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Abstract—Medical devices equipped with wireless connectiv-
ity and remote monitoring features are increasingly becoming
connected to each other, to an outside programmer and even to
the Internet. While Internet of Things technology enables health-
care professionals to fine tune or modify medical device settings
without invasive procedures, this also opens up large attack
surfaces and introduces potential security vulnerabilities. Medical
device hacks are slowly becoming a reality and it becomes more
critical than ever to defend and protect these devices from
security attacks. In this paper, we assess the feasibility of using
machine learning models to efficiently determine attacks targeted
on a medical device. Specifically, we develop feature sets to
accurately profile a medical device and observe any deviation
from its normal behavior. We test our method using different
machine learning algorithms and provide a comparison analysis
of the detection results.

Index Terms—Internet of Health, medical device security,
secure health, machine learning security

I. INTRODUCTION

Internet of Things, the next wave of technology is making
strong advances in healthcare. Connected medical devices
greatly improve the quality and effectiveness of healthcare
delivery and service, especially benefitting the elderly, patients
with chronic conditions, and those requiring constant super-
vision. Wireless connectivity and integration of IoT features
to medical devices enables remote monitoring and access to
medical information for prevention, maintenance, diagnosis
and treatment of patient conditions as well as reduces the
costs needed to maintain and support these devices. However,
this increased connectivity also introduces newer security
vulnerabilities in the healthcare domain [1]. While no real-
world incidents have been documented yet, medical device
hacks, including hacking of an insulin pump and a pacemaker
have been successfully demonstrated by researchers [2], [3].
Security attacks on wireless medical devices can disable the
device and potentially cause life-threatening damage to the
patients. For instance, resource depletion attacks can target
resource constrained devices such as an implanted medical
device jeopardizing the availability of these devices [4]. Re-
source depletion not only targets endpoint host devices but also
network resources such as processing capability or memory
consumption. Medical device hacks can affect patients phys-
iology. For instance, patients could be flooded with drugs or
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hacking an implant to ignore treatments. Replay attacks can
occur on these devices, where legitimate message to turn off a
device might be recorded and replayed at a later time causing
the attacker to turn off a therapy or quietly change the state
of the device.

Recently, a number of solutions have been proposed to
address the different security vulnerabilities in wireless med-
ical devices. In this paper, we focus on applying machine
learning techniques to identify and detect attacks on implanted
medical devicesIMD). We develop a solution that does not
necessitate any hardware or software modifications to the
device. Our goal is to implement a few different machine
learning algorithms for attack detection and evaluate their
feasibility and performance. Our solution uses an external
detection device that monitors the network and uses machine
learning classifiers to detect anomalies.

The remainder of the paper is organized as follows. In
Section II, we provide a brief review of related research
in this domain. In Section III, we discuss our network and
adversary model. In Section IV, we propose the machine
learning based detection mechanism. In Section V, we discuss
our simulations and provide a comparison analysis of different
learning algorithms..

II. RELATED WORK

Security solutions for wireless medical devices have re-
ceived a great deal of attention in the recent years. Gollakota
et al. [5] proposed a solution, where an external high powered
device known as Shield, prevents unauthorized access to
an implanted medical device by emitting a jamming signal
whenever it detects an unauthorized wireless link between the
IMD and a remote device. The drawback of this scheme is that
it mandates a patient to carry an external device in their person
at all times. The patient may also lose or forget to carry the
shield. A novel authentication solution-using patient’s unique
encrypted heartbeat is proposed in [6] to prevent unauthorized
access to patient data.

In [7], the authors proposed a biometric based authentication
to deal with emergencies where a patient may be unconscious.
The two-level security defense solution first tests for finger-
prints and the weight of patient and then extracts patients iris
information for authentication. IMDGuard is another solution,



where an external device mediates the communication between
an IMD and an external programmer device [8]. This solution
assumes a shared secret key between the medical device and
the guardian. It also introduces a significant communication
overhead. Hei et al. [9] proposed a mechanism to detect
resource depletion attacks using the access pattern of the
device. The limitation of this solution is that the attacker can
force the medical device to respond to its malicious messages.
Denning et al. [10] proposed an external device, called the
cloaker that acts as a proxy authorizing all communication
between the IMD and the programmer. In case of emergency
scenarios, the external device can be easily removed allowing
for open communication. RFID Guardian proposed in [11]
is a portable electronic device that scans all devices in its
range, manages RFID keys, authenticates nearby programmers
that request access to the IMD, and blocks all unauthorized
readers. While originally proposed for RFID systems, the
authors propose to integrate the Guardian into a device that
the patient always carries, such as a cellphone or wearable
device.

In addition to encrypting medical data and authenticat-
ing access to medical devices, anomaly based detection ap-
proaches are gaining popularity to detect security attacks in
these networks. Henry et al. proposed a scheme [12] that
tracks acoustic bowel sounds to detect correlated physiological
changes when an insulin bolus is administered. Medmon is an
anomaly based detection mechanism, where an external entity
acts as a security monitor that observes anomalous transmis-
sions by examining physical and behavioral characteristics of
the communication to and from the IMD [13]. While there
is a growing interest in exploring anomaly based detection
techniques for security, their research on wireless medical
devices is still limited. Our work specifically aims to advance
the research in this area. We contribute to the existing research
by exploring and evaluating machine learning algorithms for
detecting security attacks on medical devices.

III. NETWORK AND ATTACK MODEL
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Fig. 1. IMD communication with network entities

Our network model consists of the IMD device, the pro-
grammer and the gateway node. As shown in Figure 1, the
programmer is an external device responsible for controlling,
monitoring and maintaining the IMD. The programmer uses
radio frequency transmission through wireless channels to
communicate with an IMD. The gateway node in the network
is responsible for monitoring the wireless communication
between IMD and other entities in the network. IMD regularly
communicates with the gateway for granting access to external
devices. Common communication scenarios in this network
include communication between programmer and an IMD;
communication between a reader and an IMD; or commu-
nication between an IMD and the gateway.

In our system, attacker is an entity that does not have
authorized access to IMD. Our attack model mainly consists of
a forced authentication attack that results in resource depletion
of the device. Specifically, the malicious entity sends repetitive
communication requests to the IMD for authentication. In
addition to authentication requests, attacker can also flood
the IMD by targeting specific IMD functions such as reading
patient data and retrieving patient therapy history. When the
medical device responds to large number of authentication
requests or other functions, it results in serious depletion of its
battery power resources, eventually causing a denial of service
in the network. We also consider scenarios where an attacker
is capable of sidestepping authentication and encryption proto-
cols used in the network and where an attacker impersonates
a programmer or a reader device to access IMD’s data for
malicious purposes.

We make the following assumptions in our system:

1) The attacker is an active adversary that is able to inject
data over communication channel to read or modify
patient data.

2) IMD, programmer, and gateway are honest entities of
the network. These entities conform to communication
protocol.

3) An attacker is a single and an external entity with respect
to the network.

4) An attacker does not have physical access to an active
IMD.

5) IMD, gateway and the attacker are in each other’s range.
The attacker has to be in IMD’s range to launch an
attack. The gateway is also within IMD’s and attacker’s
range.

6) An attacker may either be a sophisticated dedicated
device, or a simple device with limited resources.

IV. OUR INTRUSION DETECTION SYSTEM

In this section, we propose machine learning based attack
detection for securing wireless medical devices from malicious
entities. We rely on an external gateway node to identify and
detect attacks on the medical device. The gateway monitors
all wireless communication between the IMD device and other
entities in the network and detects any abnormal or irregular
network behavior. An irregularity or an abnormal behavior of a
network entity is defined as, any deviation from its normally



observed behavior. The deviation can occur in the physical
characteristics of a signal transmitted from the device or the
frequency of signal emissions from the device. When the
gateway detects an attack, it initiates a passive response by
sending a warning signal to the patient’s personal device such
as a mobile phone or a laptop. Moreover, the gateway ensures
not to interfere with any ongoing communication between
entities in the medical system.

We first propose a specification based intrusion detection
system using decision tree algorithm to address the security
attacks on the medical devices. We then compare the decision
tree algorithm with other machine learning algorithms.

A. Decision-Tree Learning

Decision tree is a type of classification algorithm. The
predictive model maps observations about an attribute to con-
clusions about the attribute’s target value. Non-terminal nodes
in the tree are used to represent attributes and terminal nodes
are used to represent decision outcome of the algorithm. In this
paper, nodes of the tree are monitored security attributes. Each
branch represents outcome of monitored security attribute,
whereas leaf nodes are the result of classification as normal
or abnormal.

During the training phase, decision-tree learning is used to
general a normal profile. As the model learns the behavior of
the network, it modifies and updates the profile. In this paper,
we develop a new set of features that include attributes specific
to security as input to the learning model. A security attribute
(X;) is a transmission’s physical or logical property. In this
paper we focus on the following security attributes to build
the decision tree:

o X;= Type of action performed by the programmer

¢ Xo= Time when action is performed

¢ X3= Number of times a same type of action occurs

o X,= Elapsed time since last occurrence of same action

o X5= Received signal strength indicator

o Xg= Type of Day

e X7= Location

A collected measurement of all security attributes
in our scheme 1is defined as a record: R =
{X1,X2,X5,X4,X5,X6,X7}.

Our detection scheme uses decision tree classification algo-
rithm to decide if a particular record is benign or malicious.
Developing the decision tree requires sufficient data to train
the program. We define a set of security attributes as described
below and monitor them for a substantial period of time to
build a normal behavior profile. The features were selected
based on the typical usage of a medical device.

o Type of action: This attribute specifies the type of action
performed on an IMD. Depending on the type of the
IMD that is accessed, these actions may vary in nature.
For instance, in a pacemaker, examples of IMD actions
include setting the device clock, changing its settings or
accessing the medical data.

o Time of action: This attribute specifies the exact time at
which a type of action is requested from an IMD by

the programmer. The time of action can be any time
during the day, unless the IMD is accessed in case of
an emergency situation during the night.

o Number of action occurrences: This attribute specifies the
number of occurrences of an action. The value varies
depending on the type of IMD and is often limited to
a definite value for a time period. For example, if a
programmer is designed to access pacemaker data at
a periodic interval during the day, deviation from this
behavior can indicate an attack.

o Time interval since last occurrence of an action: This at-
tribute specifies the time elapsed since the last occurrence
of an action and helps to determine the frequency of that
action. This feature can be used to evaluate if there is a
change in frequency of a given action.

e Signal strength indicator: This attribute provides the
signal strength or a received transmission. We use signal
strength indicator to detect an attack in cases where,
the signal transmitted by external device has abnormally
low or high strength. Since the attacker has to be in
the communication range of IMD device to perform an
attack, the signal strength is expected to fall within certain
range. If the received signal strength is significantly
different from the pre-determined range, it could indicate
an attack.

e Day: The type of day is one of the most significant
attributes for detecting an attack on IMDs. Usually, the
doctor or the patient or the patient’s family/friends are the
only users that access an IMD to record readings. This
type of access has a stable frequency such that, the users
access an IMD either on a weekday or a weekend or a
holiday. Our scheme detects an attack if the attacker tries
to access data from IMD on an odd day.

e Location: Location attribute denotes the location of a
device that accesses an IMD. This attribute makes sure a
certain type of actions is carried out in certain locations.
For example, a doctor’s clinic is a location where an
action of changing functional settings of a pacemaker is
performed. If the same action is performed from any other
location apart from the doctor’s clinic, the scheme detects
an attack in action.

The proposed approach builds a decision tree based on
the above interval ranges of monitored attributes (Normal
Behavior). If an anomaly occurs, abnormal value record is
detected and classified as normal or abnormal. For attributes
that fall below or above a threshold, we check difference
between predicated measurement and current measurement. If
that difference is greater than the specified threshold, we detect
abnormal record. If the difference is larger than the threshold,
gateway raises a warning that an attack is happening.

V. EVALUATION AND RESULTS

In this section, we discuss the simulations and experiments
conducted to evaluate the performance of the proposed deci-
sion tree based intrusion detection system and provide a com-
parison with SVM and K-means algorithms. We used Castalia,
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Fig. 2. Box and whisker diagram of detection Accuracy after 10-fold Cross
Validation

the wireless body area network simulator for our experiments.
Nodes in our simulation network includes the IMD device, a
legitimate programmer and a malicious programmer. For our
experiments, we first pre-processed the patient’s access data.
Recall that the patient’s access data are denoted as a record:
R = {X1,X2,X3,X4,X5,X6,X7}, representing reader action
type, time when action is performed, number of times a same
type of action occurs, the time interval of the same action,
signal strength, day, location, respectively. For X, we denote
{Authenticate, Execute, Read, Write} as the four different
types of action. For X5, we label 24 values of the hours as
{1,2,3,...,23,24}. For X3, there are 3 categories, {1,1-5,;5}.
For X4, we classify them to three categories as well {Less
than one day,Less than three days, Less than a week}. For
X5, we categorize it into {Low, Normal, Strong}. For Xg,
we have the 7 days in week {Mon, Tue, Wed, Thur, Fri, Sat,
Sun}. For X7, we have {Hospitall, Hospital2, Home, Office,
Unknown}.

We used three different datasets with the total sample size
of 1000, 4000 and 7000 respectively. For each dataset, 80%
of the data were used as training data and the remaining
20% samples for testing. We tested the performance of our
approach on decision tree, K-means and SVM algorithms.
We used 10-fold cross-validation to determine the accuracy
of the descision-tree based detection model. In k-fold cross-
validation, the original sample is randomly partitioned into k
equal size sub-samples. Of the k sub-samples, a single sub-
sample is retained as the validation data for testing the model,
and the remaining k-1 subsamples are used as training data.
The cross-validation process is then repeated k times, with
each of the k sub-samples used exactly once as the validation
data. The advantage of this method is that all observations are
used for both training and validation, and each observation is
used for validation exactly once.

A. Detection Accuracy

Figure 2 shows the distribution of the results after the
10-fold cross validation. Figure 3 shows on average pruned
C4.5 has the best permanence among other algorithms. ID3
achieves an average accuracy of 85.6%, 83.23% and 84.52%
on different datasets. While C4.5 unpruned have 85.3%, 87.4%
and 85.77% and C4.5 pruned has the best performance of
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Fig. 4. False Positive Rate after 10-fold Cross Validation

87.7%, 89.07% and 90.37% on our 3 datasets. We see from
our results that K-means had weaker performance. We also
note that the size of the dataset had no direct coorelation with
the detection accuracy of the detection.

B. False Positive Rate

Figure 4 shows the distribution of the false positive rate
after the 10-fold cross validation. Figure 5 illustrates the
comparison of average false positive rate for all algorithms
in consideration. ID3 achieves an average false positive rate
of 7.95%, 9.1% and 8.11%. C4.5 unpruned did slightly better
with 8.44%, 7.16% and 7.11% respectively. C4.5 pruned has
a tremendously low false positive rate especially as the size
of the dataset increases. It has 5.09% on the 4000 dataset
and 4.09% on the 7000 dataset. K-means unsurprisingly has
the highest false positive rate. For most algorithms in our
experiment, a larger dataset resulted in lower false positive
rate.
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Fig. 5. Comparison of Average False Positive Rat for ID3 and C4.5



C. Training Speed and Prediction Speed

We also measured the training speed and prediction speed
of the different detection algorithms. Figure 6 shows the
algorithm overhead for different datasets. Both ID3 and SVM
require some data transformation a real life scenario given
their limitations. These algorithms also demonstrated slower
training speed. C4.5 has a lower overhead, especially with
pruning because prunning will reduce the complexity of tree.
Figure 7, presents the comparison of prediction speed over
different datasets. As shown in the results, ID3 and K-means
have a relatively slower speed in terms of detection. The speed
of K-means algorithm also depends on K, which in our case
is only equal to 2. As observed from the results, despite the
fact that SVM has a slow training speed, once the support
vectors are generated, the prediction speed for SVM is the
fastest among other algorithms.
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VI. CONCLUSION

In this paper, we evaluated the feasibility of using machine
learning algorithms to detect security attacks in implantable
wireless medical devices. We developed a feature set specific
to the use of IMD devices and conducted experiments to test
the performance of different learning algorithms including
decision tree, SVM and K-means algorithms. Our results
show that decision tree based algorithms achieve the highest
detection accuracy, low false positive rate, fast training and
prediction speed among all other algorithms. However our
approach fails if the attacker is an insider and more familiar
with the schedule and patterns of data access to/from the
medical device. Future work includes expanding our feature
set to address this limitation.
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