Plotting on Weibull Paper

Fritz Scholz
Research and Technology
Boeing Information & Support Services

August 23, 1996

Abstract

This report explains Weibull plotting and its rationale. It shows how the two
Weibull parameter estimates are easily read off from the Weibull plot. The use of
Weibull plotting is introduced first in the context of complete samples and then ex-
tended to two common forms of censoring: type I or multiple censoring and type II
censoring. Two blank Weibull plotting templates are provided, one for a two cycle log;,
scale and the other for three cycle log;, scale on the abscissa. The use of a Weibull
plot as a diagnostic tool for checking the Weibull assumption underlying the sample is
examined critically. For small sample sizes, answers, if obtained via this tool, should
be taken with caution, since the variability of such Weibull samples is still substantial.



1 Introduction

In characterizing the distribution of life lengths or failure times of certain devices one often
employs the Weibull distribution. This is mainly due to its weakest link properties, but
other reasons are its increasing! failure rate with device age and the variety of distribution
shapes that the Weibull density offers. The increasing failure rate accounts to some extent
for fatigue failures.

Weibull plotting is a graphical method for informally checking on the assumption of
Weibull distribution model and also for estimating the two Weibull parameters. The method
of Weibull plotting is explained and illustrated both for complete samples of failure times as
well as for censored samples. In the latter case we consider either type I or multiply censored
data or type II censored data. Type I or multiple censoring occurs typically in field data
where either the failure times of devices are observed or their last running time is known,
i.e., the last time these devices were checked they were still functioning properly. The term
multiple censoring instead of type I censoring is motivated by the multiple time points at
which some censoring event takes place and prevents the observation of the complete life
time. The censoring time points are extraneous events and independent of the actual device
failure times, whether these are observed or not. This is in contrast to type II censoring.
This occurs mostly under laboratory conditions when all n devices are put on test at the
same time and one observes the failure times of the first r devices, with the remaining n —r
devices still running successfully. This kind of censoring is useful when one cannot wait until
all devices have failed, but wants to guarantee at least so many failures. Here the censoring
time is not independent of the failure times, since it coincides with the r*" smallest failure
time.

It is assumed that the two-parameter Weibull distribution is a reasonable model for
describing the variability in the failure time data. If T" represents the generic failure time of
a device, then the distribution function of 7' is given by

«

Fr(t)=P(T'<t)=1—exp (— [ir> fort > 0.

The parameter « is called the scale parameter or characteristic life. The latter term is
motivated by the property Fr(a) = 1—exp(—1) ~ .632, regardless of the shape parameter 3.
There are many ways for estimating the parameters a and (3 from complete or censored data.
One of the simplest is through the method of Weibull plotting, which is very popular due to
its simplicity, graphical appeal, and its informal check on the Weibull model assumption.

for Weibull shape parameter 3 > 1



2 Weibull Plotting and its Basis

The basic idea behind Weibull plotting is the relationship between the p-quantiles ¢, of the
Weibull distribution and p for 0 < p < 1. The p-quantile ¢, is defined by the following

property

p=Fr(t,) = P(T <t,) =1 —exp (— [%’]ﬁ)

which leads to

t, = a[—log, (1—p)]"”
or taking decimal logs? on both sides
1
Yp = logyy(t,) = logyo(a) + B logyo [—log, (1 —p)] . (1)

Thus log,,(t,), when plotted against w(p) = log;, [—log, (1 — p)] should follow a straight
line pattern with intercept log;,(«) and slope 1/3. Plotting w(p) against y, = logy(t,), as
is usually done in a Weibull plot, one should see the following linear relationship

w(p) = [10g10(tp) — log;o(a)] (2)

with slope 3 and abscissa intercept log;,(c).

In place of the unknown log,-quantiles log;(t,) one uses the corresponding sample quan-
tiles. For a complete sample, 77, ..., T, these are obtained by ordering these T; from smallest
to largest to get T(1) < ... < T,y and then associate with p; = i/(n + 1) the p,-quantile
estimate or ¢ sample quantile T(;y. These sample quantiles tend to vary around the respec-
tive population quantiles ¢,,. For large sample sample sizes and for p; = i/(n + 1) = p with
0 < p < 1 this variation diminishes (i.e., the sample quantile T{;) converges to t, in a sense
not made precise here). For p; close to 0 or 1 the sample quantiles 7(;) may (or may not)
exhibit high variability even in large samples. Thus one has to be careful in interpreting
extreme sample values in Weibull plots.

The idea of Weibull plotting for a complete sample is to plot w(p;) = logy, [— log, (1 — p;)]
against log(7(;)). Aside from the variation of the T;) around t,, one should, according to
equation (2), then see a roughly linear pattern.

This plotting is facilitated by Weibull paper with a log;o-transformed abscissa with un-
transformed labels and a transformed ordinate scale given by w(p) = log,, [— log, (1 — p)]

2The explicit notation log;, and log, is used to distinguish decimal and natural logs.
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with labels in terms of p. Sometimes this scale is labeled in percent ( i.e., in terms of 100p%).
Two blank samples of such Weibull probability paper are given as the first two figures in
Appendix A, although they are not labeled as Figure 1 or Figure 2. Figure 1 has two log,,
cycles on the abscissa, facilitating plotting of failure times over two orders of magnitudes
and Figure 2 has three cycles on the abscissa, facilitating plotting of failure times over three
orders of magnitudes.

For each plotting point (log,,(7{;),w(p;)) one locates or interpolates the label value of
T(;y on the abscissa and the value p; on the ordinate, i.e., there is no need for the user to
perform the transformations log,,(7(;)) and w(p;) = log, [—log, (1 — p;)]. An example of
a complete sample plotted on Weibull paper is given in Figure 3 of Appendix A. Figure 3
shows three lines. The dashed line represents the true line corresponding to the Weibull
distribution from which the ten values were sampled. The other two lines represent a least
squares fit (the formulas for which will be given later) and the other corresponds to maximum
likelihood estimates (m.l.e.) of a and 5. The process of finding the m.l.e.’s is complicated
and usually accomplished through software. Note how susceptible the least squares fit is to
the two lower extreme values. This is not surprising since the method of least squares, as
applied here, treats all data equally. It does not know that the data come from a Weibull
distribution and represent ordered and thus correlated values. The method of maximum
likelihood employs the fact that the data come from a Weibull model and knows how to
properly weigh the various observations, i.e., stragglers as they show up in Figure 3 will not
be given undue influence.

The two blank specimens of Weibull probability paper in Appendix A cover two and
three orders of magnitude on the abscissa, namely from 1 to 100 or from 1 to 1000. If the
observed life times cover a range from 50 to 4000, one can simply change time units to tens
and use the three log,, cycle paper from 5 to 400, which fits. If the ranges are very large,
one may have to use Weibull paper covering more orders of magnitude. However, there is
a simple transformation device around that difficulty. It is based on the following power
transformation property of the Weibull distribution. If 7'~ W(a, 3) (i.e., T has a Weibull
distribution with parameters a and [3), then

T ~W(a®, B/a) =W, 3.
Thus one can always bring the scale of the failure times up or down into the proper range

by an appropriate power transformation.

By eye or by more formal least squares methods one can then fit a line through the
plotted points and take it as a proxy or estimate of the true line representing the unknown
linear relationship (2) between the quantiles y, and w(p). Here the least squares fit will be
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quite sensitive to variability in the extreme sample values. Trying allow for that in fitting
by eye will be somewhat subjective.

Since p = 0.632 yields w(p) = 0 or log,((T") — log;o(r) = 0 one can read off an estimate
of o from the abscissa scale where the fitted line intercepts the ordinate level 0.632. For this
purpose Weibull paper shows a level line at the ordinate 0.632. On the right side scale of the
Weibull probability paper one finds the zero value resulting from the transform w(0.632) = 0.

The scale to the left of the ordinate scale runs from zero to ten and is a nomographic
device for reading off the estimated shape parameter associated with the line fitted to the
plotted data. To obtain it one draws a line parallel to the fitted line going through the solid
dot to the right of that shape scale. Appendix A contains several examples illustrating this
process.

Some authors suggest to use of p; = (i —.3)/(n + .4) in place of p; to characterize the p
for which 7{;) is the p-quantile. For large n there is little difference between the two methods
and for small n the inherent variability in Weibull samples makes a preference between the
two methods somewhat questionable.

3 Plotting with Type I Censoring

Under this type of censoring the censoring times and failure times typically intermingle and
it is no longer quite so clear for which quantile to consider each failure time as a quantile
estimate. There are various schemes of dealing with this problem. The one presented here
is the Herd-Johnson method as given in Nelson (1982).

One orders all observations, censored or uncensored, from smallest to largest and one

ranks them in reverse order. If Tj;y < ... < Tj,) are the ordered observations, their cor-
responding reverse ranks are (ri,...,7,) = (n,...,1). For the i*® failure one computes
recursively the “reliability”

, 40 .

) r(z) + 1 i—1

where Ry = 1 is the reliability or survival probability at time 0. Here the distinction of r;
and r; is the following. Whereas r; = n — i 4 1 represents the reverse rank of the i*" ordered
observation (censored or uncensored), the notation r(; is the reverse rank associated with
the i ordered failure time. For example, if the first failure time is preceded by two censoring
times, then r; = n, rp =n —1, 73 = n — 2 = r(;). The sample calculations in Table 1 should
clarify this further.



In the above recursive formula for R; one can view r)/(r@ + 1) as an estimate of the
conditional probability of survival at the time of the i*® failure, since at the i*" failure there
are r(; items, one has just failed and the other 7 — 1 survived. Thus the proportion of
survived items is (r; — 1)/r(;). Since this can lead to zero values, which cause problems in
probability plotting, one modifies this conditional probability estimate to ;) /(ru) +1). Ri—q
is the estimate of survival prior to i*" failure and R; is the estimate of survival after the i
failure.

As an aside, the proportion (r; — 1)/r(;) figures strongly in the definition of the survival
function estimate due to Kaplan and Meier (1958). This estimate is defined by

roTo—1

()

/
1—1

with R, = 1. Kaplan and Meier show that the step function with steps F=1- R, at
the *" failure time is the nonparametric maximum likelihood estimate of the distribution
function of failure times without reference to a Weibull model. See Scholz (1980) for a proper
definition of maximum likelihood in such wider nonparametric settings.

Returning to the recursion defining R;, the p; plotting position for the " failure time is
then taken as p; = 1— R;. Note that the index ¢ here counts consecutively through the failure
times. No points are plotted corresponding to the censored times. If there are no censoring
times, this method reduces to the above method of using p; = i/(n+1) in complete samples
and can be viewed as a reason for preferring this method over others.

An example calculation is presented in Table 1, which is taken from Nelson (1982). The
corresponding Weibull plot is illustrated in Figure 4 of Appendix A. Note that the time
units were viewed in tens since the failure data range is [31.7,110.0] and a two cycle log;,
Weibull paper was used.

From the Weibull plot one can read off the following estimates for a and 3, namely
a ~ 125 and B ~ 1.99. The line was fitted by the method of least squares. To do so one
has to work with the transformed failure times Y} = log,((7f;) and with the corresponding
values w(py) = logg[—1log,(1 — ppj)]. The square brackets around the subscripts indicate
that the numbering is consecutive along the k failures. In the example of Table 1 this is
along 1,2,...,7, since there are k = 7 failure times. The least squares calculations use the
following formulas

S w(py) (Vi — v_1ly
5= Zz_lljv(m)( H_2 ) with ¥V ==YV}
Y (Y —Y) b




Table 1: Winding Data & Herd-Johnson Calculations

Reliability /Survival Probability

Reverse Failure
Rank Cond’l Previous Current Prob.
Time T; T’(Z)/(T(Z) + 1) X Ri,1 = Rz pi = 1-— Rz
31.7 16 (16/17) X 1.000 = 0941 .059
39.2 15 (15/16) X 0.941 = 0.883 A17
57.5 14 (14/15) X 0.883 = 0824 176
65.0" 13
65.8 12 (12/13) X 0.824 = 0.761 239
70.0 11 (11/12) X 0.761 = 0.697 .303
75.07 10
75.0" 9
87.5" 8
88.3 " 7
94.27F 6
101.7+ 5
105.8 4 (4/5) X 0.697 = 0.557 443
109.2* 3
110.0 2 (2/3) X 0.557 = 0.372 .628
130.0* 1

* Running or Censored




and

N R . ' 1 &
—Glogp(@)=w—-0Y with w = Z Zw(p[i]) )
i=1

The estimates from the least squares calculations are a = 123.3 and B = 1.986.

Since the variability is in the Y}; and not in the w(py;) one may prefer doing the least
squares calculations with abscissa and ordinate reversed, i.e., according to the model (1). In
that case one obtains

Y (w(pp) — @)Y

1 1k
== with W= — g w(py;
B xR (wipy) — )2 F 2 )

and

Although the same symbols & and B were used, their values will not be the same under the
two least squares approaches. In fact, for this last method the least squares estimates are
a = 120.5 and B = 2.055. The resulting fitted line is indicated by the dashed line in Figure 4.
Also shown is the line resulting from the maximum likelihood estimates with & = 123.2 and

o~

B = 2.376.

4 Plotting with Type II Censoring

Here the observed data consist of T{;y < ... < Tj,y and all that is known about the other
n —r (future) failure times is that they exceed T{,y. Since these first r ordered failures are
the quantile estimates of ¢,,,...,t, with p; = i¢/(n + 1) one can again plot these r points
as before on Weibull paper, the only difference being that the n — r censored points are not
plotted.

Again one can fit a line by eye or by least squares. However here the low extremes will
weigh in more heavily since the upper extremes are missing. As an example, the six lowest
values of the complete sample underlying Figure 3 were taken as a type II censored sample
and are plotted in Figure 5. As in Figure 3 the true line, the least squares fit line, and the
line corresponding to the maximum likelihood estimates are shown. Note that the latter is
reasonably close to the true line, whereas the least squares line is led astray substantially.



5 Checking the Weibull Model

According to the motivation behind Weibull plotting one expects to see a roughly linear
pattern in the plotted points. The examples shown so far may have put a damper on this,
but that is mainly due to the small sample sizes in those examples. Some of the examples
were artificially generated from Weibull populations. Thus there is no question about their
origin. However, the example given by Nelson is supposed to be real data and its pattern on
Weibull paper looks remarkably close to linear. This has been observed in other expositions
on Weibull plotting as well and it may raise false expectations in the prospective user. When
nonlinear patterns are found (in small samples) the user may then be led on false chase for
other causes, such as multiple failure modes. There may well be such multiple modes, but
small samples are not a good starting point to look for these.

In order to get a sense for the effect of sample size on the variability in linear Weibull
patterns eight Weibull samples each were generated at sample sizes n = 10, n = 30, n = 100
and were plotted on an equivalent of Weibull probability paper (without the grid lines, etc.),
see Figures 6-8. Also shown on each plot is the true line corresponding to the Weibull
distribution from which the sample was drawn. The sample to sample variability at n = 10
is substantial whereas the linearity and proximity to the true line is quite satisfactory at
n = 100.
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Appendix A

This appendix contains two blank copies of Weibull probability paper (without page number).
The first has a two cycle log;, scale on the abscissa and the second has a three cycle log,,
scale. This is followed by several illustrations of Weibull paper with plotted samples.

Figure 3 illustrates the plotting of a complete Weibull sample with three line superim-
posed: 1) the true line representing the sampled Weibull population, 2) a least squares fitted
line (which is strongly influenced by stragglers), and 3) a line corresponding to maximum
likelihood estimates of the paramters.

Figure 4 illustrates the plotting of a type I censored sample representing some real data
taken from Nelson (1982). Aside from the maximum likelihood fitted line there are two types
of least squares lines. In one the ordinate is regressed on the abscissa and in the other the
abscissa is regressed on the ordinate.

Figure 5 illustrates the plotting of a type II censored sample by taking the six lowest
failure times from the complete sample underlying Figure 3. Again the true line, the least
squares fitted line and the maximum likelihood fitted lines are shown.

Figure 6-8 show a collection of eight random samples, each taken from a Weibull popu-
lation. Figure 6 shows those samples of size n = 10, and Figure 7 and Figure 8 show similar
plots for sample sizes n = 30 and n = 100, respectively. On each plot the thick represents
the true sampled Weibull population and the thin line is the least squares fitted line.
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Figure 6: Weibull Probability Plots
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Weibull Probability Plots

Figure 7
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