Discriminative Training and Maximum Entropy Models for Statistical Machine Translation

Franz Och and Hermanan Ney Presented by Bill McNeill

Overview

- Four word summary
- Mathematical Motivation
- Och and Ney's Experiment
- Relevance for linguists

Four Word Summary

- Do MT with MaxH
- MT is "machine translation"
- MaxH is "maximum entropy"

Bayesian Throat-Clearing

• Source-Channel Approach

- Decoding

$$\hat{e}_1^I = \underset{e_1^I}{\operatorname{argmax}} \{ \Pr(e_1^I) \Pr(f_1^J | e_1^I) \}$$

- Training

$$\hat{\theta} = \operatorname{argmax}_{\theta} \prod_{s=1}^{S} p_{\theta}(\mathbf{f_s}|\mathbf{e_s})$$
$$\hat{\gamma} = \operatorname{argmax}_{\gamma} \prod_{s=1}^{S} p_{\gamma}(\mathbf{e_s})$$

• Och and Ney do something else

Direct Translation Model

• Normalized product of exponentials

$$p(e_1^I|f_1^J) = \frac{\exp\left[\sum_{m=1}^M \lambda_m h_m(e_1^I, f_1^J)\right]}{\sum_{e'_1^I} \exp\left[\sum_{m=1}^M \lambda_m h_m(e'_1^I, f_1^J)\right]}$$

- $h_m(e_1^I, f_1^J)$ are features
- λ_m are trainable parameters
- Where did this equation come from?

Generative Model

- Tell a (stochastic) story
- Model relates aligned corpora
- Identify relevant features
- Specify how they combine

Discriminative Model

- Directly relate data in aligned corpora
- The "model" is a generic data alignment
- Identify relevant features
- Be agnostic about how they combine

Maximum Entropy in General

- Say what we know and and nothing more
- There are many p(x) such that

$$E_x\left[p(x)h_i(x)\right] = \alpha_i \text{ for } 1 \le i \le M$$

- The maximum entropy p(x) has the form $p(x) = \exp\left[\lambda_0 + \sum_{i=1}^M \lambda_i h_i(x)\right]$ where λ_0^M is a function of α_0^M
- See Cover and Thomas *Elements of Information Theory* for details

Apply Maximum Entropy to MT

- Identify relevant $h_i(e_1^I, f_1^J)$ features
- We don't care how they interact
- $E_{\mathbf{e}_{\mathbf{S}},\mathbf{f}_{\mathbf{S}}}\left[h_{i}(e_{1}^{I},f_{1}^{J})\right]$ moments are defined
- We can use MaxH

Machine Learning Strategy

- Throw a bunch of features into the pot
- Generate λ_i^M weights that best align the training data
- "... maximizing the equivocation ..."
- Hope these weights generalize to unseen data

Training Details

• Train the weights using

$$\hat{\lambda}_{1}^{M} = \underset{\lambda_{1}^{M}}{\operatorname{argmax}} \left\{ \sum_{s=1}^{S} \frac{1}{R_{S}} \sum_{r=1}^{R_{S}} \log p_{\lambda_{1}^{M}}(\mathbf{e_{s,r}}|\mathbf{f_{s}}) \right\}$$

- Easier said than done: λ_1^M is a vector
- Use Generalized Iterative Scaling (GIS)

Generative Shortcomings

- From the end of section 1.1
 - 1. Must specify model details
 - 2. Must specify how features interact
 - 3. Models must "make sense" stochastically
- Tradeoff: model freedom vs. optimization difficulty

Baseline Features

- λ_1 Trigram language model
- λ_2 Alignment template model
- λ_3 Lexicon model
- λ_4 Alignment model

Additional Features

- Word penalty: $h(f_1^J, e_1^I) = h(e_1^I) = I$ (Note: we don't care how this interacts with alignment.)
- Class-based target 5-gram
- Lexicon co-occurrence

Proposed Features

- Lexical features of word pairs (f, e)
- Grammatical features, e.g. count verb groups
- Generative verb group counting would be hard

Experiment

- German-English VERBMOBIL task
- 58073 training sentences
- 251 test sentences
- Multiple error criteria
- Evaluate quality as a function of features

Required Training Effort

- SER plateaued after about 4000 GIS iterations
- How long does an iteration take?
- How about other error measures?
- "We do not observe significant overfitting"?

Results

- Training the λ_1^M helped (unsurprisingly)
- Adding the target sentence length helped a lot
- Other features had less of an effect
- The lexicon co-occurrence did nothing or even hurt

Model Weights

- Magnitude of λ_1^M is a rough measure of feature importance
- Particularly important were alignment template and word penalty
- Not sure why they didn't normalize all the values

Other Things to Try

- Throw in the proposed features
- Could the lexical features give us phrase alignments?
- Different feature combinations (e.g. ME+CLM)

The Bad News for Linguists

- The simplest feature (target sentence length) helped the most
- The clever knowledge engineering feature (lexicon co-occurrence) did nothing or hurt

The Good News for Linguists

- We care about linguistically relevant features
- We don't care about probability distributions
- MaxH methods are mathematically sophisticated, but someone has done the hard part for us