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Principal purpose of the natural language which recently
machine translation and processes met to the success
which is limited. Because most machine translations
require pre-edit and the second volume collection stage,
inclusion of the human of type is included.
– Uncyclopedia.com



From Tree to Tree′

1. Channel Input

3.  Inserted

2. Reordered

kare ha ongaku wo kiku no ga daisuki desu

5. Channel Output

4. Translated

VB

PRP VB1 VB2

VB TO

TO NN

VB

VB2

TO

VB1

VB

PRP

NN TO

VB

VB2

TO VB

VB1PRP

NN TO

VB

VB2

TO VB

PRP

NN TO

VB1

Figure 1: Channel Operations: Reorder, Insert, and Translate

nested structures.

Wu (1997) and Alshawi et al. (2000) showed

statistical models based on syntactic structure.

The way we handle syntactic parse trees is in-

spired by their work, although their approach

is not to model the translation process, but to

formalize a model that generates two languages

at the same time. Our channel operations are

also similar to the mechanism in Twisted Pair

Grammar (Jones and Havrilla, 1998) used in their

knowledge-based system.

Following (Brown et al., 1993) and the other

literature in TM, this paper only focuses the de-

tails of TM. Applications of our TM, such as ma-

chine translation or dictionary construction, will

be described in a separate paper. Section 2 de-

scribes our model in detail. Section 3 shows ex-

perimental results. We conclude with Section 4,

followed by an Appendix describing the training

algorithm in more detail.

2 The Model

2.1 An Example

We first introduce our translation model with an

example. Section 2.2 will describe the model

more formally. We assume that an English parse

tree is fed into a noisy channel and that it is trans-

lated to a Japanese sentence.1

1The parse tree is flattened to work well with the model.
See Section 3.1 for details.

Figure 1 shows how the channel works. First,

child nodes on each internal node are stochas-

tically reordered. A node with children has

possible reorderings. The probability of tak-

ing a specific reordering is given by the model’s

r-table. Sample model parameters are shown in

Table 1. We assume that only the sequence of

child node labels influences the reordering. In

Figure 1, the top VB node has a child sequence

PRP-VB1-VB2. The probability of reordering it

into PRP-VB2-VB1 is 0.723 (the second row in

the r-table in Table 1). We also reorder VB-TO

into TO-VB, and TO-NN into NN-TO, so there-

fore the probability of the second tree in Figure 1

is .

Next, an extra word is stochastically inserted

at each node. A word can be inserted either to

the left of the node, to the right of the node, or

nowhere. Brown et al. (1993) assumes that there

is an invisible NULL word in the input sentence

and it generates output words that are distributed

into random positions. Here, we instead decide

the position on the basis of the nodes of the in-

put parse tree. The insertion probability is deter-

mined by the n-table. For simplicity, we split the

n-table into two: a table for insert positions and

a table for words to be inserted (Table 1). The

node’s label and its parent’s label are used to in-

dex the table for insert positions. For example,

the PRP node in Figure 1 has parent VB, thus
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Figure 1: Channel Operations: Reorder, Insert, and Translate

nested structures.

Wu (1997) and Alshawi et al. (2000) showed

statistical models based on syntactic structure.

The way we handle syntactic parse trees is in-

spired by their work, although their approach

is not to model the translation process, but to

formalize a model that generates two languages

at the same time. Our channel operations are

also similar to the mechanism in Twisted Pair

Grammar (Jones and Havrilla, 1998) used in their

knowledge-based system.

Following (Brown et al., 1993) and the other

literature in TM, this paper only focuses the de-

tails of TM. Applications of our TM, such as ma-

chine translation or dictionary construction, will

be described in a separate paper. Section 2 de-

scribes our model in detail. Section 3 shows ex-

perimental results. We conclude with Section 4,

followed by an Appendix describing the training

algorithm in more detail.

2 The Model

2.1 An Example

We first introduce our translation model with an

example. Section 2.2 will describe the model

more formally. We assume that an English parse

tree is fed into a noisy channel and that it is trans-

lated to a Japanese sentence.1

1The parse tree is flattened to work well with the model.
See Section 3.1 for details.

Figure 1 shows how the channel works. First,

child nodes on each internal node are stochas-

tically reordered. A node with children has

possible reorderings. The probability of tak-

ing a specific reordering is given by the model’s

r-table. Sample model parameters are shown in

Table 1. We assume that only the sequence of

child node labels influences the reordering. In

Figure 1, the top VB node has a child sequence

PRP-VB1-VB2. The probability of reordering it

into PRP-VB2-VB1 is 0.723 (the second row in

the r-table in Table 1). We also reorder VB-TO

into TO-VB, and TO-NN into NN-TO, so there-

fore the probability of the second tree in Figure 1

is .

Next, an extra word is stochastically inserted

at each node. A word can be inserted either to

the left of the node, to the right of the node, or

nowhere. Brown et al. (1993) assumes that there

is an invisible NULL word in the input sentence

and it generates output words that are distributed

into random positions. Here, we instead decide

the position on the basis of the nodes of the in-

put parse tree. The insertion probability is deter-

mined by the n-table. For simplicity, we split the

n-table into two: a table for insert positions and

a table for words to be inserted (Table 1). The

node’s label and its parent’s label are used to in-

dex the table for insert positions. For example,

the PRP node in Figure 1 has parent VB, thus
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Figure 1: Channel Operations: Reorder, Insert, and Translate

nested structures.

Wu (1997) and Alshawi et al. (2000) showed

statistical models based on syntactic structure.

The way we handle syntactic parse trees is in-

spired by their work, although their approach

is not to model the translation process, but to

formalize a model that generates two languages

at the same time. Our channel operations are

also similar to the mechanism in Twisted Pair

Grammar (Jones and Havrilla, 1998) used in their

knowledge-based system.

Following (Brown et al., 1993) and the other

literature in TM, this paper only focuses the de-

tails of TM. Applications of our TM, such as ma-

chine translation or dictionary construction, will

be described in a separate paper. Section 2 de-

scribes our model in detail. Section 3 shows ex-

perimental results. We conclude with Section 4,

followed by an Appendix describing the training

algorithm in more detail.

2 The Model

2.1 An Example

We first introduce our translation model with an

example. Section 2.2 will describe the model

more formally. We assume that an English parse

tree is fed into a noisy channel and that it is trans-

lated to a Japanese sentence.1

1The parse tree is flattened to work well with the model.
See Section 3.1 for details.

Figure 1 shows how the channel works. First,

child nodes on each internal node are stochas-

tically reordered. A node with children has

possible reorderings. The probability of tak-

ing a specific reordering is given by the model’s

r-table. Sample model parameters are shown in

Table 1. We assume that only the sequence of

child node labels influences the reordering. In

Figure 1, the top VB node has a child sequence

PRP-VB1-VB2. The probability of reordering it

into PRP-VB2-VB1 is 0.723 (the second row in

the r-table in Table 1). We also reorder VB-TO

into TO-VB, and TO-NN into NN-TO, so there-

fore the probability of the second tree in Figure 1

is .

Next, an extra word is stochastically inserted

at each node. A word can be inserted either to

the left of the node, to the right of the node, or

nowhere. Brown et al. (1993) assumes that there

is an invisible NULL word in the input sentence

and it generates output words that are distributed

into random positions. Here, we instead decide

the position on the basis of the nodes of the in-

put parse tree. The insertion probability is deter-

mined by the n-table. For simplicity, we split the

n-table into two: a table for insert positions and

a table for words to be inserted (Table 1). The

node’s label and its parent’s label are used to in-

dex the table for insert positions. For example,

the PRP node in Figure 1 has parent VB, thus



Definitions

E = English Tree f = French String

I Operations
N = Insertion R = Reorder T = Translation

I Operation Variables
ν = Insertion ρ = Reorder τ = Translation

I Features
N = Insertion R = Reorder T = Translation

I Feature Variables
N = Insertion R = Reorder T = Translation

I Probablities
n(ν|N) = Insertion r(ρ|R) = Reorder t(τ |T ) = Translation

θ =< ν, ρ, τ > is a set of values of < N,R,T >.
θ = θ1, θ2, . . . , θn for a parse tree E = ε1, ε2, . . . , εn.



Formal Description

I Propability of a French sentence given an English parse tree:

P(f|E) =
∑

θ:Str(θ(E))=f

P(θ|E)

I Probablity of a particular sequence of operations:

P(θ|E) = P(θ1, θ2, . . . , θn|ε1, ε2, . . . , εn)

=
n∏

i=1

P(θi |θ1, θ2, . . . , θi−1, ε1, ε2, . . . , εn)

I Assuming each operation is independent yields:

P(θ|E) = P(θ1, θ2, . . . , θn|ε1, ε2, . . . , εn)

=
n∏

i=1

P(θi |εi )



Formal Description

I Assuming the operations are independent, we get:

P(θi |εi ) = P(νi , ρi , τi |εi )

= P(νi |εi )P(ρi |εi )P(τi |εi )

= P(νi |N (εi ))P(ρi |R(εi ))P(τi |T (εi ))

= n(νi |N (εi ))r(ρi |R(εi ))t(τi |T (εi ))

I In Summary:

P(f|E) =
∑

θ:Str(θ(E))=f

P(θ|E)

=
∑

θ:Str(θ(E))=f

n∏
i=1

n(νi |N (εi ))r(ρi |R(εi ))t(τi |T (εi ))



Comparison to IBM Model 5

he adores listening to music

hypocrisy is abhorrent to them

he has unusual ability in english

he was ablaze with anger

he adores listening to music

hypocrisy is abhorrent to them

he has unusual ability in english

he was ablaze with anger

Figure 2: Viterbi Alignments: our model (left) and IBM Model 5 (right). Darker lines are judged more

correct by humans.

The result was the following;

Alignment Perfect

ave. score sents

Our Model 0.582 10

IBM Model 5 0.431 0

Our model got a better result compared to IBM

Model 5. Note that there were no perfect align-

ments from the IBM Model. Errors by the IBM

Model were spread out over the whole set, while

our errors were localized to some sentences. We

expect that our model will therefore be easier to

improve. Also, localized errors are good if the

TM is used for corpus preparation or filtering.

We also measured training perplexity of the

models. The perplexity of our model was 15.79,

and that of IBMModel 5 was 9.84. For reference,

the perplexity after 5 iterations of Model 1 was

24.01. Perplexity values roughly indicate the pre-

dictive power of the model. Generally, lower per-

plexity means a better model, but it might cause

over-fitting to a training data. Since the IBM

Model usually requires millions of training sen-

tences, the lower perplexity value for the IBM

Model is likely due to over-fitting.

4 Conclusion

We have presented a syntax-based translation

model that statistically models the translation pro-

cess from an English parse tree into a foreign-

language sentence. The model can make use of

syntactic information and performs better for lan-

guage pairs with different word orders and case

marking schema. We conducted a small-scale ex-

periment to compare the performance with IBM

Model 5, and got better alignment results.

Appendix: An Efficient EM algorithm

This appendix describes an efficient implemen-

tation of the EM algorithm for our translation

model. This implementation uses a graph struc-

ture for a pair . A graph node is either a

major-node or a subnode. A major-node shows a

pairing of a subtree of and a substring of . A

subnode shows a selection of a value for

the subtree-substring pair (Figure 3).

Let be a substring of

from the word with length . Note this notation

is different from (Brown et al., 1993). A subtree

is a subtree of below the node . We assume

that a subtree is .

A major-node is a pair of a subtree

and a substring . The root of the graph is

, where is the length of . Each major-

node connects to several -subnodes ,

showing which value of is selected. The

arc between and has weight

P .

A -subnode connects to a final-

node with weight P if is a terminal node



Comparison to IBM Model 5

Align. score Perfect sents Perplexity

YK Model 0.582 10 15.79
IBM Model 5 0.431 0 9.84


