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 Minimal Model: Perspective from 2005 

 Richard N. Bergman 

 University of Southern California,  Los Angeles, Calif. , USA 

cepted in cardiovascular and respiratory control  [1, 2] , 
the acceptance of models to describe blood glucose regu-
lation was more controversial. Early models were based 
upon differential equation representations of the dynam-
ic relationships between glucose and insulin, and varied 
from extremely simple  [3]  to extremely complex  [4] . 
However, the impact of modelling on the diagnosis and 
treatment of diabetes mellitus was limited. One reason 
for the lack of acceptance was the unfamiliarity of many 
endocrinologists with the process of using mathematical 
or computer representations to describe closed-loop feed-
back systems. Additional problems arose from the inher-
ently non-linear nature of the function of the organs that 
play prominent roles in regulation of the blood glucose 
concentration. 

 Modelling the pancreatic islets was a particularly dif-
fi cult problem. The  ! -cell is a complex cell demonstrating 
biphasic insulin secretion, with a response that is altered 
by previous history of stimulation and a non-linear dose-
response curve. These complex characteristics of the  ! -
cells are not amenable to simple representation in math-
ematical terms  [5] . However, it proved to be possible to 
exploit mathematical modelling and gain substantial in-
formation regarding blood glucose regulation while avoid-
ing the hurdles inherent in describing  ! -cell function in 
mathematical terms. 

 To do this we exploited the intravenous glucose toler-
ance test (IVGTT). We modifi ed the test by making fre-
quent measurements of plasma glucose and insulin fol-
lowing glucose injection – thus revealing the complex dy-
namic relationship between plasma glucose and insulin. 
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  Abstract 
 The minimal model was proposed over 25 years ago. 
Despite (or because of) its simplicity it continues to be 
used today – both as a clinical tool and an approach to 
understanding the composite effects of insulin secretion 
and insulin sensitivity on glucose tolerance and risk for 
type 2 diabetes mellitus. The original assumptions of the 
model have led to an understanding of the kinetics of 
insulin in vivo, as well as the relative importance of  ! -cell 
compensatory failure in the pathogenesis of diabetes. 
The disposition index (DI), a parameter emerging from 
the model, represents the ability of the pancreatic islets 
to compensate for insulin resistance. There is evidence 
that a locus on chromosome 11 codes for the DI, which 
has a signifi cant heritability and can predict type 2 dia-
betes better than any known genetic locus. Even today, 
the model continues to be a subject of scientifi c discov-
ery and discourse. 

 Copyright © 2005 S. Karger AG, Basel 

 Origin of the Minimal Model 

 Mathematical modelling of homeostatic systems has 
long held great promise to explain the behaviour of closed-
loop physiological systems. While modelling has been ac-
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We reasoned that, although the closed-loop relationship 
between glucose and insulin remains intact during the 
test, the resulting data can be described by a stimulus-re-
sponse (input-output) model of the extrapancreatic tis-
sues that utilize glucose. The plasma insulin measured 
during the IVGTT represents the stimulus to the tissues 
utilizing glucose ( fi g. 1 ), and glycaemia is the response. 
What remained was to defi ne a model that could accu-
rately represent the effect of secreted insulin on glucose 
dynamics. 

 We applied the principle of Occam’s Razor, i.e. by ask-
ing what was the simplest model based upon known phys-
iology that could account for the insulin–glucose relation-
ship revealed in the data. Such a model must be simple 
enough to account totally for the measured glucose (given 
the insulin input), yet it must be possible, using mathe-
matical techniques, to estimate all the characteristic pa-
rameters of the model from a single data set (thus avoid-
ing unverifi able assumptions). The emergent selected 

model, the minimal model, is represented in  fi gure 2 . We 
discovered that certain very fundamental physiological 
realities had to be represented in the model. (1) Glucose, 
once elevated by injection, returns to basal level due to 
two effects: the effect of glucose itself to normalize its own 
concentration (mass action plus allosteric effects of hex-
ose  [7] ) as well as the catalytic effect of insulin to allow 
glucose to self-normalize (now known to be due to mobi-
lization of glucose transporter 4). (2) Also, we discovered 
that the effect of insulin on net glucose disappearance 
must be sluggish – that is, that insulin acts slowly because 
insulin must fi rst move from plasma to a remote compart-
ment (later shown to be interstitial fl uid) to exert its action 
on glucose disposal. The model embodies these simple 
ideas in two equations – one that relates glucose disap-
pearance to the glucose effect (catalysed by insulin), and 
a second that describes the kinetics of insulin movement 
from blood to the active compartment ( fi g. 2 ). 
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Tank Fat

Liver
‘Remote’
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  Fig. 1.  Closed-loop relationship between glucose, insulin secretion 
and insulin action. ‘Tank’ represents blood glucose in extracellular 
fl uid. The level of glucose (height of fl uid) is the balance between 
the rate of production (fl ux from liver) and rate of utilization (drain-
age from tank). After meals, the level of glucose increases (i.e. the 
height in the tank rises) eliciting an insulin secretory response. In-
sulin crosses the endothelial barrier (represented by the wavy line), 
increases glucose uptake by muscle and suppresses lipolysis from 
adipose tissue, which in turns reduces liver glucose production. To 
simplify modelling, only the extrapancreatic tissues are represented 
(indicated by the dotted arrow), including the effects of insulin and 
glucose per se on net glucose utilization (i.e. production by liver 
minus uptake by the central nervous system and muscle)  [6] . 
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  Fig. 2.  The minimal model. The fi rst equation represents the phys-
iological factors that determine the restoration of plasma glucose 
after injection: the effect of glucose itself (S G ), and the effect of in-
sulin in the interstitial compartment [X(t)], which acts synergisti-
cally with glucose to return the glycaemia to basal levels. The second 
equation represents the fl ux of insulin from plasma into the inter-
stitial compartment, where it acts  [8] . dG/dt = Glucose restoration 
rate; G = plasma glucose; dX/dt = rate of increase in remote insulin; 
p 2  = fractional rate of insulin appearance in interstitial fl uid; p 3  = 
fractional clearance of insulin from interstitial compartment; I(t) = 
plasma insulin; S I  = insulin sensitivity index; S G  = glucose effective-
ness; X(t) = is proportional to remote insulin (i.e. insulin in inter-
stitial compartment). 
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 The Metabolic Profi le 

 The mere presentation of a model of glucose homeo-
stasis would have only didactic value if not applicable in 
real circumstances. We considered the descriptive pa-
rameters that could emerge from the modelling of the 
IVGTT, which might have usefulness for assigning risk 
for developing diabetes. It was clear even several decades 
ago that insulin resistance could be an important risk fac-
tor for type 2 diabetes. How could insulin resistance (or 
its converse, insulin sensitivity) be calculated from the 
minimal model? Insulin sensitivity was defi ned in quan-
titative terms as the effect of insulin to catalyse the disap-
pearance of glucose from plasma. 

 In mathematical terms, this translated as the partial 
derivative of insulin (I) and glucose (G) upon net glucose 
disappearance: 

  "  2  ( dG / dt )/ "  G " I  

 in which G is the plasma glucose concentration and I is 
the plasma insulin concentration. 

 We showed that insulin sensitivity, which we defi ned 
as the insulin sensitivity index (S I ), could readily be cal-
culated from parameters of the minimal model  [8] . These 

considerations made it possible to: (1) perform the fre-
quently sampled IVGTT on an individual; (2) measure 
 glucose and insulin; (3) fi t the data to the minimal model; 
(4) calculate insulin sensitivity. 

 The value of S I  has been compared favourably many 
times with measures of insulin sensitivity from the glu-
cose clamp  [6] . To carry out this comparison it was nec-
essary to discern the clamp analogue to S I . In fact, S I  from 
the clamp represents the effect of insulin, per se, to aug-
ment the ability of glucose to enhance net glucose disap-
pearance from the extracellular fl uid (by suppression of 
endogenous glucose output plus increase in glucose dis-
posal). The term S I  is often misused as a general term for 
insulin sensitivity whereas it should be used according to 
the formal defi nition given above (see Zethelius et al.  [9]  
for an example). 

 In addition to S I , we defi ned an additional parameter
of glucose homeostasis: S G , or glucose effectiveness –
the ability of glucose itself to enhance its own disappear-
ance independent of an increment in insulin. Addition-
ally, we adopted the insulin secretory measure introduced 
by Porte and his colleagues: the fi rst-phase insulin re-
sponse (AIR glucose ). Thus, it is possible to obtain a com-
prehensive snapshot of glucose homeostasis from the ac-
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  Fig. 3.  Studies using or studying the minimal model from 1979 to April 2005, estimated from the PubMed Cita-
tion Index. 
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cumulated parameters from the minimal model: S I , S G  
and AIR glucose . The minimal model has been used in hun-
dreds of studies, and the number of minimal model pa-
pers continues to increase ( fi g. 3 ), testifying to the longev-
ity and usefulness of this modelling approach. One pos-
sible contributor to the longevity is the availability of 
‘friendly’ software  [10, 11] , which allows independent in-
vestigators to calculate minimal model parameters with-
out a sophisticated knowledge of the underlying mathe-
matics ( fi g. 4 ). 

 Disposition Index and the Hyperbolic Law of 
Glucose Tolerance 

 The minimal model was fi rst applied to human pa-
tients in 1981  [12] . In this study, we introduced the con-
cept that there is a stereotypical relationship between in-
sulin sensitivity and insulin secretion ( fi g. 5 )  [13] . Based 
upon the engineering principle of closed-loop gain, we 
hypothesized that in normal individuals, the product of 
insulin sensitivity and insulin secretion would be approx-
imately constant; that is: 

 insulin sensitivity  !  insulin secretion = disposition
                                                                          index (DI) 

  S  I   !   AIR  glucose  =  DI  

 This suggests that environmental reduction in insulin 
sensitivity (e.g. due to obesity, pregnancy, puberty, infec-
tion etc.) would be compensated for by an increase in
 ! -cell function, thus avoiding an impairment in glucose 
tolerance. 

 The  ! -cell has the ability to upregulate insulin secre-
tion in response to insulin resistance. The degree to which 
it is able to do this is represented by the DI, which is, 
therefore, a measure of  ! -cell functionality. That is, DI 
refl ects the ability (or lack thereof) of the  ! -cells of the 
pancreatic islets to be able to compensate for insulin re-
sistance by increasing  ! -cell responsivity. The latter pro-
cess is possibly the most fundamental factor in the main-
tenance of normal glucose tolerance (and, in fact, normal 
fasting glucose) in the face of the vicissitudes of insulin 
sensitivity, which are inevitable in the modernized world. 
The DI can be conveniently represented as a hyperbola 
( fi g. 5 ). Numerous studies have confi rmed the ability of 
the  ! -cells to compensate for insulin resistance as pre-
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  Fig. 4.  Output from the user-friendly pro-
gram Minmod Millennium (copyright R.N. 
Bergman). 



 Bergman  Horm Res 2005;64(suppl 3):8–15 12

dicted by the previous equation  [14, 15] , and the DI re-
lationship has achieved the status of being referred to as 
a law: the hyperbolic law of glucose tolerance  [16] . 

 Prediction of Type 2 Diabetes 

 Traditionally, type 2 diabetes has been considered to 
be a disease that develops rather slowly and one for which 
obesity is a prominent risk factor, usually responsible for 
insulin resistance. With time,  ! -cell functionality slowly 
declines, until hyperglycaemia ensues. The precise event 
that causes the tipping point  [17]  from impaired glucose 
tolerance to fasting hyperglycaemia remains elusive. 
However, it is clear that both insulin resistance and de-
creased  ! -cell function are risk factors for diabetes. 

 It is now abundantly clear that intervention can delay, 
or possibly even prevent, type 2 diabetes. Various insulin-
sensitizing protocols, including pharmacological  [18]  and 
lifestyle intervention  [19] , effectively prolong the period 
before the development of diabetes in individuals at high 
risk. Thus, it is very important to identify those at great-
est risk for type 2 diabetes, so that resources for interven-
tion can be judiciously applied. How may we identify 
those individuals most at risk? 

 Despite high expectations, a single gene responsible 
for type 2 diabetes has not been identifi ed. Instead, sev-
eral gene variants have emerged as possibly contributing 
to diabetes risk; among these nominated genes are the 
peroxisome proliferator-activated receptor  #  gene as 
well as hepatocyte nuclear factor 4 $  and calpain-10. The 
search for genes contributing to diabetes risk contin-
ues. 

 In the absence of ‘the’ diabetes gene, other approaches 
to measuring diabetes risk must be used. One such puta-
tive measure is the DI. It is the reduction in the ability to 
compensate for insulin resistance that may predict dis-
ease. That this is true, at least in some populations, has 
been demonstrated by several groups. DI has been found 
to be a powerful predictor of type 2 diabetes in the Pima 
Indians of Arizona, with a difference in odds for diabetes 
(comparing lowest to highest decile of DI) of almost 20. 
In addition, Groop and colleagues  [20]  have recently 
shown that DI is the single most effective non-genetic 
predictor of diabetes in the Botnia study of diabetes ge-
netics in Western Finland. 

 Genetics of DI 

 If DI can predict diabetes, and if gene loci have been 
identifi ed that are linked to increased risk of diabetes, is 
there a gene for DI that may in fact be responsible for at 
least some cases of diabetes in a given population? Two 
groups have identifi ed a locus on chromosome 11 that 
may be linked to diabetes. In the Insulin Resistance Ath-
erosclerosis (IRAS) Family Study  [21] , quantitative link-
age analysis was used in a genome scan, and the highest 
lod score identifi ed (approximately 3) linked the DI to the 
locus on chromosome 11. The Finland–United States In-
vestigation of NIDDM Genetics (FUSION) study of dia-
betes  [22]  confi rmed this, and identifi ed a locus for dia-
betes risk in a region that overlaps with the chromosome 
11 risk from the IRAS study. Thus, the possibility exists 
that there is a gene on chromosome 11, which is heritable, 
that causes risk for type 2 diabetes, and which determines 
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  Fig. 5.  Hyperbolic law of glucose tolerance. The hyperbolic curve 
represents the propensity of the pancreatic  ! -cells to upregulate 
insulin secretion in the face of insulin resistance. Thus, in normal 
states of insulin resistance such as pregnancy and puberty, insulin 
sensitivity is reduced and there is an appropriate increase in secre-
tion to compensate for and maintain glucose tolerance in the nor-
mal range. Patients at risk for type 2 diabetes, however, operate on 
a curve nearer the origin, such that insulin resistance causes a less-
er compensation in secretion. This can lead to glucose intolerance 
and, eventually, type 2 diabetes. The equation for each curve is  in-
sulin sensitivity  !  insulin secretion = DI . The latter is a measure of 
 ! -cell health (i.e. the ability of the pancreatic  ! -cells to compensate 
for insulin resistance). Figure adapted from Bergman  [13] . 
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which is slowly compensated for by increased insulin secretion 
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insulin by the liver  [24] . 

the DI. Further studies will test the hypothesis that in-
heritance of the DI can explain at least some cases of type 
2 diabetes. 

 Accounting for the Hyperbola 

 What physiological mechanism accounts for the ro-
bust hyperbolic relationship between insulin secretion 
and insulin sensitivity? Insulin resistance caused by a va-
riety of mechanisms elicits the appropriate insulin re-
sponse  [23] . For example, induction of insulin resistance 
by fat feeding causes a rapid decline in insulin sensitivity 
(after 1 week), followed several weeks later by the appro-
priate degree of hyperinsulinaemia ( fi g. 6 )  [24] , but how 
do the  ! -cells ‘know’ to increase secretion in response to 
insulin resistance? The classic concept is that insulin 
 resistance results in a subtle glucose intolerance, which in 
turn causes mild hyperglycaemia leading to increased
 ! -cell responsivity. However, in studies in the dog model, 
we reported substantial insulin resistance in the absence 
of any increase in plasma glucose. Nevertheless, plasma 
insulin still increased to compensate for resistance, and 
glucose intolerance was prevented. What is the mysteri-
ous signal that notifi es the  ! -cells to increase insulin out-
put? 

 The Mysterious Signal 

 Our laboratory carried out a systematic study to at-
tempt to identify the signal for upregulation of insulinae-
mia. We considered the following possible endogenous 
secretory signalling mechanisms, which could conceiv-
ably act as signals: 
 1 fasting glucose 
 2 fasting free fatty acids (FFA) 
 3 nocturnal glucose and/or FFA 
 4 glucagon-like peptide (GLP)-1 
 5 cortisol 
 6 growth hormone 
 7 central nervous system. 

 As previously mentioned, we induced insulin resis-
tance in the dog model by feeding a high-fat diet (6 g/kg/
day). Dogs gained weight ( ! 5 kg or 20% of body weight 
in 6 weeks), and demonstrated insulin resistance and hy-
perinsulinaemia. However, there was absolutely no in-
crease in fasting glucose and no signifi cant increase in 
fasting FFA. To examine possible nocturnal changes, we 
collected blood samples over 24 h under control (normal 
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diet) conditions, and after 6 weeks on the high-fat diet 
( fi g. 7 ). Again, there was no change in the glucose pattern, 
even over 24 h. Additionally, no increases were observed 
in 24-h patterns of GLP-1, cortisol or growth hormone. 
In sharp contrast, however, was a highly signifi cant in-
crease in FFA levels overnight: the 24-h pattern of FFA 
secretion was increased by 49%. On the basis of these re-
sults, we hypothesize that increased nocturnal FFA levels 
are the signal responsible for the insulinaemic compensa-
tion for fat-induced insulin resistance. Defi nitive proof 
will require pharmacological normalization of overnight 
FFA to see if the compensatory signal is suppressed. 

 Comment 

 The minimal model is now over 25 years old. It is 
somewhat surprising that it has lasted so long, but this 
may be regarded as a testament to the robustness of the 
model itself. Its longevity is also due to the fact that 
‘friendly’ software (such as Minmod Millennium, copy-
right MINMOD Inc., Pasadena, California, USA) has 
been made available so that the model is accessible to in-
dividuals not necessarily conversant in differential equa-
tions. The model has been useful as a compass by which 
to identify important issues in systems biology as they 
relate to carbohydrate metabolism. While the model itself 
has not been changed, it is now being expanded to include 
fat metabolism (A.E. Sumner, personal communication). 
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Noon p.m. Midnight a.m.
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12-h light period

Meal

At weeks 0 and 6:
•  Dogs brought up to laboratory at 5 a.m.
•  Each animal housed in a kennel during the experiment
•  Blood samples taken at hourly intervals, starting at 6 a.m., from indwelling
   catheters exposed/secured at the neck
•  Meal presented at 9 a.m. and removed at 10 a.m. (uneaten food recorded;
   identical meals at weeks 0 and 6).

12-h dark period

. . . . . . . . . . . . . . . .

  Fig. 7.  Protocol for establishing changes in FFAs overnight in the dog model. 

It will thus be of interest to observe the next 25 years, to 
see whether this simple model with interesting character-
istics further enhances studies of carbohydrate metabo-
lism and diabetes. In particular, it will be of interest to 
see if the model’s usefulness is reduced by genetics, or if 
it can continue to enhance studies looking for the cause 
of, and therapy for, type 2 diabetes and other insulin-re-
sistant states. 
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