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A. Introduction 
• In lecture 25 the spectroscopic lineshpe function I(ω) was derived as the 

Fourier transform of the correlation function C(t). This was done as shown 
below. 
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 (26.1) 
• As noted below, the property u(t) depends upon the spectroscopy involved 

Microwave Spectroscopy: u=u0, the permanent dipole moment. 

i. Infrared: 
0

uu Q
Q

⎛ ⎞∂
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i , where Q is a normal coordinate 

ii. Rayleigh Scattering: ˆ ˆind i su u e eα= = ⋅ ⋅  where α is the polarizability 
tensor, and ,î se  are the unit vectors in the direction of the incident 
and scattered radiation. 

iii. Raman Scattering: 
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iv. Magnetic Resonance: correlation functions in magnetic resonance 
involve the magnetic dipole moment of the particle. Relaxation rates 
in magnetic resonance involve spectral densities that are Fourier 
transforms of correlation functions 

 
• More generally, in the definition of the correlation function we should 

allow for the fact that the operator is complex… ( ) ( ) ( )* 0C t A A t=  

•  (26.1) shows that the spectral lineshape and the correlation function 
C(t) are related by a Fourier transform. (26.1) can be inverted 
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B. Kubo Line Shape Theory 
• It remains to determine a form for the correlation function that 

determines the line shape. Assume a property that we will call A(t). 
Assume A(t) varies according to the simple equation  

 ( )dA i t A
dt

ω=  (26.3) 

where ω is a frequency of the system . The time dependence of the system is assumed 
to result from a random process that modulates the frequency such that 
 ( ) ( )0t tω ω δω= +  (26.4) 
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• Now integrate (26.3): 
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• Multiply both sides of (26.5) by A*(0) and take the ensemble average: 
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• We define the correlation function as 
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• Now we use the cumulant expansion introduced in Lecture 2 section A: 
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• Now assume a form for the correlation function  
 ( ) ( ) 2 /0 tt e τδω δω −= ∆  (26.9) 

where δω∆ =  is the amplitude of the random modulation and τ is the relaxation 
time. Substitute this form into (26.9): 
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• The correlation function C(t) is a super-exponential, but can be Fourier 
transformed analytically in certain limiting cases. 

• Assume the random modulation of the system’s frequency is slow such 
that t<<τ. Then the exponential can be expanded: 
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• If we Fourier transform (26.11): 
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• When the random modulation is slow, the correlation function and the line 
shape are Gaussian. In this limit the line is inhomogeneously broadened. 

• Now assume the random modulation is fast such that t>>τ. In this limit  
the exponential decays almost to zero so 

 ( ) ( ){ } { }0 02 2exp expi t i tC t e t e tω ωτ τ τ≈ −∆ − ≈ −∆  (26.13) 

•  Taking the Fourier transform of the correlation function in (26.13) yields: 
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•  When the modulation is fast the correlation function C(t) is exponential 
and the line shape in (26.14) is Lorenzian. This is called the motionally 
narrowed limit and is commonly observed in solution NMR, for example. 
The line is said to be homogeneously broadened in this limit. 
 


