
information, I � mRP

�1(0.551) � 200 (where mRP
�1 is the inverse of

mRP). Now—and this is the crux of the single-dimension theory’s
prediction—because the (100-msec, R) and the (200-msec, NR)
conditions produce equal information, I, they must also produce
equal values of retrospective confidence. And indeed, the value of
retrospective confidence for both these conditions is 2.484, as is
indicated in the upper right panel in Figure A1.

This finding—that two duration � rehearsal/no rehearsal
conditions producing equal values of recognition performance
must also produce equal values of retrospective confidence—
is encapsulated in the state-trace plot shown at the bottom right
of Figure A1. In general, a state-trace plot is a scatterplot of
one dependent variable against a second dependent variable,
with one point for each experimental condition. There are ac-
tually two curves in this plot: one relating recognition perfor-
mance to retrospective confidence for the rehearsal conditions
and the other relating recognition performance to retrospective
confidence for the no-rehearsal conditions. However, there ap-
pears to be only one curve, because the two curves are exactly
superimposed, for reasons that we now will explain.

Note that any two conditions—a shorter duration rehearsal
condition and a longer duration no-rehearsal condition—that
produce the same value of retrospective confidence must be
vertically aligned. Likewise, any two such conditions that pro-
duce the same value of recognition performance must be hori-
zontally aligned. If, as is implied by the unidimensional theory,

RC RC= = - +-m I e I( ) ./2 1 1250

RP (RP= = - -m I e I) /1 250

I f d R
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Single-Dimension Theory (Retrospective Confidence)

Two-Dimensional Theory (Prospective Confidence)

d = Duration

R = Rehearsal

Recognition Performance:

Retrospective Confidence:

RP = m   (I )RP

RC = m    (I )RC

d = Duration

R = Rehearsal

Recognition Performance:
RP = m    (I )RP

Prospective Confidence:

PC = m    (I, C )PC

Information: I = f (d, R)

Information: I = f (d, R)

Certainty: C = g(R)

Figure A2. Schematic representations of a single-dimension theory and a
two-dimensional theory.
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any two conditions producing equal recognition performance
also produce equal retrospective confidence, these points must
be both vertically and horizontally aligned; that is, they must
coincide. That they do is shown in the bottom right panel in Fig-
ure A1 for our two example conditions. Because the prediction
holds over the entire range of conditions, the two curves must
entirely overlap, as they are depicted to do.

A real-life prediction: The sample scenario. This, then, is
the prediction of the single-dimension theory: The two curves
in the state-trace plot must entirely overlap. It is easy to evalu-
ate this prediction with the hypothetical full experiment in
which there is essentially a continuous range of exposure dura-
tions. In a more realistic experiment, exemplified by our 6 sam-
ple points, evaluating the prediction is not quite so simple. For
the single-dimension theory to be confirmed, it is necessary
that all data points (12 in this example: 6 rehearsal data points,
and 6 no-rehearsal data points) jointly form a monotonic func-
tion. Needless to say, however, it is possible for sampled data
points to form a monotonic function even if they issue from two
underlying nonoverlapping functions. Thus, even if one ob-
serves that the sampled points form a monotonic function, one
must be cautious in concluding that a single-dimension theory
has produced them.

The experimental design of the present experiments is much
the same as that in this example, where instead of combining
two values of rehearsal with exposure duration, we combine
two levels of contrast with exposure duration. The logic is the
same, and the general prediction is the following: If all points
on the state-trace plot—the low-contrast points and the high-
contrast points—form a single monotonic function, the predic-
tion of the single-dimension theory is confirmed.

Prospective Confidence: Disconfirmation of a Single-
Dimension Theory

As is shown in the top panels of Figure A1, prospective con-
fidence appears superficially to behave similarly to both recog-
nition performance and retrospective confidence. As we have
demonstrated, recognition performance and retrospective con-
fidence are both functions solely of a single underlying vari-
able, information, which led to the coinciding state-trace curves
shown in the bottom right panel in Figure A1.

The state-trace plot relating recognition performance to
prospective confidence, however, was not monotonic: As is
shown in the bottom left of Figure A1, the rehearsal curve is
displaced to the right of the no-rehearsal curve. Thus, if two
conditions, a shorter duration rehearsal condition and a longer
duration no-rehearsal condition, are equal for recognition per-
formance, the shorter duration rehearsal condition produces a
larger value of prospective confidence. This is shown with our
two example conditions, (100-msec, R) and (200-msec, NR),
in both the top left and the bottom left panels in Figure A1. This
data pattern has a straightforward interpretation: At the time of
study, observers overestimate the value of rehearsal in terms of
how much it boosts eventual recognition performance.

Thus, the nonmonotonic state-trace plot disconfirms a single-
dimension theory: More than one dimension is required to ac-
count for the data. The bottom panel of Figure A2 provides an

illustrative two-dimensional theory. In our incarnation of it, in-
formation is computed by Equation A1, and recognition per-
formance is computed by Equation A2. However, there is sec-
ond dimension, called certainty, which is affected by rehearsal
duration, but not by exposure duration. In particular,

(A4)

Although recognition performance is determined solely by in-
formation, prospective confidence is jointly determined by infor-
mation and certainty. In particular,

(A5)

Thus, when two conditions, for example the (100-msec, R) and
the (200-msec, NR) conditions, produce equal recognition per-
formance, they are still inferred to have produced the same value
of information. However, when two conditions produce the same
value of information, the rehearsal condition produces a higher
value of prospective confidence than does the no-rehearsal con-
dition by virtue of the higher certainty contribution to prospective
confidence in the rehearsal than in the no-rehearsal condition.

Summary
The important points of this tutorial are the following.
1. A single-dimension theory stipulates that two or more de-

pendent variables in an experiment are determined solely by a
single, internal, single-dimensional variable whose value is, in
turn, determined by the values of the independent variables.

2. A state-trace plot is a scatterplot of one dependent variable
plotted against another dependent variable, with each point cor-
responding to a single experimental condition.

3. The prediction of a single-dimension theory is that all the
points of the state-trace plot form a monotonic function, as in
the bottom right panel in Figure A1. If the points of a state-trace
plot are observed to form a nonmonotonic function, as in the
bottom left panel in Figure A1, a single-dimension theory is in-
sufficient to describe the data.

4. If a single-dimension theory is disconfirmed, the discon-
firming data pattern typically suggests the form of multidi-
mensional theory that would be appropriate for describing the
data. This is exemplified in the two-dimensional information
certainty model that we have described.

5. Finally, it is worth noting that the predictions of a unidi-
mensional theory are not affected by scaling considerations (as
has been described, e.g., by Bogartz, 1976; Loftus, 1978, 1985a,
1985b; Loftus & Bamber, 1990), which, for example, imply that
a conclusion about the presence or absence of an interaction
with respect to one dependent variable may not be valid for a
second dependent variable that is nonlinearly related to the first.
That is, the predictions described for a single-dimension theory
apply not just to the dependent variables measured in the exper-
iment, but to all dependent variables that are monotonically re-
lated to one another. For example, a prediction that is confirmed
or disconfirmed with respect to probability correct would ipso
facto be confirmed or disconfirmed with respect to d¢.
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 2.0 for rehearsal

 1.0 for no rehearsal
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