Attack Detection Using Federated Learning in
Medical Cyber-Physical Systems

William Schneble
Computing and Software Systems
University of Washington Bothell

Bothell, WA 98011

Email: schneble@uw.edu

Abstract—Medical Cyber-Physical Systems (MCPS) are net-
worked systems of medical devices that provide seamless inte-
gration of physical and computation components in healthcare
environments to deliver high quality care by enabling continuous
monitoring and treatment. As MCPS store sensitive medical data
and personal health data, security breaches and unauthorized
access to this information can lead to severe repercussions for
both the patient and hospital in the form of loss of privacy,
abuse, physical harm and liability. The heterogeneity of devices
involved in these systems (such as body sensor nodes and mobile
devices) introduce large attack surfaces and hence necessitate
the design of effective security solutions for these environments.
In this paper, we design and implement a massively distributed,
machine-learning-based intrusion detection solution for MCPS.
Specifically, we explore the concept of Federated Learning to
minimize the communication and computation costs involved
in traditional machine learning based solutions. We evaluate
our design with real patient data and against security attacks
such as Denial of Service, data modification, and data injection.
Experimental results illustrate that our system achieves high
detection accuracy of 99.0% and a False Positive Rate of 1.0%
along with a reduced network communication overhead. Lastly,
we show that the system can cope with unevenly distributed data
and is a scalable solution that leverages the computing resources
of many mobile devices.

I. INTRODUCTION

Medical cyber physical systems (MCPS) enables a life-
critical, context aware networked systems of medical de-
vices with seamless integration of physical and computational
components. Recent advances in Internet of Things, includ-
ing, wireless sensors, connected medical devices and mobile
healthcare make MCPS a promising platform to improve
effectiveness of patient treatment and deliver high quality
healthcare. MCPS helps constantly monitor and analyze in-
formation gathered from medical devices, infer the patient’s
health condition for diagnosis, and provides timely treatment
either through direct feedback from healthcare providers or
through automated treatments using medical actuators.

Despite their several benefits, MCPS impose numerous
security and privacy challenges. The heterogeneous nature
of MCPS and the increased use of wireless and mobile
technologies in these systems introduces new attack surface
areas and security vulnerabilities. Security attacks in MCPS
can result in unauthorized access to sensitive medical and
personal health information. Malicious attacks also can lead to

Geethapriya Thamilarasu
Computing and Software Systems
University of Washington Bothell

Bothell, WA 98011
Email: geetha@uw.edu

false diagnosis and/or incorrect treatment potentially resulting
in loss of human life. For instance, settings of a compromised
medical device such as a cardiac pacemaker can be modified or
entirely shut down resulting in dire consequences. One of the
leading cause of vulnerabilities in MCPS is that, although they
are designed to be isolated, they are increasingly connected
with other systems and networks [1]. Compounding with
MCPS’s already heterogeneous and ad-hoc nature, security
solutions are limited and often lacking in interoperability. In
addition to the potential for injury and liability, vulnerabilities
in medical devices may also be used to gain backdoor entry
into rest of the network.

In this paper, we aim to improve the security of medical
cyber physical systems by designing an intrusion detection
system (IDS). Existing IDS based security solutions tend to
have high false positives rate, often need manual modifica-
tion, specification and are difficult to scale in the MCPS
environment. It is evident from recent research trends that
use of machine learning for intrusion detection is very ef-
fective in accurately detecting attacks. However, data fusion,
pre-processing and resource complexity of machine learning
algorithms act as a deterrent in their deployment in a MCPS
environment. With these limitations in mind, the main goal
of this paper is to design and develop a detection system
with high accuracy, low false positives, low communication
cost, along with the flexibility and scalability suited for the
MCPS environment. Specifically, we explore the feasibility
of machine learning approach (using Federated learning) to
provide robust attack detection in MCPS.

II. RELATED LITERATURE

Humayed et al. provide a clear abstraction of Medical
Cyber-Physical Systems (MCPS) by identifying three major
components: communication, computation and control, and
monitoring and manipulation (cyber, cyber-physical, and phys-
ical respectively) [1]. While MCPS has become invaluable in
persistent healthcare monitoring, they also pose a significant
security risk given the highly sensitive and valuable informa-
tion they measure and transmit [2]-[4]. Cyber physcal systems
were originally designed to be isolated but their increased
connectivity with other systems and networks has contributed

to their components being more integrated. It is at these weak
points between isolated systems that most attacks occur [1].

Cryptographic security solutions have been proposed for
wireless body area networks and medical devices to address
the problems of data confidentiality, privacy and authentica-
tion. Due to the resource constrained nature of the sensors,
existing literature is mostly focused on use of symmetric
key cryptography for encryption/decryption and asymmetric
cryptography for the key exchange [5]-[7]. These solutions
however fail to detect security attacks, where attacker has
access to an authorized device, or insider attacks, where a
legitimate entity turns malicious. Intrusion Detection Systems
(IDS) are often deployed to detect insider attacks or as second
layer of defense against external attacks that breach through
existing security controls.

Anomaly based detection methods have been extensively
investigated in the literature especially to detect sensor anoma-
lies in wireless sensor networks used for healthcare applica-
tions [8]-[13]. In [9], the authors identify unique data states
and build a Markov Chain that predicts the probability of
a data state transition occurring. The proposed design was
able to detect new anomalies and variations in the data but
presented high false negatives rate which made it unsuitable
for MCPS deployment. Coppolino et al. use a local agent
on the sensor to detect anomalous behavior which is then
sent to a central agent (presumably on the controller) for a
final decision [10]. If communication with the central agent is
lost, then the node will cycle through neighbors before finally
making the local agent decision persistent. Thus, a targeted
attacker could jam or denial of service a node to force the
node to make an ill-informed decision.

It is noteworthy to mention that these anomaly based
detection solutions were not aimed at security attacks, rather
on legitimate anomalies due to system and network faults.
Centralized anomaly detection solutions have the benefit of
increased space for memory and storage as well as compu-
tation, but they can be vulnerable to routing attacks [10].
Decentralized models run at the sensor nodes and thus tend
to be extremely lightweight in resource consumption and
have limited visibility or potentially inconsistent views of the
network. For this reason decentralized models often employ
other, centralized components such as in [8], [10].

Behavior-Specification based Intrusion Detection (BSID)
proposed by Mitchell er al. uses a set of behavior states for
specifying acceptable behavior of the device [14]. The BSID
design utilizes the device behavior rules as input and detects
for deviation against the expected behavior. While this solution
is one of the very few existing IDS solutions in literature
specific to MCPS, it requires domain knowledge to create
behavior rules and their performance is heavily correlated to
rule coverage. This makes the approach difficult when dealing
with complex devices and systems, such as distributed and
ad-hoc systems, because the amount of time to complete the
specification is high and the odds of missing some machine
states is likely. If a behavior state is not identified and it is an
unsafe state, the model will not be able to detect this exploit

and needs to be updated.

In addition to the many different types of sensors from
various vendors, MCPS generates a lot of data such as an ECG
application with 288 kbps or 1 Mbps for audio applications
[15]. Machine learning algorithms can be highly effective to
deal with the large amounts of data in these systems. Odesile
et al. use mobile agents based machine learning to perform
hierarchical anomaly detection at the sensor and at the cluster
heads [16]. The flexibility of the mobile agents to move around
the network to where data is stored or to computation rich
devices makes this approach very attractive. However, cluster
heads have greater authority and power in their ability to
spawn sensor and detective agents which may make attackers
lurk in the network until they become or compromise the
cluster head. Salem et al. use a Support Vector Machine
(SVM) to detect anomalous behavior [17]. This approach is
good for noise suppression but is not an ideal solution for
isolating faulty sensors in the network.

The literature review reveals that research on machine
learning based detection solutions for medical cyber physical
systems is very limited and is still in its early stages. To that
effect, in this work, we explore and further the research on
utilizing machine learning for detecting intrusions in medical
cyber physical systems.

III. NETWORK ARCHITECTURE AND ATTACK MODEL
A. Network Architecture

We consider a medical cyber physical system architecture
as shown in Figure 1. The MCPS network consists of medical
devices that are basically wireless body sensor nodes placed
on the patient’s body; mobile devices that acts as a local
gateway to the medical devices and a back-end server at the
hospital. The sensor nodes are used to collect patient vitals and
administer drugs, such as insulin or anesthetics. The mobile
device acts as a gateway for the medical devices. The sensor
nodes communicate with the mobile device wirelessly using
a short-range communication protocol, such as Bluetooth or
Zigbee. The mobile device collects, aggregates, and keeps a
history of node measurements, such as blood pressure. To
communicate with the hospital server, the mobile device uses
IEEE 802.11 to connect to a gateway that connects to the
Internet. The server is also connected to the Internet via a
wired connection to the hospital’s gateway. The server is
responsible for handling messages transmitted from the mobile
device as well as relaying messages back to patient’s mobile
devices. The system follows a client-server topology between
patient’s mobile devices and the hospital server. This ensures
scalability as adding more or new mobile devices in the
hospital network increases message traffic and logic at the
server linearly.

B. Attack Model

The MCPS environment’s security is particularly sensitive
given the high value of the medical record data and potentially
severe repercussions on patient health. Malicious users can use
packet header information and payload data to launch attacks

Hospital

Fig. 1: Network architecture

that are either network or host-based. Below, we describe
the common security attacks in the context of medical cyber-
physical systems.

Denial of Service (DoS): In a MCPS environment, vul-
nerabilties in a conencted medical devices can allow the
hacker to gain complete control over the device and modify
its settings leading to a denial of service attack where the
patient cannot receive the necessary medical intervention and
treatment. For instance, hacked cardiac pacemakers can be
controlled remotely and reprogrammed by hackers disrupting
patients heart rhythms and potentially leading to loss of life.

Data Modification: Attackers can launch Data modification
attack in MCPS [14], [18] that modifies data (ex: fake an
arrhythmia), leading to misallocation and disruption of medical
resources as well as potentially leading to denial of required
treatment for a patient in need. Data modification attacks can
also be used to fool biometric recognition systems and thereby
let an attacker gain access to other systems or impersonate an
healthcare professional [19].

Data Injection: In Data injection attack, malicious data such
as false sensor reading, packet header information or command
or query to/from medical device is input to the system, altering
the normal course of execution. This attack can drive the
system into an unsafe state where data loss, denial of service,
and data integrity attacks are made possible.

Eavesdropping: Eavesdropping attack, where data commu-
nication is intercepted by unauthorized users, can lead to a
breach in privacy; it can also be used to launch other attacks
such as replay attacks. Additionally, there are regulations and
compliance requirements for the healthcare industry, such as
HIPAA, for dealing with sensitive patient data. A breach of
protected health information could not only harm patients, but
also impose significant risk and liability on the hospital.

1V. FEDERATED LEARNING FOR INTRUSION DETECTION

In this work we develop a Federated Learning based In-
trusion Detection System (FLIDS) for medical cyber physical
systems. Federated Learning is a distributed machine learning
algorithm that builds a global model by averaging weights w
across many devices over a number of communication rounds
t. We modify the original federated learning algorithm from
[20] for detecting intrusions in MCPS. The intrusion detection
architecture, shown in Figure 2, utilizes the computational
resources of the mobile devices and runs the detection module,

while the server acts as the central authority and is responsible
for registering the mobile devices, calculating the federated
model, and storing the model. We describe the design process
in detail as follows:

A. Clustering of Patients

The attack detection process begins with a mobile device
registering with the server. Devices are then clustered into
different groups based on their patient history. Clustering of
the mobile devices (see Figure 2) is introduced to separate
patients, such as a young healthy person and an elderly person
with arrhythmia, who do not share similar behavioral patterns.
These differences between groups can normally prevent con-
vergence of the IDS leading to reduced detection accuracy and
increased training time. Hence, we enable clustering of users
such that similar individuals are grouped together allowing
for quicker convergence and more accurate and personalized
models. Features such as age, common medical conditions,
medications, and history such as smoking/nonsmoking can be
used for clustering. Each group has a federated model stored
on the server. The mobile device then downloads the federated
model from the server and continues to learn and update a new
model using the patient’s data.

The clustering process occurs during registration of a mobile
device with the hospital sever (Figure 2). After a mobile
device has been assigned to a group, it only receives and
contributes to that groups model via updates as detailed in
Algorithm 1. Determining the correct number of clusters will
depend on several factors including the number of mobile
devices in network and the number of parameters used for
clustering process. If the network has a limited number of
mobile devices, then it may not be reasonable to use a high
number of clusters. For instance, if only 12 patients are in
the network, then using four clusters may mean there are
groups of only one, two, or three mobile devices. This is
problematic because, in the case of a single patient in a group,
no benefit of the federated learning process can be claimed.
For smaller groups, such as three patients, the entire set of
mobile devices is involved in each communication round (in
federated learning training) making the process very resource
intensive. Furthermore, the fewer patients that are assigned to a
group, lesser the data used to train the federated model. This
decreases the model’s generalization in the long term when
new patients enter the group. Thus, determining the correct
number of clusters for FLIDS is largely an empirical one that
depends on the system and its constraints.

B. Training and Updating the Model

Federated Learning is a distributed machine learning algo-
rithm that builds a global model by averaging weights w across
many devices over several communication rounds ¢. Figure 3
shows an example of weights for a single layer, feed forward
neural network. Each neuron in the hidden layer has a transfer
function, denoted by f, that takes each feature in a sample
(Inq...In;) and multiplies it by its weight (IWy ;.. I1W; 1)
plus a bias (B;). The weights are modified during training.

MCPS Federated Machine Learning Model for Groups of Patients

Patient A Hospital Server
Paticnt Information Jane
. Name iohn smith Doe
S N Young and Group’s
Smokes No
o No Healthy, FedEMrztdeedl IDS
Mobile . .
Device/” ’“)
o5 §<«[\»>
| AT
. il = GroupPatients Young and Group’s
() 2 24 (Age, Smokes, — Unhealthy Federated IDS
@ Smokes No CHD) Model
cHD No
q» Mobile
Device,~—
4
LD)
- - Group’s
Patient C
= () Migdleifeed Federated IDS
be nd Health
Paticnt Information N and Healthy Model
Name Sam Adam
ok ® ®
WA

@ sensor
Congenital Heart Disease (CHD)

Fig. 2: Federated learning based IDS (FLIDS)

Fig. 3: Single layer, feed forward network with weights and
bias.

In this paper, we refer to weights to include both weights and
bias (both matrices in Figure 3).

Our modified federated learning algorithm at the server,
as shown in Algorithm 1, uses parameter K as the number
of clients for a given group and wy is the mobile device
k’s model weights. The weights are a learnable parameter
and are modified during training of the neural network. In
this paper, when we refer to weights we mean all weights
and bias. During each round, the server randomly selects a
subset of patients from the group. Parameter C' denotes the
fraction of patients to use for an iteration with C' = 0 being a
random value between [¢,,in, 1] where ¢, 1S the minimum
fraction of patients to use for a single round. For instance, if
C = 0.5 and eight patients were in the group then four of
them would be selected at random for the round. If C' = 0,
cmin = 0.25, and eight patients were in the group then a
random subset of patients between two and eight will be
selected per round. The server has three major responsibilities:
registering and grouping patients, calculating and storing the
federated models, and distributing the federated model. As
previously described, when a patient registers with the server

input : S.jents - set of clients maintained by the
hospital server
w - the federated model weights
t - the communication round identifier
C - fraction of clients to use in round
output: w'*! - the next communication round’s model
weights
initialize w
while True do
Sretients = selectRandomSubset(Sejients, C)
K = Size(srclients)
for each client in Sycients do
| wi = getClientUpdate(w)
end
Wt = DI /K
for each client in S.jients do
| client.send(w!*1)
end
t=t+1

end
Algorithm 1: Federated Learning algorithm at hospital server

they are clustered into a group who share a single IDS model.
Figure 4 shows that the server is also in charge of selecting
a subset of the model’s patients used for each iteration of the
federated learning process (as described later in algorithm 1).
This subset is chosen randomly and uniformly for a given
range. For example, if there are 8 patients registered to group
A, and if we do not want only one patient used for an iteration
then we can use the range [0.25, 1] to determine how many
patients will be used. After determining the number of patients
to use, the server selects patients from the group at random
and without replacement. The mobile devices of the subset
are then sent a message by the server to send their model’s
weights to the server. The server keeps a record of each mobile
device’s weights and at an end of a communication round
calculates the next federated model w!*!. The federated model

Updating with Federated Model

Client k Server

No
lient in Train
Mode?

Yes

Start New Round t

istri =)
Select Subset Distribute w Group’s
of Clients to Cluster’s Federated
Clients K Model

Send Client
Calculate

Update wi ‘Gather Local Update: v
w!

Fig. 4: The updating process

is calculated by summing all of the patients’ weights and
dividing by the number of patients used for the round. If a
patient is unable to send weights to the server, then weight
matrices of zeros are added to the sum and the number of
patients used for the round, parameter K, is decreased by
one (repeat for each missing patient). These new weights are
then sent to all mobile devices registered to the group and
the process repeats until a specified number of iterations or
the change in model’s weights at the server are insignificant.
After the new model is calculated at the server, it is pushed
out to all mobile devices registered in the cluster. The server
then sends the newly learned model to all registered patients
for the group. This process repeats until the model converges:
the weights do not change significantly between an iteration.

The mobile device with the newly learned IDS can be in
one of two modes: training or testing. If the device is in
training mode, then a patient can make predictions and provide
updates back to the hospital server to contribute to the global
IDS model. Otherwise, the device is set to test mode where
only predictions on new samples are made. Test mode saves
communication costs as the IDS weights do not need to be
sent to the server, but the mode is primarily used when the
mobile device cannot securely collect a baseline for training.

Resource management can also be performed by manipu-
lating parameter C', because use of fewer devices implies less
traffic overhead between the devices and server. Fewer mobile
devices also decreases the total computation cost used per
round without impacting individual training time or detection
accuracy. However, training time at the mobile device can be
controlled by changing the number of iterations performed,
parameter F/, and the batch size given by parameter B. The
number of iterations is the number of times the gradient is
estimated, and the parameters of the model updated. The batch
size is the number of samples used per iteration. Lowering the
batch size also decreases the computation required to compute
the gradient but may increase the number of iterations needed
to converge. Increasing the number of iterations would cost
more computation power but this can be offset by increasing
the number of communication rounds in the federated learning
process. Overall, with varying number of mobile devices used
per round, the system is highly configurable.

C. Attack Detection

With the latest model obtained, new samples are fed into
the IDS and are determined to be either normal or abnormal

behavior. A data sample comprises of node values or features,
such as heart rate. If the node values are within an expected
range and there is no major change in correlation to other node
values, then the sample is defined as normal behavior. For ex-
ample, if the blood oxygen saturation levels are expected to be
between 95% and 97% then a normal sample with this feature
will have a value in this range. Similarly, if blood oxygen
saturation and pulse have a strong and positive correlation
then the expected behavior is that when the patient’s pulse
increases then the patient’s blood oxygen saturation increases
as well. Abnormal behavior is defined as readings outside
of the expected range or unexpected correlations with other
node measurements. A data modification attack may change
a node value to below an expected value. Data injection may
have correct node values but different correlations between
the features, such as the pulse increases but blood oxygen
saturation decreases. If an abnormal sample is found, then an
alert is generated at the mobile device so that medical staff
can intervene.

V. EXPERIMENTAL SETUP AND RESULTS

The MIMIC dataset from PhysioNet is used for evaluation
of the proposed system [21]. This dataset has six features,
which are typically displayed on an ICU monitor, including
elapsed time, arterial blood pressure, heart rate, pulse, respi-
ratory rate, and blood oxygen concentration. The dataset has
121 records with each record having about 35-40 hours of
monitored activity. The raw signals include ECG signals that
measure the voltage across leads placed on the body. The ma-
chine learning was executed using Sci-kit Learn’s Multi-Layer
Perceptron running on Raspberry Pi’s. Each Raspberry Pi is
associated with a patient who is generating data for the device
to train the IDS. All attack were simulated using new patient
data; data the ML model has not been trained on. Half of the
data samples are modified to simulate attacks and half remain
unperturbed. We also simulated the system using MATLAB by
following the same process as above, where the Raspberry Pi’s
were replaced with MATLAB objects to represent each device.
The MATLAB simulation uses a single layer feed forward
neural network (MATLABs patternet) and is run sequentially.
The time per training round is calculated by taking the total
sequential time divided by the number of participating objects.
We evaluated the performance of our system using following
metrics: Detection Accuracy, False positives rate, recall, F1
score, Training time and communication cost.

A. Results

In our experiments, we vary the parameter C, (number of
mobile devices in the network) for each training round. For
instance, C' = 1, implies the entire set of patients in network
were used for training, C' = 0.5 means half of the patients
were used, and C' = 0 means a random number of patients
were used per round of algorithm 1.

We initially run the experiments with C' = 1, where all
registered patients are used for each training round. Figure
5 demonstrates the performance of FLIDS by measuring the

W 1 Patient = 2 Patients M4 Patients ®m 6 Patients m 8 Patients

0.999
0.997
0.995
2 s
o 0.993 Q
o
] A
0.991
0.989
0.987
0.985
Accuracy
(a) Detection accuracy of FLIDS
Fig. 5: Evaluation
W 1 Patient = 2 Patients W4 Patients m 8 Patients C=0
1
0.995
0.99 "
® S
§ 0.985 ¥
0.98
0.975

Modification Injection

(a) Attack specific detection accuracy of FLIDS
Fig. 6: Security attac

mC=0 mC=0.5 mC=1
0.999
0.997
0.995

0.993

Score

0.991
0.989
0.987

0.985
Accuracy

Fig. 7: Eight patients in a group and varying the number of
patients used per training round (parameter C').

detection accuracy and false positives rate. The metrics were
averaged over five runs and the error bars represent the
standard deviation. As we observe from the results in 5Sa,
increasing the number of patients in the network increases
detection accuracy by 0.25% and reduces the distribution or
variance by 0.2%. Figure 5b similarly indicates that false
positives was reduced by 0.2% when using eight patients to
generate the federated model compared to a single patient.
Overall these results show that more patients in the network
means improved performance of machine learning algorithms

W 1 Patient
0.01

2 Patients m 4 Patients ® 6 Patients W 8 Patients

(b) False Positive Rate of FLIDS

0.008

0.006

0.004

0.002

of FLIDS with C' =1

W 1 Patient i 2 Patients M4 Patients m 8 Patients C=0
0.03
0.025
0.02
0.015
0.01
0.005
0
Modification Injection

(b) Attack specific False Positive Rate of FLIDS
ks evaluation of FLIDS

in terms of detection accuracy and false positives while also
reducing variability of the model, the standard deviation, for
all metrics.

Next, we vary the values of C to 0.5 where half of the
patient population is used for training and to 0, where a
random number of patient population is chosen for each round
with a minimum of one patient. The results from Figure 7
show that there is no tradeoff in detection accuracy when only
half of the patients in a group are being used per round. This
result indicates that we can achieve a similarly performing
model using fewer patients for training. As a result, we can
use half as many patients per training round and reduce our
communication and energy cost (see Figure 8).

We simulate the Denial of Service (DoS) attack, data
modification and data injection attacks in our network and
evaluate the performance. As seen in Figure 6, the accuracy
of the model increases and the false positives rate decreases
for all attacks when four or more patients are used during the
training phase of the federated algorithm. Comparing one and
eight patients, the detection accuracy increased by 0.5% while
FPR decreased by 0.58% on average. Therefore, we can only
conclude that we made a statistically significant and positive
impact of the detection accuracy for modification attacks. Us-
ing two patients caused a slight decrease in detection accuracy
and an increase in FPR. This is due to an equilibrium point

being reached in the federated algorithm where each mobile
device starts with the federated model, calculates the update,
and receives back from the server the same federated model.
This scenario is avoided when more patients are registered to
a cluster due to the larger selection of mobile devices during
the random subset phase (Section IV-B).

Communication cost of the federated algorithm is measured
by the number of bytes transmitted to and from the mobile
device. With 20 neurons, 7 features, and binary output, we
transmit a total of 1,621 bytes per model exchange. During
each training round, a contributing patient trains its model and
sends the updated weights to the server, and then receives the
averaged weights for a total of two transmissions of size 1,621
for a total of 3,242 bytes per round. There is an additional nine
bytes of command information received by all patients for each
round resulting in a total of 3251 bytes communicated per
round. With eight rounds used in FLIDS, our communication
cost is 26,008 bytes. Figure 8a presents the comparison of
number of bytes communicated versus number of bytes of
data used to train the local patient model. With an average
size of data at a patient’s device equal to 98,034 bytes we
save transmitting 72,026 bytes or reduce the communication
cost by a factor of 3.8 using the proposed model.

Figure 8b shows the energy consumption of the federated
algorithm. We measure the power consumption using USB
e-meter multiplied by the number of seconds spent in each
phase of the algorithm. The total energy consumption (in
Joules) used for training of the federated model was 265 J
while energy consumption on the device with no algorithm
was 218 J. Thus, the total energy cost of training the federated
model was 46 J, a new patient joining the network uses 5.5 J,
and testing new samples uses 5.24 mJ. Our FLIDS consumes
17.5% more energy while training and 3.4% more energy than
idling when making predictions.

We then evaluated the performance of our proposed fed-
erated algorithm through a comparison with non-federated
learning algorithms such as Nearest Neighbor (KNN), Deci-
sion Trees (DT), Stochastic Gradient Descent (SGD), Support
Vector Machine (SVM), Neural Network (NN) as shown in
Figure 9. Figure 9a shows the training time for federated and
non-federated models trained with eight patient records on a
single patient device. The results show that KNN, DT, and
SGD classifiers are much more time performant than SVM,
neural networks, and the federated algorithm. However, for a
new patient entering the federated network, the final training
time is about equal to the SGD classifier and 26.8 times faster
than the non-federated NN.

Figure 9b presents a comparison of detection accuracy
between federated learning and other learning algorithms for
different types of attacks modeled on the system. For the sys-
tem trained on eight patient records, among the non-federated
learning algorithms, we observe that NN has the highest
detection accuracy at 90.6% averaged across all attacks. KNN
is both accurate and time performant in this scenario with
89.3% and 5.6 times faster than the final federated training
round. However, KNN’s accuracy is still significantly worse

than the federated algorithm that has an additional 7.3% score.
Additionally, FLIDS was 6% more accurate on average against
the non-federated NN (the best overall non-federated algorithm
for detection accuracy). Thus, FLIDS provides the highest
detection accuracy while being comparable or better in training
time against non-federated algorithms.

Lastly, the scalability of our system was evaluated using the
same design, data, and a similar neural network in MATLAB.
We recorded the time spent by clients per training round and
not the elapsed time at the server. The results can be seen in
Figure 10 with the models varying in detection accuracy from
0.9 to 0.98, but all models converge around the same time of
15 seconds. The two patient model took 16.7 seconds to reach
round eight while the 64 patient model took 16.9 seconds to
reach the same round. Overall, the addition of more patients
increases time linearly at the server only while avoiding an
increase in a single round’s duration or training time.

VI. CONCLUSION

In this work, we implemented a federated Learning based
Intrusion Detection System to efficiently detect attacks in
Medical Cyber-Physical Systems. Our results indicate that the
proposed model improved the detection accuracy and False
Positive Rate (FPR) by a statistically significant margin. The
low FPR ensures that hospitals spend their staff and resources
efficiently while maintaining high quality care for patients.
We also observed that the training time for federated model
was comparable or better than using a single machine learning
instance and training on the same amount of data. Training
time for new patients registering with a group were shown to
be up to 26.8 times faster than non-federated algorithms. We
also showed that adding more patients to the federated model
did not increase a round’s training time. As a result, we can
conclude that a federated learning based IDS can train on more
data, increasing accuracy and lowering FPR, while decreasing
the amount of time and computation needed of an individual
mobile device.

In addition to detection accuracy and lower false positives,
our system also ensures privacy because instead of transmit-
ting personally identifiable information of patient across the
network only an update vector is communicated. Additionally,
size of the update is independent of data size at the mobile
device, reducing the network bandwidth by a factor of 3.8.
As the amount of communication and computation at each
mobile device can be easily configured through parameters,
such as the fraction of patients used per round, our scheme
has more flexibility in memory restrictive or low bandwidth
networks. We note that our proposed solution could be subject
to poisoning attacks generated by adversarial machine learning
algorithms. Future work includes using Generative adversarial
networks in combination with federated learning to provide
better protection against adversarial inputs during both training
and testing.

100000
80000
60000
40000

20000

0 .

Transmitted

Communication Cost (Bytes)

Training Data Size

(a) Communication cost of FLIDS versus training data size

[1]

[2]

[3]

[4]

[51

[6]

[7]

[8]

[9]

Energy Consumption (Joules)

W Total Joules M Baseline
250
200
150
100
50
0 _ |
Federated Learing Final Training Testing
Training

® Total Joules

264.726442 31.41387062 0.120543

m Baseline

218.3993146 25.91644326 0.115302

(b) Energy consumption cost of FLIDS

Fig. 8
10000
€ 0.95
5 1000
5
8 .0.85
Q Q
g 1m0 g
= 0.75
Qo 8
£ <
= 10
& I S 0.65
]
. | % 0.55
KNN DT SGD SVM NN FL FL-Final a
Train 0.45

mDoS m Modification ™ Injection

KNN DT SGD SVM NN FL

(@ (b)
Fig. 9: Comparison of Federated vs. Non-federated algorithms (Patient records=8, C' = 0)

—e—2 Patients —e—4 Patients 8 Patients

16 Patients —e—32 Patients —e—64 Patients

0.95

o
©

//(//

]

0 5 10 15
Training Time (seconds)

0.85

Detection Accuracy
j=}
x

0.75

I
BN}

Fig. 10: MATLAB simulation results for C=0

REFERENCES

A. Humayed, J. Lin, F. Li, and B. Luo, “Cyber-Physical Systems
Security — A Survey,” IEEE Internet of Things Journal, vol. 4, no. 6,
pp. 1802-1831, 2017.

H. M. J. Almohri, L. Cheng, D. Yao, and H. Alemzadeh, “On threat
modeling and mitigation of medical cyber-physical systems,” in CHASE.
IEEE Computer Society / ACM, 2017, pp. 114-119.

K. Zhou, T. Liu, and L. Liang, “Security in cyber-physical systems:
Challenges and solutions,” International Journal of Autonomous and
Adaptive Communication Systems, vol. 10, no. 4, pp. 391-408, Jan.
2017.

K. Saleem, Z. Tan, and W. Buchanan, Security for Cyber-Physical
Systems in Healthcare. Cham: Springer International Publishing, 2017,
pp. 233-251.

C. Hu, H. Li, and Y. Huo, “Secure and Efficient Data Communication
Protocol for Wireless Body Area Networks,” IEEE Transactions on
Multi-Scale Computing Systems, vol. 2, no. 2, pp. 94-107, 2016.

J.-x. Hu, C.-l. Chen, C.-l. Fan, and K.-h. Wang, “An Intelligent and
Secure Health Monitoring Scheme Using IoT Sensor Based on Cloud
Computing,” vol. 2017, 2017.

C. S. Park, “Security Mechanism Based on Hospital Authentication
Server for Secure Application of Implantable Medical Devices,” BioMed
Research International, vol. 2014, 2014.

T. V. P. Sundararajan and A. Shanmugam, “A Novel Intrusion Detection
System for Wireless Body Area Network in Health Care Monitoring,”
Journal of Computer Science, vol. 6, no. 11, pp. 1355-1361, 2010.

F. A. Khan, N. A. H. Haldar, A. Ali, M. Iftikhar, T. A. Zia, and
A.Y. Zomaya, “A Continuous Change Detection Mechanism to Identify

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Anomalies in ECG Signals for WBAN-Based Healthcare Environments,”
IEEE, vol. 5, pp. 13531-13 544, 2017.

L. Coppolino and L. Romano, “Open Issues in IDS Design for Wireless
Biomedical Sensor Networks BT - Intelligent Interactive Multimedia
Systems and Services,” Smart Innovation, Systems and Technologies,
vol. 6, pp. 231-240, 2010.

S. A. Haque and S. M. Aziz, “False Alarm Detection in Cyber-physical
Systems for Healthcare Applications,” AASRI Procedia, vol. 5, pp. 54—
61, 2013.

S. Haque, M. Rahman, and S. Aziz, “Sensor Anomaly Detection in
Wireless Sensor Networks for Healthcare,” Sensors, vol. 15, no. 4, pp.
8764-8786, 2015.

O. Salem, A. Guerassimov, A. Mehaoua, A. Marcus, and B. Furht,
“Sensor Fault and Patient Anomaly Detection and Classification in
Medical Wireless Sensor Networks,” IEEE ICC, pp. 4373-4378, 2013.
R. Mitchell and I.-r. Chen, “Behavior Rule Specification-based Intrusion
Detection for Safety Critical Medical Cyber Physical Systems,” IEEE
Transactions on Dependable and Secure Computing, vol. 12, no. 1, pp.
16-30, 2015.

N. Zakaria, M. 1. Sarwar, N. Mustaffa, K. P, T. Wan, and K. Azimi,
Wireless Networks in Mobile Healthcare. Springer, 2016, no. January
2016.

A. Odesile and G. Thamilarasu, “Distributed Intrusion Detection Using
Mobile Agents in Wireless Body Area Networks,” in Seventh IEEE
International Conference on Emerging Security Technologies (EST),
2017.

O. Salem, A. Guerassimov, A. Mehaoua, A. Marcus, and B. Furht,
“Anomaly Detection in Medical Wireless Sensor Networks using SVM
and Linear Regression Models,” International Journal of E-Health and
Medical Communications (IJEHMC), vol. 5, no. 1, pp. 20-45, 2014.

P. Kumar and H.-J. Lee, “Security Issues in Healthcare Applications
Using Wireless Medical Sensor Networks: A Survey,” Sensors, vol. 12,
no. 12, pp. 55-91, 2011.

B. Biggio, G. Fumera, P. Russu, L. Didaci, and F. Roli, “Adversarial
biometric recognition: A review on biometric system security from
the adversarial machine-learning perspective,” IEEE Signal Processing
Magazine, vol. 32, no. 5, pp. 3141, 2015.

J. Kone¢ny, H. B. McMahan, D. Ramage, and P. Richtdrik, “Federated
Optimization: Distributed Machine Learning for On-Device Intelli-
gence,” in NIPS, 2015, pp. 1-38.

A. E. Johnson, T. J. Pollard, L. Shen, L. W. H. Lehman, M. Feng,
M. Ghassemi, B. Moody, P. Szolovits, L. Anthony Celi, and R. G. Mark,
“MIMIC-III, a freely accessible critical care database,” Scientific Data,
vol. 3, pp. 1-9, 2016.

