MSF:A comprehensive security framework for
mHealth applications

Medha Srivastava
Computing & Software Systems
University of Washington Bothell

Bothell, USA
medhas31@uw.edu

Abstract—Mobile health (mHealth) applications are growing
in popularity due to their effectiveness in delivering healthcare
services and improving patient health outcomes. mHealth apps
are also increasingly targeted by attackers as they handle
sensitive and private medical and personal data. Existing research
indicates that lack of security cognizance among app developers
is the leading cause of security vulnerabilities in mHealth apps.
In this paper, we propose a security framework that provides
authentication, authorization, secure storage and transmission
of medical data and workflows for mHealth applications. The
proposed framework can be easily imported into new and existing
mHealth apps to mitigate its security and privacy vulnerabilities.
To prove the framework’s effectiveness, we use a dummy mHealth
app built on top of it and confirm via our findings that the
framework can be easily integrated into any mHealth app and
reduce its security and privacy risks without compromising user
experience.

Index Terms—mHealth, Security, Privacy, Android, Security
framework, Mobile Security

I. INTRODUCTION

In recent years we have witnessed an unparalleled growth
of mobile applications particularly more prominent in health-
care domain [1]-[3]. The term mobile health or mHealth
refers to the practice of medical and public health using
mobile devices such as smartphones, personal digital assistants
(PDAs), patient monitoring devices and other wireless devices.
Using mHealth applications, doctors are able to easily access
medical data and patient information, prescribe medications
and effectively monitor patient health conditions [2]. mHealth
apps also enable patients to educate themselves about their
health, attain fitness goals and track their own wellness [3].
Patients and caregivers can easily view their prescriptions and
access or update their medical records via their smartphones. It
is evident that mHealth apps benefit all stakeholders doctors,
patients, caregivers, and hospitals by offering quick, resilient
and convenient care tools. This has resulted in improved
decision making, better diagnosis & treatment and eventually
superior patient outcomes.

Despite the continued growth and range of benefits offered
by mHealth apps, they face numerous security and privacy
challenges [5]-[8]. mHealth apps deal with extremely sensi-
tive data such as patients personally identifiable information,
financial and insurance information and health records. Storage

Geethapriya Thamilarasu
Computing & Software Systems
University of Washington Bothell

Bothell, USA
geetha@uw.edu

of such medical data on the mobile devices or its transmis-
sion to and from the devices raises significant security and
privacy concerns [10], [11]. The sensitive nature of this data
coupled with the fact that mHealth apps have extremely naive
security implementations [13] cause these apps to face higher
security and privacy risks compared to other domains. Security
challenges faced by mHealth apps such as leakage of infor-
mation, storing of the data in unencrypted form on the phones
physical storage, sharing of information with third party ser-
vices including social networks [4], [8] are also prevalent in
other mobile application domains such as retail or banking.
However, the critical nature of such threats is compounded
for mHealth apps because of the higher sensitivity of the data
as compared to apps of other categories. mHealth apps for
instance, tend to collect extremely private data such as patients
activities, location, lifestyle, dietary and eating habits apart
from their personally identifiable information for a prolonged
period of time [4]. Furthermore, since these apps often allow
remote access of patient data to healthcare professionals, they
are also subject to increased attack vectors [9].

Vulnerability analysis of top 15 Android based mHealth
apps conducted in 2015 yielded almost 250 security vulnera-
bilities [13]. This research demonstrated that the vulnerabilities
are mostly due to software development mistakes such as
improper permissions, invalid or weak SSL/TLS protocol
usage, bad choice of cipher suite with no integrity and storing
sensitive data in external storage among others. Such inade-
quate coding and security engineering practices form the entry
point for attackers to cause identity theft, disclosure threats,
privilege escalation attacks and side channel attacks [9], [13].

This lack of security cognizance among developers of
mHealth apps can become a severe bottleneck in its
widespread adoption and usage. To this end, a security frame-
work that app developers can use and rely upon to fill the gap
caused by their lack of awareness of security principles can
prove vital in considerably reducing the vulnerabilities that
exist in mHealth apps today.

The rest of the paper is organized as follows: In Section
II, we discuss the background and related work for existing
security frameworks for Android mHelath apps. In Section
III, we describe the design and architecture of our proposed
mHealth security framework. Section IV lists the features

offered by our proposed framework. In Section V, we describe
the effectiveness of the framework in a simulated environment.
Finally, Section VI provides the concluding remarks on this
research.

II. BACKGROUND & RELATED WORK

The rise in cyber-attacks targeting healthcare systems has
been the topic of numerous studies and analysis with focus
on the collection, storage and transmission of patient medical
data [14]-[16]. Users of mHealth apps are often unaware of
the substantial risk on their privacy and security of their data
associated with using the app [6], [17]. Most popular mHealth
apps dont have basic security mechanisms, where sometimes
more than 70% of these apps store or transfer sensitive data
without any encryption [8], [13].

Ahmed et al. addressed the privacy and security concerns in
mHealth apps and proposed the tagging of health information
to identify sensitive information [18]. Mitchell et al. proposed
a one-policy framework to provide guidelines for developing
mHealth apps [19]. Murad et al. proposed a mechanism to
provide security to mHealth applications running on devices
used by paramedics [20], however, their solution was limited
to a single device. Simplicio et al. proposed SecourHealth
security framework focused on securing the medical data
collected by mHealth applications while on the devices storage
or in transit [21]. This was also one of the first attempts to
build an application framework that could be leveraged by
mHealth apps to improve their security. However, it severely
restricted the user experience for the consumers of those
mHealth apps. Despite being great solutions, existing literature
could not fully empower the app developers in securing their
mHealth apps. Liu et al. proposed a security framework that
enables secure transmission of electronic medical records and
personal healthcare information [22]. This solution however
expects digital health stakeholders to significantly change their
networking infrastructure which might not be feasible. Also, it
only ensures the security of data during transit and not when
it is being collected at the client’s device or monitor.

Lakin et al. demonstrated that majority of the vulnerabilities
found in top 15 Android and iOS mHealth applications,
including the top three vulnerabilities, were a result of bad
coding and improper security engineering practices [13]. To
that end, they proposed a framework to mitigate some of those
reported vulnerabilities such as authentication and encryption
of medical data by preventing app developers from making
bad choices during the development process. However, one
of the biggest disadvantages of their proposed framework is
that it was implemented as a prototype rather than an actual
framework that can be used by app developers. Also, some
of the implemented features such as device rooting detection
no longer apply to the Android OS since Google made
significant improvements to the Android OS and Android app
development processes in 2017. Finally, the framework fails to
address some major vulnerabilities reported in the paper such
as weak SSL/TLS.

Hussain et al. proposed the mHealth apps security frame-
work (MASF) focusing on securing the medical data asso-
ciated with Android mHealth apps as well as protecting the
privacy of the users using those apps [4]. This framework
too proved extremely effective in addressing concerns such
as authentication and encryption of the medical data being
accessed, leakage of information, device mis-bonding attacks
and privilege escalation attacks. It was also able to thwart
attacks that were a direct result of the flaws existing in the
base OS itself. However, a key issue that seriously hampers
the adoptability of the framework is that it doesnt work on
Android OS that comes with everyday mobile phones. Since
the framework adds hooks to OS internals, it can only work
if one modifies the default Android OS or if the framework
comes pre-installed with every phone. This can prove a big
challenge because the creators of various mobile platforms
might not be willing to modify their OS or pre-install non-
approved apps and frameworks with the default offering.
Furthermore, it doesnt prevent the app developers from making
bad choices during their development process anyway. MASF
was also presented as only a prototype and not a functional
implementation.

As evident, most of the aforementioned proposals focused
only on certain security issues plaguing mHealth apps. These
solutions are difficult to integrate with everyday apps as
they expect the app developers to either significantly change
their development process or dont run on default mobile OS
platforms. Furthermore, most of these solutions are only im-
plemented as a prototype. Currently, there exists no framework
that can be easily incorporated into mHealth apps. Our work
aims to address these limitations by providing a security
framework for mHealth apps that addresses security and
privacy issues by reducing the cybersecurity burden from app
developers. Also, our goal here is to not build a prototype, but
an actual framework, that is available for the app developers
to start integrating into their software.

III. DESIGN & ARCHITECTURE

In this section, we present the design and high-level archi-
tecture of the proposed mHealth Security Framework (MSF).
While we demonstrate the framework on Android OS, the
proposed design is not restricted to Android OS. The high-
level architecture and the layers can be easily adapted to
iOS and other mobile platforms. Our proposed framework
shown in Figure 1 forms a bridge between the mHealth
application and Android Platform Application Programming
Interface (API) for any workflows within the app that has a
security footprint (example: storing or retrieving personally
identifiable information and communicating to third party
web servers). At the same time, our framework also allows
the mobile application to directly interface with the Android
Platform API, to ensure that app developers are not restricted
in providing desired user experience for consumers. In essence,
app developers can easily import the framework into their
mHealth apps and integrate necessary security and privacy
features provided by the library into their code. The framework

mHealth Application

mHealth Security Framework

MSF MSF
Component Interface
Layer Layer

Android Platform API
Android OS

Fig. 1: Architecture of mHealth Security Framework (MSF)

design consists of four layers including Android OS, Android
Platform API, and two layers namely MSF component layer
(MSF-CL) and MSF interface layer (MSF-IL) that are built
on top of the Android Platform API. We now present further
details on each of these layers below:

A. Android Operating System

We chose Android platform for our framework, as it is the
most popular operating system for smartphones. MSF built
on Android requires no modifications during development,
testing, release or during integration with mHealth apps. MSF
uses the security and non-security functionalities that come
natively with the default operating system. However, it is
important to note that the framework doesnt interface directly
with the Android OS. Instead, it uses the Android Platform
API provided by the makers of Android.

B. Android Platform Application Programming Interface

Android API is used by applications to interact with the
underlying operating system. The proposed framework acts
as a wrapper around the Android Platform API exposing
functionalities common for mHealth apps with the benefit of
ensuring that sound security engineering practices are adopted
in their implementation.

C. MSF Component Layer

This layer consists of Android Components such as activ-
ities, fragments, layouts, views and intents specific to func-
tionalities or workflows commonly used in mHealth apps. The
framework implements sound security practices into existing
Android components (see Section IV and V). It is important to
note that the component layer relies on the frameworks inter-
face layer for security functionalities such as authentication,
authorization and encryption (Figure 2).

D. MSF Interface Layer

This layer is responsible for enforcing privacy and security
standards in handling of medical data and various other
workflows common in mHealth apps. It is built on top of
the Android Platform API and uses it to interact with various
hardware and software components of Android OS such as
sensors, pin/password authenticator, external storage, key store
and database (Figure 3). The interface layer ensures that
appropriate security standards are enforced at all times by

mHealth Application

User Registration Workflow

Username:

mHealth Security Framework -
Interface Layer

Password Validator

public class PasswordValidator {

test@test.com

public void validatePassword
(String password) {

ssssissees 1L

Password:

}

Password doesn't have special characters }

Fig. 2: MSF CL using MSF IL for password validation

isolating the confidentiality, integrity and availability checks.
For instance, protocols, algorithms and policy enforcement
used in authentication, cryptography, authorization and other
security and privacy principles are embedded in this layer.
The static nature of these checks ensures that app developers
cannot override fundamental security requirements or design
security mechanisms that provide insufficient cryptography.

mHealth Security Framework - Interface Layer %
Password Validator | | Authorizer
Fingerprint Internal Storage
Authenficator Handler

S
A

Fig. 3: MSF IL interacting with Android Platform internals.

Pin Authenticator | [SSL/TLS Vaiidator |

Cache Storage Handler

External Storage
Handler

IV. FEATURES OF MHEALTH SECURITY FRAMEWORK

In this section, we provide the list of features implemented
in our security framework. The goal is to understand the
workflows for mHealth apps and identify implementation flaws
that lead to these security vulnerabilities. Table I provides a
list of the various features and their assigned priority level. We
assign priority levels to each feature to help decide features
to include in the Minimum Viable Product (MVP) version of
the framework.

A. Password Android component that automatically validates
strength of password (F1)

This feature provides a user interface component for pass-
word authentication. It automatically checks strength of the
password and enforces user to choose strong passwords.

B. Code flow to securely store/retrieve sensitive data to/from
Andproids internal/cache/external storage (F2/F3/F4)

This feature allows mHealth apps to store and retrieve
sensitive data such as Personally Identifiable Information (PII)
to and from the Android phones internal, cache or external
storage. Irrespective of the type of storage option chosen, the

TABLE I: List of Features implemented in MSF

Feature Feature Name Cyber Security Aspect Priority

Fl1 Password Android component that automatically validates strength of the password Authentication Must have
F2 Code flow to securely store/retrieve sensitive data to/from Androids internal storage Storage Should have
F3 Code flow to securely store/retrieve sensitive data to/from Androids internal cache Storage Should have
F4 Code flow to securely store/retrieve sensitive data to/from Androids external storage Storage Must have
F5 Code flow to securely store/retrieve sensitive data to/from Androids database Storage Should have
Fo6 Integration for Facebook or Gmail Login workflow Authentication. Could have
F7 Require fingerprint authentication when storing/retrieving sensitive data from Androids storage options Authentication Must have
F8 Code flow to prevent connection to 3rd party servers or APIs without SSL/TLS or with invalid SSL/TLS ~ Communication. Must have

certificates
F9 Role based Access Control Authorization Must have
framework triggers authentication via fingerprint or pin and V. RESULTS

encrypts the data before physically storing it on the phone.

C. Code flow to securely store/retrieve sensitive data to/from
Androids database (F5)

This feature provides for storing sensitive data in databases,
triggers authentication and encryption/decryption of sensitive
data when storing/retrieving it from the database.

D. Integration for Facebook or Gmail Login workflow (F6)

This feature enables users of mHealth apps to register using
their Gmail or Facebook Login credentials. The goal of the
framework is to abstract the integration since interfacing with
these services isn’t easy and can prove to be a roadblock for
mHealth app develoopers from providing sound authentication
mechanisms.

E. Require fingerprint authentication when storing/retrieving
sensitive data from Androids storage options (F7)

This feature enforces the user to perform fingerprint authen-
tication if the user’s phone has appropriate hardware installed
to extract fingerprints. If not, the framework must default to
using password or pin authentication mechanisms. This feature
is triggered in all cases of storing, retrieving and transmission
of sensitive data to/from the mHealth app.

FE Code flow to prevent connection to 3rd party servers or
APIs without SSL/TLS or with invalid SSL/TLS certificates (F8)

This feature provides a mechanism for the mHealth app to
connect to third party servers and APIs. This feature detects
domains with no SSL/TLS certificates, domains with expired
or self-signed certificates or domains with untrusted certificate
authorities and ensures that connections to non SSL/TLS
servers are rejected.

G. Role based Access Control (F9)

This feature enables mHealth app developers to perform
authorization checks in the form of a role based access control
system. This is to support various workflows common in
mHealth apps such as determining if a given user (with the role
of Patient) has privileges to perform a given action (Create)
on a given resource (Prescriptions). The framework must also
provide basic setup for the mHealth app to create/delete new
users and new roles, assign those roles to various users and
finally assign privileges to roles.

In this section, we present the implementation results of the
proposed mHealth security framework. We created a dummy
mHealth app built for Android OS that acts as a simulation
environment for real world Android mHealth apps. This app
has the mHealth Security Frameworks (MSF) Android Archive
(AAR) library file integrated into its codebase. It consists
of workflows leveraging the various features exposed in the
MVP version of MSF, thereby, allowing us to prove the
effectiveness of the framework in mitigating security vulner-
abilities reported in popular mHealth apps today. We used
Android Developer Tools (ADT), part of the Android Studio
Integrated Development Environment, to run simulations and
perform various result validations. Specifically, ADT provides
an Android phone emulator to run the dummy mHealth app.
It also allowed us to select various Android phones and run
various Android OS versions to fully test our framework and
validate the results against expected outcomes.

A. Password Android component that automatically validates
strength of password (F1)

The component appropriately raises errors when weak pass-
words are entered (Figure 4) in the input. The user is forced to
meet the expected standards for passwords in order to proceed
forward in the dummy app.

Android Emulator - Pixel 2 APL26:6554 +

123458678090

qwer tyuiop

asdfgh k.l

24 zxcvbnma

Fig. 4: PasswordEditText component to auto validate password.

B. Code flow to securely store/retrieve sensitive data to/from
Androids internal/cache/external storage (F2/F3/F4)

Figure 5 demonstrates an attempt made by an invalid user to
use the app to store sensitive data. The framework triggered the

authentication workflow which failed because of the user’s in-
valid fingerprint. On the other hand, Figure 6 demonstrates that
upon successful authentication, the data (123456789 in Figure
5) is encrypted using AES/CBC/PKCS7Padding algorithm and
stored in one of the three aforementioned Android storage
options. Figure 6 confirms that the data is stored in encrypted

Fig. 5: Internal Storage workflow Store with Wrong Fingerprint.

format and cant be deciphered. Finally, the Retrieve also
works like Store, however, after a successful authentication,
the framework decrypts the encrypted data read from the file
and then returns it back to the mHealth app to use it.

Medhas-MacBook-Air:Desktop medhasrivastavad cat cachestorage-serializable. tut.enc
I II0T)UT7|49072-1n02=0y VD T B IMI 21 7 4770k 77 T Madhas-NacBook-Alr:Desktop medhasrivastava$
Medhas-HacBook-Air:Desktop medhaszivastaval |

Fig. 6: Internal Cache workflow Encrypted data.

C. Code flow to securely store/retrieve sensitive data to/from
Androids database (F5)

As shown in Figure 7, the user of the dummy mHealth app
must pass PIN, Password or fingerprint authentication to store
sensitive data of various data types such as integer (1 in figure),
long (2), float (3.4), double (5.6) and string (sensitive) into the
database. Figure 8 confirms that the framework encrypts each

Android Emulator - Pixel_2_APL26:5554 Android Emulator - Pixel_2_APL26:5554

mhealth-security-app

patabase Storage - TypeConverter

Fig. 7: Database storage workflow Store.

of the sensitive fields before inserting/updating the database.
Similarly, upon retrieval, the framework once again triggers
the authentication process and if successful, decrypts those
fields before passing it on to the mHealth app to use them.

[JoN] DB Browser for SQLite - [Users/me
(3 New Database 4 Open Database
Database Structure W Edit Pragmas Execute SQL
Table: | sensitive_db_da B Bl% New Record Delete Record

id kim‘\tah.w doublaValue flaatValue longValue
Filte Filter Filter Fiter

11 FOVOOCOOr.. [10-0000.. 060000 00090

Fig. 8: Database storage workflow Encrypted Row.

D. Regquire fingerprint authentication when storing/retrieving
sensitive data from Androids storage options (F7)

Implementation results of features F2, F3, F4 and F5 (cur-
rent section) confirm that the dummy mHealth app forces the
user to provide his/her fingerprint for authentication purposes.
Also, the app fallsback to password or pin authentication if the
phone doesn’t have appropriate fingerprint hardware installed.

E. Code flow to prevent connection to 3rd party servers or
APIs without SSL/TLS or with invalid SSL/TLS certificates (F8)

Figure 9 demonstrates the dummy mHealth app trying to
connect to two 3rd party websites, one with non SSL/TLS
and the other with an expired SSL certificate. In both cases,
the framework correctly throws an unrecoverable exception
with an appropriate reason for the failure. This can be trapped
by the mHealth app developer to take an appropriate action in
their app.

Android Emulator - Pixel_2_API_26:5554

Android Emulator - Pixel_2_AP|_26:6654

Fig. 9: SSL Checker connecting to various 3rd party urls and APIs.

FE. Role based Access Control (F9)

Figure 10 demonstrates the dummy mHealth app performing
authorization check for a sample workflow. The framework
accurately fails the authorization check for a new-user to
perform a new-operation on a new-resource because new-
role that is currently assigned to new-user does not have the
required privilege.

MSF is a fully functional framework that relies on app
developers to understand how to use various features offered
by the framework. For instance, if the app developer forgets

mhealth-security-app

Fig. 10: Authorization Check.

to mark sensitive data as sensitive, then the framework wont
trigger any of the security features such as authentication and
encryption when storing/retrieving it.

VI. CONCLUSION

With the growing popularity of smartphones and mHealth
apps, security and privacy are of paramount importance. In
this work, we proposed a mHealth Security Framework (MSF)
to mitigate security vulnerabilities that occur due to insecure
practices followed by app developers. The proposed mHealth
security framework does exceedingly well in addressing the
security vulnerabilities that exist in mHealth apps today that
are a direct result of flaws in app development processes. Our
proposed framework is built on top of default mobile OS and
doesn’t require any modifications to mobile platforms.

The separation of concerns paradigm followed in the frame-
work enables developers of those apps to iteratively integrate
various features provided by the framework. Most importantly,
it resolves popular security vulnerabilities found in mHealth
apps today and also addresses the lack of security cognizance
among mHealth app developers by hiding the cyber security
aspects of common workflows present in current mHealth apps
and ensuring that the best standards are followed in their
implementation. Also, as validated by the dummy mHealth
app, the framework adds little to no cost to the user experience
factor of mHealth apps adopting it. Finally, making the frame-
works codebase available to the research community enables
iterative improvements through peer reviews and also enables
the entire community to collectively keep the solution up to
date with latest security patches and new mobile OS versions.
Future work involves adapting this framework for other mobile
platforms such as iOS.

REFERENCES

[1] M. Abdulnabi, A. Al-Haiqi, M.L. Mat Kiah, A.A. Zaidan, B.B. Zaidan,
and M. Hussain, A distributed framework for health information ex-
change using smartphone technologies, Journal of biomedical informat-
ics, vol. 69, pp. 230250, 2017.

[2] D.D. Luxton, R.A. McCann, N.E. Bush, M.C. Mishkind, and G.M.
Reger, mHealth for mental health: integrating smartphone technology in
behavioral healthcare, Professional Psychology: Research and Practice,
vol. 42, no. 6, p. 505, 2011.

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

D.R. Bateman, B. Srinivas, T.W. Emmett, T.K. Schleyer, R.J. Holden,
H.C. Hendrie, and C. Callahan, Categorizing health outcomes and
efficacy of mHealth apps for persons with cognitive impairment: a
systematic review, Journal of Medical Internet Research, vol. 19, no.
8, 2017.

M. Hussain, A. Al-Haiqi, A.A. Zaidan, B.B. Zaidan, M. Kiah, S. Igbal,
S. Igbal, M. Abdulnabi, A security framework for mHealth apps on
Android platform, Computers & Security, vol. 75, pp. 191-217, 2018.
B. Martnez-Perez, 1. de la Torre-Dez, and M. Lopez-Coronado, Privacy
and security in mobile health apps: A review and recommendations,
Journal of Medical Systems, vol. 39, no. 1, pp. 18, 2014.

R. Adhikari, D. Richards, and K. Scott, Security and Privacy Issues
Related to the Use of Mobile Health Apps, Australasian Conference on
Information Systems (ACIS), Auckland, New Zealand, 2014.

T. Dehling, F. Gao, S. Schneider, and A. Sunyaev, Exploring the far
side of mobile health: information security and privacy of mobile health
apps on i0OS and Android, JMIR mHealth Uhealth, vol. 3, no. 1, 2015.
D. He, M. Naveed, C. Gunter, and K. Nahrstedt, Security Concerns
in Android mHealth Apps, Annual Symposium proceedings. AMIA
Symposium, 2014, 645654.

M. Plachkinova, S. Andrs, and S. Chatterjee, A Taxonomy of mHealth
AppsSecurity and Privacy Concerns, Hawaii International Conference
on System Sciences, 2015.

H.O. Alanazi, G.M. Alam, B.B. Zaidan, and A.A. Zaidan, Securing elec-
tronic medical records transmissions over unsecured communications:
an overview for better medical governance, Journal of Medicinal Plants
Research, vol. 4, no. 19, pp. 2059-2074, 2010.

S. Gejibo, F. Mancini, K. A. Mughal, R. A. B. Valvik, and J. Klungsyr,
Secure data storage for mobile data collection systems, in Proceedings
of the International Conference on Management of Emergent Digital
EcoSystems, ser. MEDES 12. New York, NY, USA: ACM, 2012, pp.
131144.

J. Miithing, T. Jdschke, and CM. Friedrich, Client-focused security
assessment of mHealth apps and recommended practices to prevent or
mitigate transport security issues, JMIR mHealth Uhealth, vol. 5, no.
10, 2017.

C. Lakin, and G. Thamilarasu, A Security Framework for Mobile Health
Application, 5th International Conference on Future Internet of Things
and Cloud Workshops, 2017.

F. Gonalves, J. Macedo, M. J. Nicolau, and A. Santos, Security ar-
chitecture for mobile e-health applications in medication control, in
2013 21st International Conference on Software, Telecommunications
and Computer Networks - (SoftCOM 2013), Sep. 2013, pp. 18.

D. Sethia, D. Gupta, T. Mittal, U. Arora, and H. Saran, NFC based secure
mobile healthcare system, in 2014 Sixth International Conference on
Communication Systems and Networks (COMSNETS), Jan. 2014, pp.
16.

W. D. Yu, L. Davuluri, M. Radhakrishnan, and M. Runiassy, A Security
Oriented Design (SOD) Framework for eHealth Systems, in Computer
Software and Applications Conference Workshops (COMPSACW),
2014 IEEE 38th International, Jul. 2014, pp. 122127.

Federal Trade Commission. FTC Releases New Guidance for Developers
of Mobile Health Apps; 2016. Available from: https://www.ftc.gov/news-
events/press-releases/2016/04/ftc-releases-new-guidance-developers-
mobile-health-apps.

M. Ahmed and M. Ahamad, Protecting Health Information on Mobile
Devices, in Proceedings of the Second ACM Conference on Data and
Application Security and Privacy, ser. CODASPY 12. New York, NY,
USA: ACM, 2012, pp. 229240.

S. Mitchell, S. Ridley, C. Tharenos, U. Varshney, R. Vetter, and U.
Yaylacicegi, Investigating Privacy and Security Challenges of mHealth
Applications, Americas Conference on Information Systems (AMCIS),
Chicago, Illinois, USA, 2013.

A. Murad, B. Schooley, and Y. Abed, A Secure mHealth Application for
EMS: Design and Implementation, in Proceedings of the 4th Conference
on Wireless Health, ser. WH 13. New York, NY, USA: ACM, 2013, pp.
15:115:2.

M. A. Simplicio, L. H. Iwaya, B. M. Barros, T. C. M. B. Carvalho,
and M. Nslund, SecourHealth: A Delay-Tolerant Security Framework
for Mobile Health Data Collection, IEEE Journal of Biomedical and
Health Informatics, vol. 19, no. 2, pp. 761772, Mar. 2015.

W. Liu and E. K. Park, “e-Healthcare Security Solution Framework,”
2012 21st International Conference on Computer Communications and
Networks (ICCCN), Munich, 2012, pp. 1-6.

