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1 The Weibull Distribution

The 2-parameter Weibull distribution function is defined as

Fα,β(x) = 1− exp

[
−
(
x

α

)β
]

for x ≥ 0 and Fα,β(x) = 0 for t < 0.

We also write X ∼ W(α, β) when X has this distribution function, i.e., P (X ≤ x) = Fα,β(x). The
parameters α > 0 and β > 0 are referred to as scale and shape parameter, respectively. The Weibull
density has the following form

fα,β(x) = F ′
α,β(x) =

d

dx
Fα,β(x) =

β

α

(
x

α

)β−1

exp

[
−
(
x

α

)β
]
.

For β = 1 the Weibull distribution coincides with the exponential distribution with mean α. In
general, α represents the .632-quantile of the Weibull distribution regardless of the value of β since
Fα,β(α) = 1 − exp(−1) ≈ .632 for all β > 0. Figure 1 shows a representative collection of Weibull
densities. Note that the spread of the Weibull distributions around α gets smaller as β increases.
The reason for this will become clearer later when we discuss the log-transform of Weibull random
variables.

The mth moment of the Weibull distribution is

E(Xm) = αmΓ(1 +m/β)

and thus the mean and variance are given by

µ = E(X) = αΓ(1 + 1/β) and σ2 = α2
[
Γ(1 + 2/β)− {Γ(1 + 1/β)}2

]
.

Its p-quantile, defined by P (X ≤ xp) = p, is

xp = α(− log(1− p))1/β .

For p = 1− exp(−1) ≈ .632 (i.e., − log(1− p) = 1) we have xp = α regardless of β, as pointed out
previously. For that reason one also calls α the characteristic life of the Weibull distribution. The
term life comes from the common use of the Weibull distribution in modeling lifetime data. More
on this later.
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Weibull densities

ββ1 == 0.5
ββ2 == 1
ββ3 == 1.5
ββ4 == 2
ββ5 == 3.6
ββ6 == 7
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αα
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Figure 1: A Collection of Weibull Densities with α = 10000 and Various Shapes
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2 Minimum Closure and Weakest Link Property

The Weibull distribution has the following minimum closure property: IfX1, . . . , Xn are independent
with Xi ∼ W(αi, β), i = 1, . . . , n, then

P (min(X1, . . . , Xn) > t) = P (X1 > t, . . . , Xn > t) =
n∏

i=1

P (Xi > t)

=
n∏

i=1

exp

[
−
(
t

αi

)β
]

= exp

[
−tβ

n∑
i=1

1

αβ
i

]

= exp

[
−
(
t

α?

)β
]

with α? =

(
n∑

i=1

1

αβ
i

)−1/β

,

i.e., min(X1, . . . , Xn) ∼ W(α?, β). This is reminiscent of the closure property for the normal
distribution under summation, i.e., if X1, . . . , Xn are independent with Xi ∼ N (µi, σ

2
i ) then

n∑
i=1

Xi ∼ N
(

n∑
i=1

µi,
n∑

i=1

σ2
i

)
.

This summation closure property plays an essential role in proving the central limit theorem: Sums
of independent random variables (not necessarily normally distributed) have an approximate normal
distribution, subject to some mild conditions concerning the distribution of such random variables.
There is a similar result from Extreme Value Theory that says: The minimum of independent,
identically distributed random variables (not necessarily Weibull distributed) has an approximate
Weibull distribution, subject to some mild conditions concerning the distribution of such random
variables. This is also referred to as the “weakest link” motivation for the Weibull distribution.

The Weibull distribution is appropriate when trying to characterize the random strength of materials
or the random lifetime of some system. This is related to the weakest link property as follows. A
piece of material can be viewed as a concatenation of many smaller material cells, each of which has
its random breaking strength Xi when subjected to stress. Thus the strength of the concatenated
total piece is the strength of its weakest link, namely min(X1, . . . , Xn), i.e., approximately Weibull.

Similarly, a system can be viewed as a collection of many parts or subsystems, each of which has a
random lifetime Xi. If the system is defined to be in a failed state whenever any one of its parts or
subsystems fails, then the system lifetime is min(X1, . . . , Xn), i.e., approximately Weibull.

Figure 2 gives a sense of usage of the Weibull distribution and Figure 3 shows the “real thing.”
Googling “Weibull distribution” produced 185,000 hits while ”normal distribution” had 2,420,000
hits.
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Figure 2: Publications on the Weibull Distribution
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Figure 3: Waloddi Weibull
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The Weibull distribution is very popular among engineers. One reason for this is that the Weibull
cdf has a closed form which is not the case for the normal cdf Φ(x). However, in today’s computing
environment one could argue that point since typically the computation of even exp(x) requires
computing. That this can be accomplished on most calculators is also moot since many calculators
also give you Φ(x). Another reason for the popularity of the Weibull distribution among engi-
neers may be that Weibull’s most famous paper, originally submitted to a statistics journal and
rejected, was eventually published in an engineering journal: Waloddi Weibull (1951) “A statistical
distribution function of wide applicability.” Journal of Applied Mechanics, 18, 293-297.

“. . . he tried to publish an article in a well-known British journal. At this time, the distri-
bution function proposed by Gauss was dominating and was distinguishingly called the normal
distribution. By some statisticians it was even believed to be the only possible one. The arti-
cle was refused with the comment that it was interesting but of no practical importance. That
was just the same article as the highly cited one published in 1951.” (Göran W. Weibull, 1981,
http://www.garfield.library.upenn.edu/classics1981/A1981LD32400001.pdf)

Sam Saunders (1975): ‘Professor Wallodi (sic) Weibull recounted to me that the now famous paper of
his “A Statistical Distribution of Wide Applicability”, in which was first advocated the “Weibull”
distribution with its failure rate a power of time, was rejected by the Journal of the American
Statistical Association as being of no interrest. Thus one of the most influential papers in statistics
of that decade was published in the Journal of Applied Mechanics. See [35]. (Maybe that is the
reason it was so influential!)’

3 The Hazard Function

The hazard function for any nonnegative random variable with cdf F (x) and density f(x) is defined
as h(x) = f(x)/(1−F (x)). It is usually employed for distributions that model random lifetimes and
it relates to the probability that a lifetime comes to an end within the next small time increment
of length d given that the lifetime has exceeded x so far, namely

P (x < X ≤ x+ d|X > x) =
P (x < X ≤ x+ d)

P (X > x)
=
F (x+ d)− F (x)

1− F (x)
≈ d× f(x)

1− F (x)
= d× h(x) .

In the case of the Weibull distribution we have

h(x) =
fα,β(x)

1− Fα,β(x)
=
β

α

(
x

α

)β−1

.

Various other terms are used equivalently for the hazard function, such as hazard rate, failure rate
(function), or force of mortality. In the case of the Weibull hazard rate function we observe that it
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is increasing in x when β > 1, decreasing in x when β < 1 and constant when β = 1 (exponential
distribution with memoryless property).

When β > 1 the part or system, for which the lifetime is modeled by a Weibull distribution, is
subject to aging in the sense that an older system has a higher chance of failing during the next
small time increment d than a younger system.

For β < 1 (less common) the system has a better chance of surviving the next small time increment
d as it gets older, possibly due to hardening, maturing, or curing. Often one refers to this situation
as one of infant mortality, i.e., after initial early failures the survival gets better with age. However,
one has to keep in mind that we may be modeling parts or systems that consist of a mixture of
defective or weak parts and of parts that practically can live forever. A Weibull distribution with
β < 1 may not do full justice to such a mixture distribution.

For β = 1 there is no aging, i.e., the system is as good as new given that it has survived beyond x,
since for β = 1 we have

P (X > x+ h|X > x) =
P (X > x+ h)

P (X > x)
=

exp(−(x+ h)/α)

exp(−x/α)
= exp(−h/α) = P (X > h) ,

i.e., it is again exponential with same mean α. One also refers to this as a random failure model in
the sense that failures are due to external shocks that follow a Poisson process with rate λ = 1/α.
The random times between shocks are exponentially distributed with mean α. Given that there are
k such shock events in an interval [0, T ] one can view the k occurrence times as being uniformly
distributed over the interval [0, T ], hence the allusion to random failures.

4 Location-Scale Property of log(X)

Another useful property, of which we will make strong use, is the following location-scale property
of the log-transformed Weibull distribution. By that we mean that: X ∼ W(α, β) =⇒ log(X) = Y
has a location-scale distribution, namely its cumulative distribution function (cdf) is

P (Y ≤ y) = P (log(X) ≤ y) = P (X ≤ exp(y)) = 1− exp

−(exp(y)

α

)β


= 1− exp [− exp {(y − log(α))× β}] = 1− exp

[
− exp

(
y − log(α)

1/β

)]

= 1− exp
[
− exp

(
y − u

b

)]
with location parameter u = log(α) and scale parameter b = 1/β. The reason for referring to such
parameters this way is the following. If Z ∼ G(z) then Y = µ+ σZ ∼ G((y − µ)/σ) since

H(y) = P (Y ≤ y) = P (µ+ σZ ≤ y) = P (Z ≤ (y − µ)/σ) = G((y − µ)/σ) .
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The form Y = µ+ σX should make clear the notion of location scale parameter, since Z has been
scaled by the factor σ and is then shifted by µ. Two prominent location-scale families are

1. Y = µ+ σZ ∼ N (µ, σ2), where Z ∼ N (0, 1) is standard normal with cdf G(z) = Φ(z)
and thus Y has cdf H(y) = Φ((y − µ)/σ),

2. Y = u+ bZ where Z has the standard extreme value distribution with cdf
G(z) = 1− exp(− exp(z)) for z ∈ R, as in our log-transformed Weibull example above.

In any such a location-scale model there is a simple relationship between the p-quantiles of Y and
Z, namely yp = µ + σzp in the normal model and yp = u + bwp in the extreme value model (using
the location and scale parameters u and b resulting from log-transformed Weibull data). We just
illustrate this in the extreme value location-scale model.

p = P (Z ≤ wp) = P (u+ bZ ≤ u+ bwp) = P (Y ≤ u+ bwp) =⇒ yp = u+ bwp

with wp = log(− log(1− p)). Thus yp is a linear function of wp = log(− log(1− p)), the p-quantile
of G. While wp is known and easily computable from p, the same cannot be said about yp, since
it involves the typically unknown parameters u and b. However, for appropriate pi = (i − .5)/n
one can view the ith ordered sample value Y(i) (Y(1) ≤ . . . ≤ Y(n)) as a good approximation for ypi

.
Thus the plot of Y(i) against wpi

should look approximately linear. This is the basis for Weibull
probability plotting (and the case of plotting Y(i) against zpi

for normal probability plotting), a very
appealing graphical procedure which gives a visual impression of how well the data fit the assumed
model (normal or Weibull) and which also allows for a crude estimation of the unknown location
and scale parameters, since they relate to the slope and intercept of the line that may be fitted to
the perceived linear point pattern. For more in relation to Weibull probability plotting we refer to
Scholz (2008).

5 Maximum Likelihood Estimation

There are many ways to estimate the parameters θ = (α, β) based on a random sampleX1, . . . , Xn ∼
W(α, β). Maximum likelihood estimation (MLE) is generally the most versatile and popular
method. Although MLE in the Weibull case requires numerical methods and a computer, that is no
longer an issue in today’s computing environment. Previously, estimates that could be computed
by hand had been investigated, but they are usually less efficient than mle’s (estimates derived by
MLE). By efficient estimates we loosely refer to estimates that have the smallest sampling variance.
MLE tends to be efficient, at least in large samples. Furthermore, under regularity conditions MLE
produces estimates that have an approximate normal distribution in large samples.
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When X1, . . . , Xn ∼ Fθ(x) with density fθ(x) then the maximum likelihood estimate of θ is that
value θ = θ̂ = θ̂(x1, . . . , xn) which maximizes the likelihood

L(x1, . . . , xn, θ) =
n∏

i=1

fθ(xi)

over θ, i.e., which gives highest local probability to the observed sample (X1, . . . , Xn) = (x1, . . . , xn)

L(x1, . . . , xn, θ̂) = sup
θ

{
n∏

i=1

fθ(xi)

}
.

Often such maximizing values θ̂ are unique and one can obtain them by solving, i.e.,

∂

∂θj

n∏
i=1

fθ(xi) = 0 j = 1, . . . , k ,

where k is the number of parameters involved in θ = (θ1, . . . , θk). These above equations reflect the
fact that a smooth function has a horizontal tangent plane at its maximum (minimum or saddle
point). Thus solving such equations is necessary but not sufficient, since it still needs to be shown
that it is the location of a maximum.

Since taking derivatives of a product is tedious (product rule) one usually resorts to maximizing
the log of the likelihood, i.e.,

`(x1, . . . , xn, θ) = log (L(x1, . . . , xn, θ)) =
n∑

i=1

log (fθ(xi))

since the value of θ that maximizes L(x1, . . . , xn, θ) is the same as the value that maximizes
`(x1, . . . , xn, θ), i.e.,

`(x1, . . . , xn, θ̂) = sup
θ

{
n∑

i=1

log (fθ(xi))

}
.

It is a lot simpler to deal with the likelihood equations

∂

∂θj

`(x1, . . . , xn, θ̂) =
∂

∂θj

n∑
i=1

log(fθ(xi)) =
n∑

i=1

∂

∂θj

log(fθ(xi)) = 0 j = 1, . . . , k

when solving for θ = θ̂ = θ̂(x1, . . . , xn).

In the case of a normal random sample we have θ = (µ, σ) with k = 2 and the unique solution of
the likelihood equations results in the explicit expressions

µ̂ = x̄ =
n∑

i=1

xi/n and σ̂ =

√√√√ n∑
i=1

(xi − x̄)2/n and thus θ̂ = (µ̂, σ̂) .
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In the case of a Weibull sample we take the further simplifying step of dealing with the log-
transformed sample (y1, . . . , yn) = (log(x1), . . . , log(xn)). Recall that Yi = log(Xi) has cdf F (y) =
1 − exp(− exp((x − u)/b)) = G((y − u)/b) with G(z) = 1 − exp(− exp(z)) with g(z) = G′(z) =
exp(z − exp(z)). Thus

f(y) = F ′(y) =
d

dy
F (y) =

1

b
g((y − u)/b))

with

log(f(y)) = − log(b) +
y − u

b
− exp

(
y − u

b

)
.

As partial derivatives of log(f(y)) with respect to u and b we get

∂

∂u
log(f(y)) = −1

b
+

1

b
exp

(
y − u

b

)
∂

∂b
log(f(y)) = − 1

b
− 1

b

y − u

b
+

1

b

y − u

b
exp

(
y − u

b

)
and thus as likelihood equations

0 = −n
b

+
1

b

n∑
i=1

exp
(
yi − u

b

)
or

n∑
i=1

exp
(
yi − u

b

)
= n or exp(u) =

[
1

n

n∑
i=1

exp
(
yi

b

)]b

,

0 = − n

b
− 1

b

n∑
i=1

yi − u

b
+

1

b

n∑
i=1

yi − u

b
exp

(
yi − u

b

)
.

i.e., we have a solution u = û once we have a solution b = b̂. Substituting this expression for exp(u)
into the second likelihood equation we get (after some cancelation and manipulation)

0 =

∑n
i=1 yi exp(yi/b)∑n

i=1 exp(yi/b)
− b− 1

n

n∑
i=1

yi .

Analyzing the solvability of this equation is more convenient in terms of β = 1/b and we thus write

0 =
n∑

i=1

yiwi(β)− 1

β
− ȳ where wi(β) =

exp(yiβ)∑n
j=1 exp(yjβ)

with
n∑

i=1

wi(β) = 1 .

Note that the derivative of these weights with respect to β take the following form

w′
i(β) =

d

dβ
wi(β) = yiwi(β)− wi(β)

n∑
j=1

yjwj(β) .
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Hence

d

dβ

{
n∑

i=1

yiwi(β)− 1

β
− ȳ

}
=

n∑
i=1

yiw
′
i(β) +

1

β2
=

n∑
i=1

y2
iwi(β)−

 n∑
j=1

yjwj(β)

2

+
1

β2
> 0

since

varw(y) =
n∑

i=1

y2
iwi(β)−

 n∑
j=1

yjwj(β)

2

= Ew(y2)− [Ew(y)]2 ≥ 0

can be interpreted as a variance of the n values of y = (y1, . . . , yn) with weights or probabilities given
by w = (w1(β), . . . , wn(β)). Thus the reduced second likelihood equation

∑
yiwi(β)− 1/β − ȳ = 0

has a unique solution (if it has a solution at all) since the the equation’s left side is strictly increasing.

Note that wi(β) → 1/n as β → 0. Thus
∑
yiwi(β)− 1/β − ȳ ≈ −1/β → −∞ as β → 0.

Furthermore, with M = max(y1, . . . , yn) and β →∞ we have

wi(β) = exp(β(yi−M))/
n∑

j=1

exp(β(yj−M)) → 0 when yi < M and wi(β) → 1/r when yi = M,

where r ≥ 1 is the number of yi coinciding with M . Thus∑
yiwi(β)− 1/β − ȳ ≈M − 1/β − ȳ →M − ȳ > 0 as β →∞

where M − ȳ > 0 assumes that not all yi coincide (a degenerate case with probability 0). That this
unique solution corresponds to a maximum and thus a unique global maximum takes some extra
effort and we refer to Scholz (1996) for an even more general treatment that covers Weibull analysis
with censored data and covariates.

However, a somewhat loose argument can be given as follows. If we consider the likelihood of the
log-transformed Weibull data we have

L(y1, . . . , yn, u, b) =
1

bn

n∏
i=1

g
(
yi − u

b

)
.

Contemplate this likelihood for fixed y = (y1, . . . , yn) and for parameters u with |u| → ∞ (the
location moves away from all observed data values y1, . . . , yn) and b with b→ 0 (the spread becomes
very concentrated on some point and cannot simultaneously do so at all values y1, . . . , yn, unless
they are all the same, excluded as a zero probability degeneracy) and b → ∞ (in which case all
probability is diffused thinly over the whole half plane {(u, b) : u ∈ R, b > 0}), it is then easily seen
that this likelihood approaches zero in all cases. Since this likelihood is positive everywhere (but
approaching zero near the fringes of the parameter space, the above half plane) it follows that it
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must have a maximum somewhere with zero partial derivatives. We showed there is only one such
point (uniqueness of the solution to the likelihood equations) and thus there can only be one unique
(global) maximum, which then is also the unique maximum likelihood estimate θ̂ = (û, b̂).

In solving 0 =
∑
yi exp(yi/b)/

∑
exp(yi/b) − b − ȳ it is numerically advantageous to solve the

equivalent equation 0 =
∑
yi exp((yi−M)/b)/

∑
exp((yi−M)/b)−b−ȳ where M = max(y1, . . . , yn).

This avoids overflow or accuracy loss in the exponentials when the yi tend to be large.

The above derivations go through with very little change when instead of observing a full sample
Y1, . . . , Yn we only observe the r ≥ 2 smallest sample values Y(1) < . . . < Y(r). Such data is referred
to as type II censored data. This situation typically arises in a laboratory setting when several
units are put on test (subjected to failure exposure) simultaneously and the test is terminated
(or evaluated) when the first r units have failed. In that case we know the first r failure times
X(1) < . . . < X(r) and thus Y(i) = log(X(i)), i = 1, . . . , r, and we know that the lifetimes of the
remaining units exceed X(r) or that Y(i) > Y(r) for i > r. The advantage of such data collection is
that we do not have to wait until all n units have failed. Furthermore, if we put a lot of units on
test (high n) we increase our chance of seeing our first r failures before a fixed time y. This is a
simple consequence of the following binomial probability statement:

P (Y (r) ≤ y) = P (at least r failures ≤ y in n trials) =
n∑

i=r

(
n

i

)
P (Y ≤ y)i(1− P (Y ≤ y))n−i

which is strictly increasing in n for any fixed y and r ≥ 1 (exercise).

The joint density of Y(1), . . . , Y(n) at (y1, . . . , yn) with y1 < . . . < yn is

f(y1, . . . , yn) = n!
n∏

i=1

1

b
g
(
yi − u

b

)
= n!

n∏
i=1

f(yi)

where the multiplier n! just accounts for the fact that all n! permutations of y1, . . . , yn could have
been the order in which these values were observed and all of these orders have the same density
(probability). Integrating out yn > yn−1 > . . . > yr+1(> yr) and using F̄ (y) = 1−F (y) we get after
n− r successive integration steps the joint density of the first r failure times y1 < . . . < yr as

f(y1, . . . , yn−1) = n!
n−1∏
i=1

f(yi)×
∫ ∞

yn−1

f(yn)dyn = n!
n−1∏
i=1

f(yi)F̄ (yn−1)

f(y1, . . . , yn−2) = n!
n−2∏
i=1

f(yi)×
∫ ∞

yn−2

f(yn−1)F̄ (yn−1)dyn−1 = n!
n−2∏
i=1

f(yi)×
1

2
F̄ 2(yn−2)

f(y1, . . . , yn−3) = n!
n−3∏
i=1

f(yi)×
∫ ∞

yn−3

f(yn−2)F̄
2(yn−2)/2dyn−2 = n!

n−3∏
i=1

f(yi)×
1

3!
F̄ 3(yn−3)
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. . .

f(y1, . . . , yr) = n!
r∏

i=1

f(yi)×
1

(n− r)!
F̄ n−r(yr) =

[
n!

(n− r)!

r∏
i=1

f(yi)

]
× [1− F (yr)]

n−r

= r!
r∏

i=1

1

b
g
(
yi − u

b

)
×
(
n

r

) [
1−G

(
yr − u

b

)]n−r

with log-likelihood

`(y1, . . . , yr, u, b) = log

(
n!

(n− r)!

)
− r log(b) +

r∑
i=1

yi − u

b
−

r∑
i=1

? exp
(
yi − u

b

)

where we use the notation
r∑

i=1

? xi =
r∑

i=1

xi + (n− r)xr .

The likelihood equations are

0 =
∂

∂u
`(y1, . . . , yr, u, b) = −r

b
+

1

b

r∑
i=1

? exp
(
yi − u

b

)
or exp(u) =

[
1

r

r∑
i=1

? exp
(
yi

b

)]b

0 =
∂

∂b
`(y1, . . . , yr, u, b) = − r

b
− 1

b

r∑
i=1

yi − u

b
+

1

b

r∑
i=1

? yi − u

b
exp

(
yi − u

b

)

where again the transformed first equation gives us a solution û once we have a solution b̂ for b.
Using this in the second equation it transforms to a single equation in b alone, namely

r∑
i=1

? yi exp(yi/b)

/
r∑

i=1

? exp(yi/b)− b− 1

r

r∑
i=1

yi = 0 .

Again it is advisable to use the equivalent but computationally more stable form

r∑
i=1

? yi exp((yi − yr)/b)

/
r∑

i=1

? exp((yi − yr)/b)− b− 1

r

r∑
i=1

yi = 0 .

As in the complete sample case one sees that this equation has a unique solution b̂ and that (û, b̂)
gives the location of the (unique) global maximimum of the likelihood function, i.e., (û, b̂) are the
mle’s.
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6 Computation of Maximum Likelihood Estimates in R

The computation of the mle’s of the Weibull parameters α and β is facilitated by the function
survreg which is part of the R package survival. Here survreg is used in its most basic form in
the context of Weibull data (full sample or type II censored Weibull data). survreg does a whole
lot more than compute the mle’s but we will not deal with these aspects here, at least for now.
The following is an R function, called Weibull.mle, that uses survreg to compute these estimates.
Note that it tests for the existence of survreg before calling it. This function is part of the R work
space that is posted on the class web site.

Weibull.mle <- function (x=NULL,n=NULL){

# This function computes the maximum likelihood estimates of alpha and beta

# for complete or type II censored samples assumed to come from a 2-parameter

# Weibull distribution. Here x is the sample, either the full sample or the first

# r observations of a type II censored sample. In the latter case one must specify

# the full sample size n, otherwise x is treated as a full sample.

# If x is not given then a default full sample of size n=10, namely

# c(7,12.1,22.8,23.1,25.7,26.7,29.0,29.9,39.5,41.9) is analyzed and the returned

# results should be

# $mles

# alpha.hat beta.hat

# 28.914017 2.799793

#

# In the type II censored usage

# Weibull.mle(c(7,12.1,22.8,23.1,25.7),10)

# $mles

# alpha.hat beta.hat

# 30.725992 2.432647

if(is.null(x))x <- c(7,12.1,22.8,23.1,25.7,26.7,29.0,29.9,39.5,41.9)

r <- length(x)

if(is.null(n)){n<-r}else{if(r>n||r<2){

return("x must have length r with: 2 <= r <= n")}}

xs <- sort(x)

if(!exists("survreg"))library(survival)

#tests whether survival package is loaded, if not, then it loads survival

if(r<n){

statusx <- c(rep(1,r),rep(0,n-r))

dat.weibull <- data.frame(c(xs,rep(xs[r],n-r)),statusx)
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}else{statusx <- rep(1,n)

dat.weibull <- data.frame(xs,statusx)}

names(dat.weibull)<-c("time","status")

out.weibull <- survreg(Surv(time,status)~1,dist="weibull",data=dat.weibull)

alpha.hat <- exp(out.weibull$coef)

beta.hat <- 1/out.weibull$scale

parms <- c(alpha.hat,beta.hat)

names(parms)<-c("alpha.hat","beta.hat")

list(mles=parms)}

Note that survreg analyzes objects of class Surv. Here such an object is created by the function
Surv and it basically adjoins the failure times with a status vector of same length. The status
is 1 when a time corresponds to an actual failure time. It is 0 when the corresponding time is
a censoring time, i.e., we only know that the unobserved actual failure time exceeds the reported
censoring time. In the case of type II censored data these censoring times equal the rth largest
failure time.

To get a sense of the calculation speed of this function we ran Weibull.mle a 1000 times, which
tells us that the time to compute the mle’s in a sample of size n = 10 is roughly 5.91/1000 = .00591.
This fact plays a significant role later on in the various inference procedures which we will discuss.

system.time(for(i in 1:1000){Weibull.mle(rweibull(10,1))})

user system elapsed

5.79 0.00 5.91

For n = 100, 500, 1000 the elapsed times came to 8.07, 15.91 and 25.87, respectively. The relationship
of computing time to n appears to be quite linear, but with slow growth, as Figure 4 shows.

7 Location and Scale Equivariance of Maximum Likelihood Estimates

The maximum likelihood estimates û and b̂ of the location and scale parameters u and b have the
following equivariance properties which will play a strong role in the later pivot construction and
resulting confidence intervals.

Based on data z = (z1, . . . , zn) we denote the estimates of u and b more explicitly by û(z1, . . . , zn) =
û(z) and b̂(z1, . . . , zn) = b̂(z). If we transform z to r = (r1, . . . , rn) with ri = A+Bzi, where A ∈ R
and B > 0 are arbitrary constant, then

û(r1, . . . , rn) = A+Bû(z1, . . . , zn) or û(r) = û(A+Bz) = A+Bû(z)
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Figure 4: Weibull Parameter MLE Computation Time in Relation to Sample Size n

and
b̂(r1, . . . , rn) = Bb̂(z1, . . . , zn) or b̂(r) = b̂(A+Bz) = Bb̂(z) .

These properties are naturally desirable for any location and scale estimates and for mle’s they are
indeed true.

Proof: Observe the following defining properties of the mle’s in terms of z = (z1, . . . , zn) and
r = (r1, . . . , rn)

sup
u,b

{
1

bn

n∏
i=1

g((zi − u)/b)

}
=

1

b̂n(z)

n∏
i=1

g((zi − û(z))/b̂(z))

sup
u,b

{
1

bn

n∏
i=1

g((ri − u)/b)

}
=

1

b̂n(r)

n∏
i=1

g((ri − û(r))/b̂(r))

=
1

Bn

1

(b̂(r)/B)n

n∏
i=1

g((zi − (û(r)− A)/B)/(b̂(r)/B))
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but also

sup
u,b

{
1

bn

n∏
i=1

g((ri − u)/b)

}
= sup

u,b

{
1

bn

n∏
i=1

g((A+Bzi − u)/b)

}

= sup
u,b

{
1

Bn

1

(b/B)n

n∏
i=1

g((zi − (u− A)/B)/(b/B))

}
ũ = (u− A)/B

b̃ = b/B
⇒ = sup

ũ,b̃

{
1

Bn

1

b̃n

n∏
i=1

g((zi − ũ)/b̃)

}
=

1

Bn

1

b̂n(z)

n∏
i=1

g((zi − û(z))/b̂(z))

Thus by the uniqueness of the mle’s we have

û(z) = (û(r)− A)/B and b̂(z) = b̂(r)/B

or
û(r) = û(A+Bz) = A+Bû(z) and b̂(r) = b̂(A+Bz) = Bb̂(z) q.e.d.

The same equivariance properties hold for the mle’s in the context of type II censored samples, as
is easily verified.

8 Tests of Fit Based on the Empirical Distribution Function

Relying on subjective assessment of linearity in Weibull probability plots in order to judge whether
a sample comes from a 2-parameter Weibull population takes a fair amount of experience. It is
simpler and more objective to employ a formal test of fit which compares the empirical distribution
function F̂n(x) of a sample with the fitted Weibull distribution function F̂ (x) = Fα̂,β̂(x) using one
of several common discrepancy metrics.

The empirical distribution function (EDF) of a sample X1, . . . , Xn is defined as

F̂n(x) =
# of observations ≤ x

n
=

1

n

n∑
i=1

I{Xi≤x}

where IA = 1 when A is true, and IA = 0 when A is false. The fitted Weibull distribution function
(using mle’s α̂ and β̂) is

F̂ (x) = Fα̂,β̂(x) = 1− exp

(
−
(
x

α̂

)β̂
)
.

From the law of large numbers (LLN) we see that for any x we have that F̂n(x) −→ Fα,β(x) as

n −→∞. Just view F̂n(x) as a binomial proportion or as an average of Bernoulli random variables.
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From MLE theory we also know that F̂ (x) = Fα̂,β̂(x) −→ Fα,β(x) as n −→ ∞ (also derived from
the LLN).

Since the limiting cdf Fα,β(x) is continuous in x one can argue that these convergence statements
can be made uniformly in x, i.e.,

sup
x
|F̂n(x)− Fα,β(x)| −→ 0 and sup

x
|Fα̂,β̂(x)− Fα,β(x)| −→ 0 as n −→∞

and thus sup
x
|F̂n(x)−Fα̂,β̂(x)| −→ 0 as n −→∞ for all α > 0 and β > 0.

The distance DKS(F,G) = sup
x
|F (x)−G(x)|

is known as the Kolmogorov-Smirnov distance between two cdf’s F and G.

Figures 5 and 6 give illustrations of this Kolmogorov-Smirnov distance between EDF and fitted
Weibull distribution and show the relationship between sampled true Weibull distribution, fitted
Weibull distribution, and empirical distribution function.

Some comments:

1. It can be noted that the closeness between F̂n(x) and Fα̂,β̂(x) is usually more pronounced
than their respective closeness to Fα,β(x), in spite of the sequence of the above convergence
statements.

2. This can be understood from the fact that both F̂n(x) and Fα̂,β̂(x) fit the data, i.e., try to
give a good representation of the data. The fit of the true distribution, although being the
origin of the data, is not always good due to sampling variation.

3. The closeness between all three distributions improves as n gets larger.

Several other distances between cdf’s F and G have been proposed and investigated in the literature.
We will only discuss two of them, the Cramér-von Mises distance DCvM and the Anderson-Darling
distance DAD. They are defined respectively as follows

DCvM(F,G) =
∫ ∞

−∞
(F (x)−G(x))2 dG(x) =

∫ ∞

−∞
(F (x)−G(x))2 g(x) dx

and

DAD(F,G) =
∫ ∞

−∞

(F (x)−G(x))2

G(x)(1−G(x))
dG(x) =

∫ ∞

−∞

(F (x)−G(x))2

G(x)(1−G(x))
g(x) dx .

Rather than focussing on the very local phenomenon of a maximum discrepancy at some point x as
in DKS, these alternate distances or discrepancy metrics integrate these distances in squared form
over all x, weighted by g(x) in the case of DCvM(F,G) and by g(x)/[G(x)(1 − G(x))] in the case
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DAD(F,G). In the latter case, the denominator increases the weight in the tails of theG distribution,
i.e., compensates to some extent for the tapering off in the density g(x). Thus DAD(F,G) is favored
in situations where judging tail behavior is important, e.g., in risk situations. Because of the
integration nature of these last two metrics they have more global character. There is no easy
graphical representation of these metrics, except to suggest that when viewing the previous figures
illustrating DKS one should look at all vertical distances (large and small) between F̂n(x) and F̂ (x),
square them and accumulate these squares in the appropriately weighted fashion. For example,
when one cdf is shifted relative to the other by a small amount (no large vertical discrepancy),
these small vertical discrepancies (squared) will add up and indicate a moderately large difference
between the two compared cdf’s.

We point out the asymmetric nature of these last two metrics, i.e., we typically have

DCvM(F,G) 6= DCvM(G,F ) and DAD(F,G) 6= DAD(G,F ) .

When using these metrics for tests of fit one usually takes the cdf with a density (the model
distribution to be tested) as the one with respect to which the integration takes place, while the
other cdf is taken to be the EDF.

As complicated as these metrics may look at first glance, their computation is quite simple. We
will give the following computational expressions (without proof):

DKS(F̂n(x), F̂ (x)) = D = max
[
max

{
i/n− V(i)

}
, max

{
V(i) − (i− 1)/n

}]
where V(1) ≤ . . . ≤ V(n) are the ordered values of Vi = F̂ (Xi), i = 1, . . . , n.

For the other two test of fit criteria we have

DCvM(F̂n(x), F̂ (x)) = W 2 =
n∑

i=1

{
V(i) −

2i− 1

2n

}2

+
1

12n

and

DAD(F̂n(x), F̂ (x)) = A2 = −n− 1

n

n∑
i=1

(2i− 1)
[
log(V(i)) + log(1− V(n−i+1))

]
.

In order to carry out these tests of fit we need to know the null distributions of D, W 2 and A2.
Quite naturally we would reject the hypothesis of a sampled Weibull distribution whenever D or
W 2 or A2 are too large. The null distribution of D, W 2 and A2 does not depend on the unknown
parameters α and β, being estimated by α̂ and β̂ in Vi = F̂ (Xi) = Fα̂,β̂(Xi). The reason for this
is that the Vi have a distribution that is independent of the unknown parameters α and β. This is
seen as follows. Using our prior notation we write log(Xi) = Yi = u+ bZi and since
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Figure 5: Illustration of Kolmogorov-Smirnov Distance for n = 10 and n = 20
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Figure 6: Illustration of Kolmogorov-Smirnov Distance for n = 50 and n = 100
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F (x) = P (X ≤ x) = P (log(X) ≤ log(x)) = P (Y ≤ y) = 1− exp(− exp((y − u)/b))

and thus

Vi = F̂ (Xi) = 1− exp(− exp((Yi − û(Y))/b̂(Y)))

= 1− exp(− exp((u+ bZi − û(u+ bZ))/b̂(u+ bZ)))

= 1− exp(− exp((u+ bZi − u− bû(Z))/[b b̂(Z])))

= 1− exp(− exp((Zi − û(Z))/b̂(Z)))

and all dependence on the unknown parameters u = log(α) and b = 1/β has canceled out.

This opens up the possibility of using simulation to find good approximations to these null distri-
butions for any n, especially in view of the previously reported timing results for computing the
mle’s α̂ and β̂ of α and β. Just generate samples X? = (X?

1 , . . . , X
?
n) from W(α = 1, β = 1)

(standard exponential distribution), compute the corresponding α̂? = α̂(X?) and β̂? = β̂(X?),
then V ?

i = F̂ (X?
i ) = Fα̂?,β̂?(X?

i ) (where Fα,β(x) is the cdf of W(α, β)) and from that the values

D? = D(X?), W 2? = W 2(X?) and A2? = A2(X?). Calculating all three test of fit criteria makes
sense since the main calculation effort is in getting the mle’s α̂? and β̂?. Repeating this a large
number of times, say Nsim = 10000, should give us a reasonably good approximation to the desired
null distribution and from it one can determine appropriate p-values for any sample X1, . . . , Xn

for which one wishes to assess whether the Weibull distribution hypothesis is tenable or not. If
C(X) denotes the used test of fit criterion then the estimated p-value of this sample is simply the
proportion of C(X?) that are ≥ C(X).

Prior to the ease of current computing Stephens (1986) provided tables for the (1 − α)-quantiles
q1−α of these null distributions. For the n-adjusted versions A2(1 + .2/

√
n) and W 2(1 + .2/

√
n)

these null distributions appear to be independent of n and (1 − α)-quantiles were given for α =
.25, .10, .05, .025, .01. Plotting log(α/(1− α)) against q1−α shows a mildly quadratic pattern which
can be used to interpolate or extrapolate the appropriate p-value (observed significance level α) for
any observed n-adjusted value A2(1 + .2/

√
n) and W 2(1 + .2/

√
n), as is illustrated in Figure 7.

For
√
nD the null distribution still depends on n (in spite of the normalizing factor

√
n) and (1−α)-

quantiles for α = .10, .05, .025, .01 were tabulated for n = 10, 20, 50,∞ by Stephens (1986). Here
a double inter- and extrapolation scheme is needed, first by plotting these quantiles against 1/

√
n,

fitting quadratics in 1/
√
n and reading off the four interpolated quantile values for the needed n0

(the sample size at issue) and as a second step perform the interpolation or extrapolation scheme
as it was done previously, but using a cubic this time. This is illustrated in Figure 8.
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Functions for computing these p-values (via interpolation from Stephens’ tabled values) are given
in the Weibull R work space provided at the class web site. They are GOF.KS.test, GOF.CvM.test,
and GOF.AD.test for computing p-values for n-adjusted test criteria

√
nD, W 2(1 + .2/

√
n) , and

A2(1 + .2/
√
n), respectively. These functions have an optional argument graphic where graphic

= T causes the interpolation graphs shown in Figures 7 and 8 to be produced, otherwise only the
p-values are given. The function Weibull.GOF.test does a Weibull goodness of fit test on any given
sample, returning p-values for all three test criteria. You also find there the function Weibull.mle

that was listed earlier, and several other functions not yet documented here.

One could easily reproduce and extend the tables given by Stephens (1986) so that extrapolations
becomes less of an issue. For n = 100 it should take less than 1.5 minutes to simulate the null
distributions based on Nsim = 10, 000 and the previously given timing of 8.07 sec for Nsim = 1000.

9 Pivots

Based on the previous equivariance properties of û(Y) and b̂(Y) we have the following pivots,
namely functions W = ψ(û(Y), b̂(Y), ϑ) of the estimates and an unknown parameter ϑ of interest
such that W has a fixed and known distribution and the function ψ is strictly monotone in the
unknown parameter ϑ, so that it is invertible with respect to ϑ.

Recall that for a Weibull random sample X = (X1, . . . , Xn) we have Yi = log(Xi) ∼ G((y − u)/b)
with b = 1/β and u = log(α). Then Zi = (Yi− u)/b ∼ G(z) = 1− exp(− exp(z)), which is a known
distribution (does not depend on unknown parameters). This is seen as follows:

P (Zi ≤ z) = P ((Yi − u)/b ≤ z) = P (Yi ≤ u+ bz) = G(([u+ bz]− u)/b) = G(z) .

It is this known distribution of Z = (Z1, . . . , Zn) that is instrumental in knowing the distribution of
the four pivots that we discuss below. There we utilize the representation Yi = u+bZi or Y = u+bZ
in vector form.

9.1 Pivot for the Scale Parameter b

As natural pivot for the scale parameter ϑ = b we take

W1 =
b̂(Y)

b
=
b̂(u+ bZ)

b
=
bb̂(Z)

b
= b̂(Z) .

The right side, being a function of Z alone, has a distribution that does not involve unknown
parameters and W1 = b̂(Y)/b is strictly monotone in b.
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How do we obtain the distribution of b̂(Z)? An analytical approach does not seem possible. The
approach followed here is that presented in Bain (1978), Bain and Engelhardt (1991) and originally
in Thoman et al. (1969, 1970), who provided tables for this distribution (and for those of the other
pivots discussed here) based on Nsim simulated values of b̂(Z) (and û(Z)), where Nsim = 20000 for
n = 5, Nsim = 10000 for n = 6, 8, 10, 15, 20, 30, 40, 50, 75, and Nsim = 6000 for n = 100.

In these simulations one simply generates samples Z? = (Z1, . . . , Zn) ∼ G(z) and finds b̂(Z?) (and
û(Z?) for the other pivots discussed later) for each such sample Z?. By simulating this process
Nsim = 10000 times we obtain b̂(Z?

1), . . . , b̂(Z
?
Nsim

). The empirical distribution function of these

simulated estimates b̂(Z?
i ), denoted by Ĥ1(w), provides a fairly reasonable estimate of the sampling

distribution H1(w) of b̂(Z) and thus also of the pivot distribution of W1 = b̂(Y)/b. From this
simulated distribution we can estimate any γ-quantile of H1(w) to any practical accuracy, provided
Nsim is sufficiently large. Values of γ closer to 0 or 1 require higher Nsim. For .005 ≤ γ ≤ .995 a
simulation level of Nsim = 10000 should be quite adequate.

If we denote the γ-quantile of H1(w) by η1(γ), i.e.,

γ = H1(η1(γ)) = P (b̂(Y)/b ≤ η1(γ)) = P (b̂(Y)/η1(γ) ≤ b)

we see that b̂(Y)/η1(γ) can be viewed as a 100γ% lower bound to the unknown parameter b. We do
not know η1(γ) but we can estimate it by the corresponding quantile η̂1(γ) of the simulated distri-
bution Ĥ1(w) which serves as proxy for H1(w). We then use b̂(Y)/η̂1(γ) as an approximate 100γ%
lower bound to the unknown parameter b. For large Nsim, say Nsim = 10000, this approximation is
practically quite adequate.

We note here that a 100γ% lower bound can be viewed as a 100(1 − γ)% upper bound, because
1 − γ is the chance of the lower bound falling on the wrong side of its target, namely above. To
get 100γ% upper bounds one simply constructs 100(1 − γ)% lower bounds by the above method.
Similar comments apply to the pivots obtained below, where we only give one-sided bounds (lower
or upper) in each case.

Based on the relationship b = 1/β the respective 100γ% approximate lower and upper confidence
bounds for the Weibull shape parameter would be

η̂1(1− γ)

b̂(Y)
= η̂1(1− γ)× β̂(X) and

η̂1(γ)

b̂(Y)
= η̂1(γ)× β̂(X)

and an approximate 100γ% confidence interval for β would be[
η̂1((1− γ)/2)× β̂(X), η̂1((1 + γ)/2)× β̂(X)

]
since (1 + γ)/2 = 1− (1− γ)/2. Here X = (X1, . . . , Xn) is the untransformed Weibull sample.
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9.2 Pivot for the Location Parameter u

For the location parameter ϑ = u we have the following pivot

W2 =
û(Y)− u

b̂(Y)
=
û(u+ bZ)− u

b̂(u+ bZ)
=
u+ bû(Z)− u

bb̂(Z)
=
û(Z)

b̂(Z)
.

It has a distribution that does not depend on any unknown parameter, since it only depends on the
known distribution of Z. Furthermore W2 is strictly decreasing in u. Thus W2 is a pivot with respect
to u. Denote this pivot distribution of W2 by H2(w) and its γ-quantile by η2(γ). As before this
pivot distribution and its quantiles can be approximated sufficiently well by simulating û(Z?)/b̂(Z?)
a sufficient number Nsim times and using the empirical cdf Ĥ2(w) of the û(Z?

i )/b̂(Z
?
i ) as proxy for

H2(w).

As in the previous pivot case we can exploit this pivot distribution as follows

γ = H2(η2(γ)) = P

(
û(Y)− u

b̂(Y)
≤ η2(γ)

)
= P (û(Y)− b̂(Y)η2(γ) ≤ u)

and thus we can view û(Y) − b̂(Y)η2(γ) as a 100γ% lower bound for the unknown parameter u.
Using the γ-quantile η̂2(γ) obtained from the empirical cdf Ĥ2(w) we then treat û(Y)− b̂(Y)η̂2(γ)
as an approximate 100γ% lower bound for the unknown parameter u.

Based on the relation u = log(α) this translates into an approximate 100γ% lower bound

exp(û(Y)− b̂(Y)η̂2(γ)) = exp(log(α̂(X))− η̂2(γ)/β̂(X)) = α̂(X) exp(−η̂2(γ)/β̂(X)) for α.

Upper bounds and intervals are handled as in the previous situation for b or β.

9.3 Pivot for the p-quantile yp

With respect to the p-quantile ϑ = yp = u+ b log(− log(1− p)) = u+ bwp of the Y distribution the
natural pivot is

Wp =
ŷp(Y)− yp

b̂(Y)
=

û(Y) + b̂(Y)wp − (u+ bwp)

b̂(Y)
=
û(u+ bZ) + b̂(u+ bZ)wp − (u+ bwp)

b̂(u+ bZ)

=
u+ bû(Z) + bb̂(Z)wp − (u+ bwp)

bb̂(Z)
=
û(Z) + (b̂(Z)− 1)wp

b̂(Z)
.

Again its distribution only depends on the known distribution of Z and not on the unknown param-
eters u and b and the pivot Wp is a strictly decreasing function of yp. Denote this pivot distribution
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function by Hp(w) and its γ-quantile by ηp(γ). As before, this pivot distribution and its quantiles

can be approximated sufficiently well by simulating
{
û(Z) + (b̂(Z)− 1)wp

}
/b̂(Z) a sufficient num-

ber Nsim times. Denote the empirical cdf of such simulated values by Ĥp(w) and the corresponding
γ-quantiles by η̂p(γ).

As before we proceed with

γ = Hp(ηp(γ)) = P

(
ŷp(Y)− yp

b̂(Y)
≤ ηp(γ)

)
= P

(
ŷp(Y)− ηp(γ)b̂(Y) ≤ yp

)

and thus we can treat ŷp(Y) − ηp(γ)b̂(Y) as a 100γ% lower bound for yp. Again we can treat

ŷp(Y)− η̂p(γ)b̂(Y) as an approximate 100γ% lower bound for yp.

Since
ŷp(Y)− ηp(γ)b̂(Y) = û(Y) + wpb̂(Y)− ηp(γ)b̂(Y) = û(Y)− kp(γ)b̂(Y)

with kp(γ) = ηp(γ)− wp, we could have obtained the same lower bound by the following argument
that does not use a direct pivot, namely

γ = P (û(Y)− kp(γ)b̂(Y) ≤ yp) = P (û(Y)− kp(γ)b̂(Y) ≤ u+ bwp)

= P (û(Y)− u− kp(γ)b̂(Y) ≤ bwp)

= P

(
û(Y)− u

b
− kp(γ)

b̂(Y)

b
≤ wp

)

= P (û(Z)− kp(γ)b̂(Z) ≤ wp) = P

(
û(Z)− wp

b̂(Z)
≤ kp(γ)

)

and we see that kp(γ) can be taken as the γ-quantile of the distribution of (û(Z)− wp)/b̂(Z).

This distribution can be estimated by the empirical cdf of Nsim simulated values (û(Z?
i )−wp)/b̂(Z

?
i ),

i = 1, . . . , Nsim and its γ-quantile k̂p(γ) serves as a good approximation to kp(γ).

It is easily seen that this produces the same quantile lower bound as before. However, in this
approach one sees one further detail, namely that h(p) = −kp(γ) is strictly increasing in p1, since
wp is strictly increasing in p.

1Suppose p1 < p2 and h(p1) ≥ h(p2) with γ = P (û(Z) + h(p1)b̂(Z) ≤ wp1) and γ = P (û(Z) + h(p2)b̂(Z) ≤ wp2) =
P (û(Z) + h(p1)b̂(Z) ≤ wp1 + (wp2 − wp1) + (h(p1) − h(p2))b̂(Z)) ≥ P (û(Z) + h(p1)b̂(Z) ≤ wp1 + (wp2 − wp1)) > γ

(i.e., γ > γ, a contradiction) since P (wp1 < û(Z)+h(p1)b̂(Z) ≤ wp1 +(wp2 −wp1)) > 0. A thorough argument would
show that b̂(z) and thus û(z) are continuous functions of z = (z1, . . . , zn) and since there is positive probability in
any neighborhood of any z ∈ R there is positive probability in any neighborhood of (û(z), b̂(z)).
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Of course it makes intuitive sense that quantile lower bounds should be increasing in p since its
target p-quantiles are increasing in p. This strictly increasing property allows us to immediately
construct upper confidence bounds for left tail probabilities as is shown in the next section.

Since xp = exp(yp) is the corresponding p-quantile of the Weibull distribution we can view

exp
(
ŷp(Y)− η̂p(γ)b̂(Y)

)
= α̂(X) exp

(
(wp − η̂p(γ))/β̂(X)

)
= α̂(X) exp

(
−k̂p(γ)/β̂(X)

)
as an approximate 100γ% lower bound for xp = exp(u+ bwp) = α(− log(1− p))1/β.

Since α is the (1 − exp(−1))-quantile of the Weibull distribution, lower bounds for it can be seen
as a special case of quantile lower bounds. Indeed, this particular quantile lower bound coincides
with the one given previously.

9.4 Upper Confidence Bounds for the Tail Probability p(y) = P (Y ≤ y)

As far as an appropriate pivot for p(y) = P (Y ≤ y) is concerned, the situation here is not as
straightforward as in the previous three cases. Clearly

p̂(y) = G

(
y − û(Y)

b̂(Y)

)
is the natural estimate (mle) of p(y) = P (Y ≤ y) = G

(
y − u

b

)

and one easily sees that the distribution function H of this estimate depends on u and b only
through p(y), namely

p̂(y) = G

(
y − û(Y)

b̂(Y)

)
= G

(
(y − u)/b− (û(Y)− u)/b

b̂(Y)/b

)
= G

(
G−1(p(y))− û(Z)

b̂(Z)

)
∼ Hp(y) .

Thus by the probability integral transform it follows that

Wp(y) = Hp(y) (p̂(y)) ∼ U(0, 1)

i.e., Wp(y) is a true pivot, contrary to what is stated in Bain (1978) and Bain and Engelhardt (1991).

Rather than using this pivot we will go a more direct route as was indicated by the strictly increasing
property of h(p) = hγ(p) in the previous section. Denote by h−1(·) the inverse function to h(·). We
then have

γ = P (û(Y)+h(p)b̂(Y) ≤ yp) = P (h(p) ≤ (yp− û(Y))/b̂(Y)) = P
(
p ≤ h−1

(
(yp − û(Y))/b̂(Y)

))
,

for any p ∈ (0, 1). If we parameterize such p via p(y) = P (Y ≤ y) = G((y− u)/b) we have yp(y) = y
and thus also

γ = P
(
p(y) ≤ h−1

(
(y − û(Y))/b̂(Y)

))
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for any y ∈ R and u ∈ R and b > 0. Hence p̂U(y) = h−1
(
(y − û(Y))/b̂(Y)

)
can be viewed as

100γ% upper confidence bound for p(y) for any given threshold y.

The only remaining issue is the computation of such bounds. Does it require the inversion of h
and the concomitant calculations of many h(p) = −k(p) for the iterative convergence of such an
inversion? It turns out that there is a direct path just as we had it in the previous three confidence
bound situations.

Note that h−1(x) solves −kp = x for p. We claim that h−1(x) is the γ-quantile of the G(û(Z)+xb̂(Z))

distribution which we can simulate by calculating as before û(Z) and b̂(Z) a large numberNsim times.
The above claim concerning h−1(x) is seen as follows. If for any x = h(p) we have

P (G(û(Z) + xb̂(Z)) ≤ h−1(x)) = P (G(û(Z) + h(p)b̂(Z)) ≤ p)

= P (û(Z) + h(p)b̂(Z) ≤ wp)

= P (û(Z)− kγ(p)b̂(Z) ≤ wp) = γ ,

as seen in the previous section. Thus h−1(x) is the γ-quantile of the G(û(Z) + xb̂(Z)) distribution.

If we observe Y = y and obtain û(y) and b̂(y) as our maximum likelihood estimates for u and
b we get our 100γ% upper bound for p(y) = G((y − u)/b) as follows: For the fixed value of
x = (y − û(y))/b̂(y) = G−1(p̂(y)) simulate the G(û(Z) + xb̂(Z)) distribution (with sufficiently high
Nsim) and calculate the γ-quantile of this distribution as the desired approximate 100γ% upper
bound for p(y) = P (Y ≤ y) = G((y − u)/b).

10 Tabulation of Confidence Quantiles η(γ)

For the pivots for b, u and yp it is possible to carry out simulations once and for all for a desired set
of confidence levels γ, sample sizes n and choices of p, and tabulate the required confidence quantiles
η̂1(γ), η̂2(γ), and η̂p(γ). This has essentially been done (with

√
n scaling modifications) and such

tables are given in Bain (1978), Bain and Engelhardt (1991) and Thoman et al. (1969,1970). Similar
tables for bounds on p(y) are not quite possible since the appropriate bounds depend on the observed
value of p̂(y), which varies from sample to sample. Instead Bain (1978), Bain and Engelhardt (1991)
and Thoman et al. (1970) tabulate confidence bounds for p(y) for a reasonably fine grid of values
for p̂(y), which can then serve for interpolation purposes with the actually observed value of p̂(y).

It should be quite clear that all this requires extensive tabulation. The use of these tables is not
easy. Table 4 in Bain (1978) does not have a consistent format and using these tables would
require delving deeply into the text for each new use, unless one does this kind of calculation all
the time. In fact, in the second edition, Bain and Engelhardt (1991), Table 4 has been greatly
reduced to just cover the confidence factors dealing with the location parameter u, and it now
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leaves out the confidence factors for general p-quantiles. For the p-quantiles one is referred to the
same interpolation scheme that is needed when getting confidence bounds for p(y), using Table 7
in Bain and Engelhardt (1991). The example that they present (page 248) would have benefitted
by showing some intermediate steps in the interpolation process. They point out that the resulting
confidence bound for xp is slightly different (14.03) from that obtained using the confidence quantiles
of the original Table 4, namely 13.92. They attribute the difference to round-off errors or other
discrepancies. Among the latter one may consider that possibly different simulations were involved.

Further, note that some entries in the tables given in Bain (1978) seem to have typos. Presumably
they were transcribed by hand from computer output, just as the book (and its second edition) itself
is typed and not typeset. We give just give a few examples. In Bain (1978) Table 4A, p.235, bottom
row, the second entry from the right should be 3.625 instead of 3.262. This discrepancy shows up
clearly when plotting the row values against log(p/(1 − p)), see a similar plot for a later example.
In Table 3A, p.222, row 3 column 5 shows a double minus sign (still present in the 1991 second
edition). In comparing the values of these tables with our own simulation of pivot distribution
quantiles, just to validate our simulation for n = 40, we encountered an apparent error in Table
4A, p. 235 with last column entry of 4.826. Plotting log(p/(1− p)) against the corresponding row
value (γ-quantiles) one clearly sees a change in pattern, see the top plot in Figure 9. We suspect
that the whole last column was calculated for p = .96 instead of the indicated p = .98. The bottom
plot shows our simulated values for these quantiles as solid dots with the previous points (circles)
superimposed.

The agreement is good for the first 8 points. Our simulated γ-quantile was 5.725 (corresponding to
the 4.826 above) and it fits quite smoothly into the pattern of the previous 8 points. Given that
this was the only case chosen for comparison it leaves some concern in fully trusting these tables.
However, this example also shows that the great majority of tabled values are valid.

11 The R Function WeibullPivots

Rather than using these tables we will resort to direct simulations ourselves since computing speed
has advanced sufficiently over what was common prior to 1978. Furthermore, computing availability
has changed dramatically since then. It may be possible to further increase computing speed by
putting the loop over Nsim calculations of mle’s into compiled form rather than looping within R for
each simulation iteration. For example, using qbeta in vectorized form reduced the computing time
to almost 1/3 of the time compared to looping within R itself over the elements in the argument
vector of qbeta.

However, such an increase in speed would require writing C-code (or Fortran code) and linking that
in compiled form to R. Such extensions of R are possible, see chapter 5 System and foreign language
interfaces in the Writing R Extensions manual available under the toolbar Help in R.
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Figure 9: Abnormal Behavior of Tabulated Confidence Quantiles
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For the R function WeibullPivots (available within the R work space for Weibull Distribution
Applications on the class web site) the call

system.time(WeibullPivots(Nsim = 10000, n = 10, r = 10, graphics = F))

gave an elapsed time of 59.76 seconds. Here the default sample size n = 10 was used and r = 10
(also default) indicates that the 10 lowest sample values are given and used, i.e., in this case the
full sample. Also, an internally generated Weibull data set was used, since the default in the call to
WeibullPivots is weib.sample=NULL. For sample sizes n = 100 with r = 100 and n = 1000 with
r = 1000 the corresponding calls resulted in elapsed times of 78.22 and 269.32 seconds, respectively.
These three computing times suggest strong linear behavior in n as is illustrated in Figure 10. The
intercept 57.35 and slope of .2119 given here are fairly consistent with the intercept .005886 and
slope of 2.001× 10−5 given in Figure 4. The latter give the calculation time of a single set of mle’s
while in the former case we calculate Nsim = 10000 such mle’s, i.e., the previous slope and intercept
for a single mle calculation need to be scaled up by the factor 10000.

For all the previously discussed confidence bounds, be they upper or lower bounds for their respective
targets, all that is needed is the set of (û(zi), b̂(zi)) for i = 1, . . . , Nsim. Thus we can construct
confidence bounds and intervals for u and b, for yp for any collection of p values, and for p(y) and
1− p(y) for any collection of threshold values y and we can do this for any set of confidence levels
that make sense for the simulated distributions, i.e., we don’t have to run the simulations over and
over for each target parameter, confidence level, p or y, unless one wants independent simulations
for some reason.

Proper use of this function only requires understanding the calling arguments, purpose, and output
of this function, and the time to run the simulations. The time for running the simulation should
easily beat the time spent in dealing with tabulated confidence quantiles in order to get desired
confidence bounds, especially since WeibullPivots does such calculations all at once for a broad
spectrum of yp and p(y) and several confidence levels without greatly impacting the computing time.
Furthermore, WeibullPivots does all this not only for full samples but also for type II censored
samples, for which appropriate confidence factors are available only sparsely in tables.

We will now explain the calling sequence of WeibullPivots and its output. The calling sequence
with all arguments given with their default values is as follows:

WeibullPivots(weib.sample=NULL,alpha=10000,beta=1.5,n=10,r=10,

Nsim=1000,threshold=NULL,graphics=T)

Here Nsim = Nsim has default value 1000 which is appropriate when trying to get a feel for the
function for any particular data set. The sample size is input as n = n and r = r indicates the
number of smallest sample values available for analysis. When r < n we are dealing with a type II
censored data set where observation stops as soon as the smallest r lifetimes have been observed.

We need r > 1 and at least two distinct observations among X(1), . . . , X(r) in order to estimate
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Figure 10: Timings for WeibullPivots for Various n

any spread in the data. The available sample values X1, . . . , Xr (not necessarily ordered) are given
as vector input to weib.sample. When weib.sample=NULL (the default), an internal data set is
generated as input sample from fromW(α, β) with α = alpha = 10000 (default) and β = beta = 1.5
(default), either by using the full sample X1, . . . , Xn or a type II censored sample X1, . . . , Xr when
r < n is specified. The input thresh (= NULL by default) is a vector of thresholds y for which
we desire upper confidence bounds for p(y). The input graphics (default T) indicates whether
graphical output is desired.

Confidence levels γ are set internally as .005, .01, .025, .05, .10, .02, .8, .9, .95, .975, .99, .995 and these
levels indicate the coverage probability for the individual one-sided bounds. A .025 lower bound
is reported as a .975 upper bound, and a pair of .975 lower and upper bounds constitute a 95%
confidence interval. The values of p for which confidence bounds or intervals for xp are provided
are also set internally as .001, .005, .01, .025, .05, .1, (.1), .9, .95, .975, .99, .995, .999.

The output from WeibullPivots is a list with components:

$alpha.hat, $alpha.hat, $alpha.beta.bounds,$p.quantile.estimates, $p.quantile.bounds,
$Tail.Probability.Estimates, and $Tail.Probability.Bounds. The structure and meaning of
these components will become clear from the example output given below.
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$alpha.hat

(Intercept)

8976.2

$beta.hat

[1] 1.95

$alpha.beta.bounds

alpha.L alpha.U beta.L beta.U

99.5% 5094.6 16705 0.777 3.22

99% 5453.9 15228 0.855 3.05

97.5% 5948.6 13676 0.956 2.82

95% 6443.9 12608 1.070 2.64

90% 7024.6 11600 1.210 2.42

80% 7711.2 10606 1.390 2.18

$p.quantile.estimates

0.001-quantile 0.005-quantile 0.01-quantile 0.025-quantile 0.05-quantile

259.9 593.8 848.3 1362.5 1957.0

0.1-quantile 0.2-quantile 0.3-quantile 0.4-quantile 0.5-quantile

2830.8 4159.4 5290.4 6360.5 7438.1

0.6-quantile 0.7-quantile 0.8-quantile 0.9-quantile 0.95-quantile

8582.7 9872.7 11457.2 13767.2 15756.3

0.975-quantile 0.99-quantile 0.995-quantile 0.999-quantile

17531.0 19643.5 21107.9 24183.6

$p.quantile.bounds

99.5% 99% 97.5% 95% 90% 80%

0.001-quantile.L 1.1 2.6 6.0 12.9 28.2 60.1

0.001-quantile.U 1245.7 1094.9 886.7 729.4 561.4 403.1

0.005-quantile.L 8.6 16.9 31.9 57.4 106.7 190.8

0.005-quantile.U 2066.9 1854.9 1575.1 1359.2 1100.6 845.5

0.01-quantile.L 20.1 36.7 65.4 110.1 186.9 315.3

0.01-quantile.U 2579.8 2361.5 2021.5 1773.9 1478.4 1165.8

0.025-quantile.L 62.8 103.5 169.7 259.3 398.1 611.0

0.025-quantile.U 3498.8 3206.6 2827.2 2532.5 2176.9 1783.5
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0.05-quantile.L 159.2 229.2 352.6 497.5 700.0 1011.9

0.05-quantile.U 4415.7 4081.3 3673.7 3329.5 2930.0 2477.2

0.1-quantile.L 398.3 506.3 717.4 962.2 1249.5 1679.1

0.1-quantile.U 5584.6 5261.9 4811.6 4435.7 3990.8 3474.1

0.2-quantile.L 1012.6 1160.2 1518.8 1882.9 2287.1 2833.2

0.2-quantile.U 7417.1 6978.2 6492.8 6031.2 5543.2 4946.9

0.3-quantile.L 1725.4 1945.2 2383.9 2820.0 3305.0 3929.0

0.3-quantile.U 8919.8 8460.0 7939.8 7384.1 6865.0 6211.4

0.4-quantile.L 2548.0 2848.2 3345.2 3806.6 4353.9 5008.2

0.4-quantile.U 10616.3 10130.4 9380.3 8778.2 8139.3 7421.2

0.5-quantile.L 3502.4 3881.1 4415.1 4873.3 5443.0 6107.3

0.5-quantile.U 12809.0 11919.1 10992.9 10226.8 9485.1 8703.4

0.6-quantile.L 4694.0 5022.6 5573.8 6052.8 6624.4 7300.4

0.6-quantile.U 15626.1 14350.6 12941.3 11974.8 11041.1 10106.2

0.7-quantile.L 6017.1 6399.0 6876.6 7345.8 7938.2 8628.0

0.7-quantile.U 19271.6 17679.9 15545.8 14181.1 12958.0 11784.2

0.8-quantile.L 7601.3 7971.0 8465.4 8933.5 9504.0 10244.2

0.8-quantile.U 24765.2 22445.0 19286.0 17236.0 15605.6 13952.2

0.9-quantile.L 9674.7 10033.7 10538.6 11031.1 11653.0 12460.3

0.9-quantile.U 35233.4 31065.3 26037.4 22670.5 19835.3 17417.5

0.95-quantile.L 11203.6 11584.6 12145.2 12660.2 13365.5 14311.2

0.95-quantile.U 46832.9 40053.3 32863.1 27904.7 23903.9 20703.0

0.975-quantile.L 12434.7 12833.5 13449.7 14030.5 14781.8 15909.1

0.975-quantile.U 59783.1 49209.9 39397.8 33118.7 27938.4 23773.7

0.99-quantile.L 13732.6 14207.7 14876.0 15530.0 16431.7 17783.1

0.99-quantile.U 76425.0 61385.4 48625.4 40067.3 33233.8 27729.8

0.995-quantile.L 14580.4 15115.4 15810.0 16530.6 17551.8 19081.0

0.995-quantile.U 89690.9 71480.4 55033.4 45187.1 36918.7 30505.0

0.999-quantile.L 16377.7 16885.9 17642.5 18557.1 19792.4 21744.7

0.999-quantile.U 121177.7 95515.7 71256.5 56445.5 45328.1 36739.2

$Tail.Probability.Estimates

p(6000) p(7000) p(8000) p(9000) p(10000) p(11000) p(12000) p(13000)

0.36612 0.45977 0.55018 0.63402 0.70900 0.77385 0.82821 0.87242

p(14000) p(15000)

0.90737 0.93424
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$Tail.Probability.Bounds

99.5% 99% 97.5% 95% 90% 80%

p(6000).L 0.12173 0.13911 0.16954 0.19782 0.23300 0.28311

p(6000).U 0.69856 0.67056 0.63572 0.59592 0.54776 0.49023

p(7000).L 0.17411 0.20130 0.23647 0.26985 0.31017 0.36523

p(7000).U 0.76280 0.73981 0.70837 0.67426 0.62988 0.57670

p(8000).L 0.23898 0.26838 0.30397 0.34488 0.38942 0.44487

p(8000).U 0.82187 0.80141 0.77310 0.74260 0.70414 0.65435

p(9000).L 0.30561 0.33149 0.37276 0.41748 0.46448 0.52203

p(9000).U 0.87042 0.85462 0.82993 0.80361 0.77045 0.72545

p(10000).L 0.36871 0.39257 0.44219 0.48549 0.53589 0.59276

p(10000).U 0.91227 0.89889 0.87805 0.85624 0.82667 0.78641

p(11000).L 0.41612 0.45097 0.50030 0.54631 0.59749 0.65671

p(11000).U 0.94491 0.93318 0.91728 0.89891 0.87425 0.83973

p(12000).L 0.46351 0.50388 0.55531 0.60133 0.65374 0.71215

p(12000).U 0.96669 0.95936 0.94650 0.93210 0.91231 0.88377

p(13000).L 0.50876 0.54776 0.60262 0.65055 0.70218 0.76148

p(13000).U 0.98278 0.97742 0.96794 0.95756 0.94149 0.91745

p(14000).L 0.54668 0.58696 0.64619 0.69359 0.74451 0.80178

p(14000).U 0.99201 0.98837 0.98205 0.97459 0.96267 0.94321

p(15000).L 0.58089 0.62534 0.68389 0.73194 0.78068 0.83590

p(15000).U 0.99653 0.99449 0.99092 0.98596 0.97764 0.96268

The above output was produced with

WeibullPivots(threshold = seq(6000, 15000, 1000), Nsim = 10000, graphics = T).

Since we entered graphics=T as argument we also got two pieces of graphical output. The first
gives the two intrinsic pivot distributions of û/b̂ and b̂ in Figure 11. The second gives a Weibull
plot of the generated sample with a variety of information and with several types of confidence
bounds, see Figure 12. The legend in the upper left gives the mle’s of α, β (agreeing with the
output above), and the mean µ = αΓ(1 + 1/β) together with 95% confidence intervals, based on
respective normal approximation theory for the mle’s. The legend in the lower right explains the
red fitted line (representing the mle fit) and the various point-wise confidence bound curves, giving
95% confidence intervals (blue dashed curves) for p-quantiles xp for any p on the ordinate and 95%
confidence intervals (green dot-dashed line) for p(y) for any y on the abscissa. Both of these interval
types use normal approximations from large sample mle theory. Unfortunately these two types of
bounds are not dual to each other, i.e., don’t coincide or to say it differently, one is not the inverse
to the other.
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Figure 11: Pivot Distributions of û/b̂ and b̂
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Figure 12: Weibull Plot Corresponding to Previous Output
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A third type of bound is presented in the orange curve which simultaneously provides 95% confidence
intervals for xp and p(x), depending on the direction in which the curves are used. We either read
sideways from p and down from the curve (at that p level) to get upper and lower bounds for xp, or
we read vertically up from an abscissa value x to read off upper and lower bounds for p(x) on the
ordinate axis as we go from the respective curves at that x value to the left. These latter bounds
are also based on normal mle approximation theory and the approximation will naturally suffer for
small sample sizes. However, the principle behind these bounds is a unifying one in that the same
curve is used for quantile and tail probability bounds. If instead of using the approximating normal
distribution one uses the parametric bootstrap approach (simulating samples from an estimated
Weibull distribution) the unifying principle reduces to the pivot simulation approach, i.e., is basically
exact except for the simulation aspect Nsim <∞.

The curves representing the latter (pivots with simulated distributions) are the solid black lines
connecting the solid black dots which represent the xp 95% confidence intervals (using the 97.5%
lower and upper bounds to xp given in our output example above. Also seen on these curves are
solid red dots that correspond to the abscissa values x = 6000, (1000), 15000 and viewed vertically
they represent 95% confidence intervals for p(x). This illustrates that the same curves are used.

Figure 13 represents an extreme case where we have a sample of size n = 2 and here another aspect
becomes apparent. Both of the first two types of bounds (blue and green) are no longer monotone
in p or x respectively. This is in the nature of an imperfect normal approximation for these two
approaches. Thus we could not (at least not generally) have taken either to take the role of serving
both purposes, i.e., as providing bounds for xp and p(x) simultaneously. However, the orange curve
is still monotone and still serves that dual purpose, although its coverage probability properties are
bound to be affected badly by the small sample size n = 2. The pivot based curves are also strictly
monotone and they have exact coverage probability, subject to the Nsim <∞ limitation.
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Figure 13: Weibull Plot for Weibull Sample of Size n = 2
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12 Regression

Here we extend the results of the previous location/scale model for log-transformed Weibull samples
to the more general regression model where the location parameter u for Yi = log(Xi) can vary with
i, specifically it varies as a linear combination of known covariates ci,1, . . . , ci,k for the ith observation
as follows:

ui = ζ1ci,1 + . . .+ ζkci,k , i = 1, . . . , n ,

while the scale parameter b stays constant. Thus we have the following model for Y1, . . . , Yn

Yi = ui + bEi = ζ1ci,1 + . . .+ ζkci,k + bZi , i = 1, . . . , n ,

with independent Zi ∼ G(z) = 1− exp(− exp(z)), i = 1, . . . , n, and unknown parameters b > 0 and
ζ1, . . . , ζk ∈ R.

Two concrete examples of this general linear model will be discussed in detail later on. The first is
the simple linear regression model and the other is the k-sample model, which exemplifies ANOVA
situations.

It can be shown (Scholz, 1996) that the mle’s ζ̂ ′ = (ζ̂1, . . . , ζ̂k) and b̂ of ζ and b exist and are unique
provided the covariate matrix C, consisting of the rows c′i = (ci,1, . . . , ci,k), i = 1, . . . , n, has full
rank k and n > k. It is customary that the first column of C is a vector of n 1’s. Alternatively,
one can also only specify the remaining k − 1 columns and implicitly invoke the default option in
survreg that augments those columns with such a 1-vector. These two usages are illustrated in the
function WeibullReg which is given on the next page.

It is very instructive to run this function as part of the following call:

{\tt system.time(for(i in 1:1000)WeibullReg())} ,

i.e., we execute the function WeibullReg a thousand times in close succession.

The rapidly varying plots give a good visual image of the sampling uncertainty and the resulting
sampling variation of the fitted lines. The fixed line represents the true line with respect to which
the Weibull data are generated by simulation. Of course, the log-Weibull data are plotted because
of its more transparent relationship to the true line. It is instructive to see the variability of the
data clouds around the true line, but also the basic stability of the overall cloud pattern as a whole.

On my laptop the elapsed time for this call is about 15 seconds, and this includes the plotting time.
When the plotting commands are commented out the elapsed time reduces to about 9 seconds.
This promises reasonable behavior with respect to the computing times that can be anticipated for
the confidence bounds to be discussed below.
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WeibullReg <- function (n=50,x=NULL,alpha=10000,beta=1.5,slope=.05)

{

# We can either input our own covariate vector x of length n

# or such a vector is generated for us (default).

#

if(is.null(x)) x <- (1:n-(n+1)/2)

uvec <- log(alpha)+slope*x

b <- 1/beta

# Create the Weibull data

time <- exp(uvec+b*log(-log(1-runif(n))))

# Creating good vertical plotting limits

m <- min(uvec)+b*log(-log(1-1/(3*n+1)))

M <- max(uvec)+b*log(-log(1/(3*n+1)))

plot(x,log(time),ylim=c(m,M))

dat <- data.frame(time,x)

out <- survreg(Surv(time)~x,data=dat,dist="weibull")

# The last two lines would give the same result as the next three lines

# after removing the # signs.

# x0 <- rep(1,n)

# dat <- data.frame(time,x0,x)

# survreg(formula = Surv(time) ~ x0 + x - 1, data = dat, dist = "weibull")

# Here we created the vector x0 of ones explicitly and removed the implicit

# vector of ones by the -1 in ~ x0+x-1.

# Note also, that we did not use a status vector (of ones) in the creation

# of dat, since survreg will use status = 1 for each observation, i.e,

# treat the given time as a failure time as default.

abline(log(alpha),slope) #true line

# estimated line

abline(out$coef[1],out$coef[2],col="blue",lty=2)

# Here out has several components, of which only

# out$coef and out$scale of of interest to us.

# The estimate out$scale is the mle of b=1/beta

# and out$coef is a vector that gives the mle’s

# of intercept and the various regression coefficients.

out

}
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12.1 Equivariance Properties

From the existence and uniqueness of the mle’s we can again deduce the following equivariance
properties for the mle’s, namely for r = Ca + σz we have

ζ̂(r) = a + σζ̂(z) and b̂(r) = σb̂(z) .

The proof follows the familiar line used in the location/scale case. With ri = c′ia + σzi we have

sup
b,ζ

{
n∏

i=1

1

b
g

(
ri − c′iζ

b

)}
=

1

σn
sup
b,ζ

{
n∏

i=1

1

b/σ
g

(
zi − c′i(ζ − a)/σ

b/σ

)}

using ζ̃ = (ζ − a)/σ and b̃ = b/σ =
1

σn
sup
b̃,ζ̃

{
n∏

i=1

1

b̃
g

(
zi − c′iζ̃

b̃

)}

=
1

σn

n∏
i=1

1

b̂(z)
g

(
zi − c′iζ̂(z)

b̂(z)

)
On the other hand

sup
b,ζ

{
n∏

i=1

1

b
g

(
ri − c′iζ

b

)}
=

n∏
i=1

1

b̂(r)
g

(
ri − c′iζ̂(r)

b̂(r)

)

=
1

σn

n∏
i=1

1

b̂(r)/σ
g

(
zi − c′i(ζ̂(r)− a)/σ

b̂(r)/σ

)

and by the uniqueness of the mle’s the equivariance claim is an immediate consequence.

12.2 Pivots and Confidence Bounds

From these equivariance properties it follows that (ζ̂ − ζ)/b̂ and b̂/b have distributions that do not
depend on any unknown parameters, i.e., b and ζ. The log-transformed Weibull data have the
following regression structure Y = Cζ + bZ, where Z = (Z1, . . . , Zn)′ consists of independent and
identically distributed components with known cdf G(z) = 1−exp(− exp(z)). From the equivariance
property we have that

ζ̂(Y ) = ζ + b ζ̂(Z) and b̂(Y ) = b b̂(Z) .

Thus
ζ̂(Y )− ζ

b̂(Y )
=
b ζ̂(Z)

b b̂(Z)
=
ζ̂(Z)

b̂(Z)
and

b̂(Y )

b
=
b b̂(Z)

b
= b̂(Z) ,
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which have a distribution free of any unknown parameters. This distribution can be approximated
to any desired degree via simulation, just as in the location scale case, except that we will need to
incorporate the known covariate matrix C in the call to survreg in order to get the Nsim simulated
parameter vectors (ζ̂(Z?

1), b̂1(Z
?
1)), . . . , (ζ̂(Z

?
Nsim

), b̂(Z?
Nsim

)) and thus the empirical distribution of

(ζ̂(Z?
1)/b̂1(Z

?
1), b̂1(Z

?
1)), . . . , (ζ̂(Z

?
Nsim

)/b̂(Z?
Nsim

), b̂(Z?
Nsim

)).

For any target covariate vector c′0 = (c0,1, . . . , c0,k) the distribution of (c′0ζ̂(Y )− c′0ζ)/b̂(Y ) is free
of unknown parameters since

c′0ζ̂(Y )− c′0ζ

b̂(Y )
=

c′0ζ̂(Z)

b̂(Z)

and we can use the simulated values (c′0ζ̂(Z
?
i ))/b̂(Z

?
i ), i = 1, . . . , Nsim, to approximate this pa-

rameter free distribution. If η̂2(γ, c0) denotes the γ-quantile of this simulated distribution then we
can view c′0ζ̂(Y ) − η̂2(γ, c0)b̂(Y ) as an approximate 100γ% lower bound for c′0ζ, the log of the
characteristic life at the covariate vector c0. This can be demonstrated as in the location/scale case
for the location parameter u.

Similarly, if η̂1(γ) is the γ-quantile of the simulated b̂(Z?
i ), i = 1, . . . , Nsim, then we can view

b̂(Y )/η̂1(γ) as approximate 100γ% lower bound for b. We note here that these quantiles η̂1(γ)
and η̂2(γ, c0) depend on the original covariance matrix C, i.e., they differ from those used in the
location/scale case. The same comment applies to the other confidence bound procedures following
below.

For a given covariate vector c0 we can target the p-quantile yp(c0) = c′0ζ+ bwp of the Y distribution
with covariate dependent location parameter u(c0) = c′0ζ and scale parameter b. We can calculate
c′0ζ̂(Y )− k̂p(γ)b̂(Y ) as an approximate 100γ% lower bound for yp(c0), where k̂p(γ) is the γ-quantile

of the simulated (c′0ζ̂(Z
?
i )− wp)/b̂(Z

?
i ), i = 1, . . . , Nsim.

For the tail probability p(y0) = G((y0 − c′0ζ)/b) with given threshold y0 and covariate vector c0 we
obtain an approximate 100γ% upper bound by using the γ-quantile of the simulated values

G(c′0ζ̂(Z
?
i )− xb̂(Z?

i )), i = 1, . . . , Nsim ,

where x = (y0 − c′0ζ̂(y)/b̂(y) and y is the originally observed sample vector, obtained under the
covariate conditions specified through V .

We note here that the above confidence bounds for the log(characteristic life) or regression location,
p-quantiles and tail probabilities depend on the covariate vector c0 that is specified. Not only does
this dependence arise through the use of c′0ζ̂(Y ) in each case but also through the simulated
distributions which incorporate c0 in each of these three situations. The only exception is the
confidence bound for b, which makes sense since we assumed a constant scale for all covariate
situations.
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12.3 The Simple Linear Regression Model

Here we assume the following simple linear regression model for the Yi = log(Xi)

Yi = ζ1 + ζ2ci , i = 1, . . . , n .

In matrix notation this becomes

Y =


Y1
...
Yn

 =


1 c1
...

...
1 cn


(
ζ1
ζ2

)
+ b


Z1
...
Zn

 = Cζ + b Z .

Here ζ1 and ζ2 represent the intercept and slope parameters in the straight line regression model for
the location parameter and b represents the degree of scatter (scale) around that line. In the context
of the general regression model we have k = 2 here and c1,i = 1 and c2,i = ci for i = 1, . . . , n. The
conditions for existence and uniqueness of the mle’s are satisfied when the covariate values c1, . . . , cn
are not all the same.

The R function call system.time(WeibullRegSim(n=20,Nsim=10000)) (done twice and recording
an elapsed time of about 76 seconds each) produced each of the plots in Figure 14. Each call
generates its own data set of 20 points using 5 different levels of covariate values. The data are
generated from a true Weibull distribution with a known true regression line relationship for log(α)
in relation to the covariates, as shown in the plots. Also shown in these plots is the .10-quantile
line. Estimated lines are indicated by the corresponding color coded dashed lines.

In contrast, the quantile lower confidence bounds based on Nsim = 10000 simulations are represented
by a curve. This results from the fact that the factor k̂p(γ) used in the construction of the lower

bound, ζ̂1(Y )+ ζ̂2(Y )c− k̂p(γ)b̂(Y ), is the γ-quantile of the simulated values (c′0ζ̂(Z
?
i )−wp)/b̂(Z

?
i ),

i = 1, . . . , Nsim, and these values change depending on which c′0 = (1, c) is involved. This curvature
adjusts to some extent to the sampling variation swivel action in the fitted line.

We repeated the above with a sample of size n = 50 (taking about 85 seconds for each plot) and the
corresponding two plots are shown in Figure 15. We point out two features. In this second set of
plots the lower confidence bound curve is generally closer to the fitted quantile line than in the first
set of plots. This illustrates the sample size effect, i.e., we are getting better or less conservative in
our bounds. The second feature shows up in the bottom plot where the confidence curve crosses
the true percentile line, i.e., it gets on the wrong side of it. Such things happen, because we have
only 95% confidence in the bound. Note that these bounds should be interpreted point-wise for
each covariate value and should not be viewed as simultaneous confidence bands.

The function WeibullRegSim is part of the R workspace on the class web site. It can easily be
modified to handle any simple linear regression Weibull data set. Multiple regression relationships
could also be accommodated quite easily. To get a feel for the behavior of the confidence bounds it
is useful to exercise this function repeatedly, but using Nsim = 1000 for faster response.
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Figure 14: Weibull Regression with Quantile Bounds (n = 20)
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Figure 15: Weibull Regression with Quantile Bounds (n = 50)
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12.4 The k-Sample Problem

A second illustration example concerns the situation of k = 3 samples with same scale but possibly
different locations. In terms of the untransformed Weibull data this means that we have possibly
different unknown characteristic life parameters (α1, α2, α3) but same unknown shape β for each
sample. The modifications for k 6= 3 should be obvious. In matrix notation this model is

Y =



Y1
...
Yn1

...
Yn1+1

...
Yn1+n2

Yn1+n2+1
...

Yn1+n2+n3



=



1 0 0
...

...
...

1 0 0
1 1 0
...

...
...

1 1 0
1 0 1
...

...
...

1 0 1



 ζ1
ζ2
ζ3

+ b



Z1
...
Zn1

...
Zn1+1

...
Zn1+n2

Zn1+n2+1
...

Zn1+n2+n3



= Cζ + b Z .

Here the Yi have location u1 = ζ1 for the first n1 observations, they have location u2 = ζ1 + ζ2 for
the next n2 observations and they have location u3 = ζ1 + ζ3 for the last n3 observations. Thus we
can consider u1 = ζ1 as the baseline location (represented by the first n1 observations), ζ2 can be
considered as the incremental change from u1 to u2 and ζ3 is the incremental change from u1 to u3.

If we were interested in the question whether the three samples come from the same location/scale
model we would consider testing the hypothesis H0 : ζ2 = ζ3 = 0 or equivalently H0 : u1 = u2 = u3.
Instead of using the likelihood ratio test, which invokes the χ2

k−1 = χ2
2 distribution as approximate

null distribution, we will employ the test statistic suggested in Lawless (1982) (p. 302, equation
(6.4.12)) for which the same approximate null distribution is invoked. Our reason for following this
choice is its similarity to the standard test statistic used in the corresponding normal distribution
model, i.e., when Zi ∼ Φ(z) instead of Zi ∼ G(z) as in the above regression model. Also, the
modification of this test statistic for general k(6= 3) is obvious. The formal definition of the test
statistic proposed by Lawless is as follows:

Λ1 = (ζ̂2, ζ̂3)K
−1
11 (ζ̂2, ζ̂3)

t ,

where K11 is the asymptotic 2 × 2 covariance matrix of (ζ̂2, ζ̂3). Without going into the detailed
derivation one can give the following alternate and more transparent expression for Λ1

Λ1 =

∑3
i=1 ni(ûi(Y )− û(Y ))2

b̂(Y )2
,
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where

û1(Y ) = ζ̂1(Y ) , û2(Y ) = ζ̂1(Y )+ζ̂2(Y ) , û3(Y ) = ζ̂1(Y )+ζ̂3(Y ) and û(Y ) =
3∑

i=1

(ni/N)ûi(Y ) ,

with N = n1+n1+n3. In the normal case Λ1 reduces to the traditional F -test statistic (except for a
constant multiplier, namely (n−k)/((k−1)n) = (n−3)/(2n)) when writing ûi(Y ) = Ȳi., i = 1, 2, 3
and û(Y ) = Ȳ.. = (n1/N)Ȳ1. + (n2/N)Ȳ2. + (n3/N)Ȳ3. and

b̂(Y )2 =
1

n

k∑
i=1

ni∑
j=1

(Yij − Ȳi.)2 ,

which are the corresponding mle’s in the normal case. However, in the normal case one uses the
Fk−1,N−k distribution as the exact null distribution of the properly scaled Λ1 and the uncertainty

in b̂(Y )2 is not ignored by simply referring to the χ2
k−1 distribution, using a large sample argument.

We don’t have to use a large sample approximation either, since the null distribution of Λ1 (in the
log-Weibull case) is free of any unknown parameters and can be simulated to any desired degree of
accuracy. This is seen as follows from our equivariance properties. Recall that

û1(Y )− u1

b̂(Y )
=
ζ1(Y )− ζ1

b̂(Y )
,
ûi(Y )− ui

b̂(Y )
=
ζ1(Y ) + ζi(Y )− (ζ1 + ζi)

b̂(Y )
, i = 2, 3

have distributions free of unknown parameters. Under the hypothesis H0 when u1 = u2 = u3(= u)
we thus have that

ûi(Y )− u

b̂(Y )
,

û(Y )− u

b̂(Y )
, and thus

ûi(Y )− û(Y )

b̂(Y )
=
ûi(Y )− u

b̂(Y )
− û(Y )− u

b̂(Y )

have distributions free of any unknown parameters which in turn implies the above claim about Λ1.

Thus we can estimate the null distribution of Λ1 by using the Nsim simulated values of ζ̂i(Z
?
j)/b̂(Z

?
j)

to create

û1(Z
?
j)

b̂(Z?
j)

=
ζ̂1(Z

?
j)

b̂(Z?
j)

,
ûi(Z

?
j)

b̂(Z?
j)

=
ζ̂1(Z

?
j) + ζ̂i(Z

?
j)

b̂(Z?
j)

, i = 2, 3 and
û(Z?

j)

b̂(Z?
j)

=

∑3
i=1 niûi(Z

?
j)/N

b̂(Z?
j)

and thus

Λ1(Z
?
j) =

∑3
i=1 ni(ûi(Z

?
j)− û(Z?

j))
2

b̂(Z?
j)

2
j = 1, . . . , Nsim .

The distribution of these Nsim values Λ1(Z
?
j) will give a very good approximation for the true null

distribution of Λ1. The accuracy of this approximation is entirely controllable by the choice of Nsim.
Nsim = 10000 should be sufficient for most practical purposes.
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The following plots examine the χ2
2 approximation to the Λ1 null distribution in the case of 3

samples of respective sizes n1 = 5, n2 = 7 and n3 = 9. This is far from qualifying for a large
sample situation. The histogram in Figure 16 is based on Nsim = 10000 simulated values of Λ1(Z

?).
Although the superimposed χ2

2 density is similar in character, there are strong differences. Using
the χ2

2 distribution would result in much smaller p-values than appropriate when these are on the
low side.

ΛΛ1
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Figure 16: Histogram of Λ1 Null Distribution with Asymptotic Approximation

Figure 17 shows a QQ-plot of the approximating χ2
2-quantiles corresponding to the Nsim = 10000

simulated and ordered Λ1(Z
?
i ) values. For a good approximation the points should follow the

shown main diagonal. The discrepancy is quite strong. Each point on this plot corresponds to a
p-quantile where the abscissa value of such a point gives us the approximate p-quantile of the Λ1

null distribution and the corresponding ordinate gives us the p-quantile of the χ2
2 distribution which

is suggested as asymptotic approximation. The vertical probability scale facilitates the reading off
of p for each quantile level on either axis.
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Figure 17: QQ-Plots Comparing Λ1(Z
?) with χ2

2

Clearly the p-quantiles of the χ2
2 distribution are smaller than the corresponding p-quantiles of the

the Λ1 null distribution. If we take the p corresponding to a Λ1 on the abscissa and look up its p′

according to the χ2
2 scale, we only need to go up to the main diagonal at that abscissa location and

look up the p′ on the χ2
2 scale to the left. For example, the .95-quantile for the Λ1 null distribution

would yield a p′ ≈ .994 on the χ2
2 scale. Thus a true Λ1 p-value of .05 would translate into a very

overstated observed significance level of .006 according to the χ2
2 approximation.

Figure 18 shows the comparison of the χ2
2-quantiles with the corresponding quantiles of the 2×F2,21−3

distribution (the factor 2 adjusts for the fact that the numerator of the F statistic is divided by
k − 1 = 2). This comparison is the counter part to the previous situation if we were to use the
asymptotic χ2

2 distribution as approximation to the exact and true 2 × F -ratio distribution had
we carried out the corresponding test in a normal data situation, i.e., tested whether three normal
random samples with common σ have the same mean. Again, the approximation is not good. The
departure from the main diagonal is not as severe as in Figure 17 , but the effect is similar, i.e., the
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χ2
2 distribution would yield much smaller p-values than appropriate when these p-values are on the

small side, i.e., when they become critical.
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Figure 18: QQ-Plots Comparing 2× F2,21−3 with χ2
2

Aside from testing the equality of log-Weibull distributions we can also obtain the various types
of confidence bounds for the location, scale, p-quantiles and tail probabilities for each sampled
population, whether the k locations are the same or not. This is different from doing so for each
sample separately since we use all k samples to estimate b, which was assumed to be the same for
all k populations. This will result in tighter confidence bounds than what would result from the
corresponding confidence bound analysis of individual samples. We omit the specific details since
they should be clear from the general situation as applied in the simple linear regression case.
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12.5 Goodness of Fit Tests

As in the location/scale case we can exploit the equivariance properties of the mle’s in the general
regression model to carry out the previously discussed goodness of fit tests by simulation. Using
the previous computational formulas for the D, W 2 and A2 we only need to define the appropriate
Vi, namely

Vi = G

(
Yi − v′iζ̂(Y )

b̂(Y )

)
, i = 1, . . . , n .

Pierce and Kopecky (1979) showed that the asymptotic null distributions of D, W 2 and A2, using
the sorted values V(1) ≤ . . . ≤ V(n) of these modified versions of Vi, are respectively the same as in
the location/scale case, i.e., they do not depend on the additional covariates that may be present.
This assumes that the covariate matrix C contains a vector of ones. However, for finite sample
sizes the effects of these covariates may still be relevant. The effect of using the small sample tables
given by Stephens (1986) is not clear.

However, one can easily simulate the null distributions of these statistics since they do not depend
on any unknown parameters. Using the data representation Yi = c′iζ + bZi with i.i.d. Zi ∼ G(z),
or Y = Cζ + bZ this is seen from the equivariance properties as follows

Yi − c′iζ̂(Y )

b̂(Y )
=

c′iζ + bZi − c′i(ζ + bζ̂(Z))

bb̂(Z)
=
Zi − c′iζ̂(Z)

b̂(Z)

and thus

Vi = G

(
Yi − c′iζ̂(Y )

b̂(Y )

)
= G

(
Zi − c′iζ̂(Z)

b̂(Z)

)
.

For any covariate matrix C and sample size n the null distributions of D, W 2 and A2 can be
approximated to any desired degree. All we need to do is generate vectors Z? = (Z1, . . . , Zn)′ i.i.d.
∼ G(z), compute the mle’s ζ̂(Z), b̂(Z), and from that V ?, followed byD? = D(V ?), W 2? = W 2(V ?)
and A2? = A2(V ?). Repeating this a large number of times, say Nsim = 10000, would yield values
D?

i ,W
2?
i , A2?

i , i = 1, . . . , Nsim. Their respective empirical distributions would serve as excellent
approximations to the desired null distributions of these test of fit criteria.
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Figure 19: Weibull Regression Example

Figure 19 shows some Weibull regression data which were generated as follows:

Yi = log(α) + slope× ci + bZi , i = 1, . . . , n with Z1, . . . , Zn i.i.d. ∼ G(z) ,

where α = 10000, b = 2/3, slope = 1.3 and there were 20 observations each at ci = i − 2.5 for
i = 1, . . . , 5.

Here Xi = exp(Yi) would be viewed as the Weibull failure time data with common shape parameter
β = 1/b = 1.5 and characteristic life parameters αi = α exp(scale × ci) which are affected in a
multiplicative manner by the covariate values ci, i = 1, . . . , 5.

The solid sloped line in Figure 19 indicates the true log(characteristic life) for the Weibull regression
data while the dashed line represents its estimate.
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n == 100  ,   Nsim == 10000
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Figure 20: Weibull Goodness of Fit for Weibull Regression Example

For this generated Weibull regression data set Figure 20 shows the results of the Weibull goodness
of fit tests in relation to the simulated null distributions for the test criteria D, W 2 and A2. The
hypothesis of a Weibull lifetime distribution cannot be rejected by any of the three test of fit criteria
based on the shown p-values.

This example was produced by the R function WeibullRegGOF available in the R workspace on the
class web site. It took 105 seconds on my laptop. This function performs Weibull goodness of fit
tests for any supplied regression data set. When this data set is missing it generates its own Weibull
regression data set of size n = 100 and uses the indicated covariates and parameters.
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Figure 21: Normal Regression Example

Figure 21 shows some normal regression data which were generated as follows:

Yi = log(α) + slope× ci + bZi , i = 1, . . . , n with Z1, . . . , Zn i.i.d. ∼ Φ(z) ,

where α = 10000, b = 2/3, slope = 1.3 and there were 20 observations each at ci = i − 2.5 for
i = 1, . . . , 5. Here Xi = exp(Yi) would be viewed as the failure time data. Such data would have a
log-normal distribution.

This data set was produced internally within WeibullRegGOF by modifying the line that generated
the original data sample, so that Zi ∼ Φ(z), i.e., Z <- rnorm(n,0,1) is used. The simulation of the
test of fit null distributions remains essentially unchanged except that a different random number
starting seed was used.

Here the solid sloped line indicates the mean of the normal regression data while the dashed line
represents the estimate according to an assumed Weibull model. Note the much wider discrepancy
here compared to the corresponding situation in Figure 19. The reason for this wider gap is that
the fitted line aims for the .632-quantile and not the median of that data.
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Figure 22: Weibull Goodness of Fit for Normal Regression Example

Here the p-values clearly indicate that the hypothesis of a Weibull distribution should be rejected,
although the evidence in the case of D is not very strong. However, for W 2 and A2 there should be
no doubt in the (correct) rejection of the hypothesis.
Any slight differences in the null distributions shown here and in the previous example are due to
a different random number seed being used in the two cases.
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