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Abstract

This document reviews various ways of performing tolerance stack
analyses. This review is limited to assembly criteria which are linear
or approximately linear functions of the relevant part dimensions. Be-
ginning with the two extreme cornerstones, namely the arithmetic or
worst case tolerance stack and the statistical or RSS tolerance stack
method, various compromises or unifying paradigms are presented
with their underlying assumptions and rationales. These cover distri-
butions more dispersed than the commonly assumed normal distribu-
tion and shifts in the means. Both worst case and statistical stacking
of mean shifts are discussed. The latter, in the form presented here,
appears to be new. The appropriate methods for assessing nonassem-
bly risk are indicated in each case.
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1 Introduction and Overview

Tolerance stacking analysis methods are described in various texts and pa-
pers, see for example Gilson (1951), Mansoor (1963), Fortini (1967), Evans
(1975), Cox (1986), Greenwood and Chase (1987), Kirschling (1988), Bjørke
(1989), Henzold (1995), and Nigam and Turner (1995). Unfortunately, the
notation is often not standard and not uniform, making the understanding
of the material at times difficult.

Invariably the discussion includes the two cornerstones, arithmetic and
statistical tolerancing. This examination is no exception, since these two
methods provide conservative and optimistic benchmarks, respectively. In
the basic statistical tolerancing scheme it is assumed that part dimension
vary randomly according to a normal distribution, centered at the tolerance
interval midpoint and with its ±3σ spread covering the tolerance interval.
For given part dimension tolerances this kind of analysis typically leads to
much tighter assembly tolerances, or for given assembly tolerance it requires
considerably less stringent part dimension tolerances.

Since practice has shown that the results are usually not quite as good as
advertised, one has tried to relax the above distributional assumptions in a
variety of ways. One way is to allow other than normal distributions which
essentially cover the tolerance interval with a wider spread, but which are
still centered on the tolerance interval midpoint. This results in somewhat
less optimistic gains than those obtained under the normality assumptions,
but usually still much better than those given by arithmetic tolerancing,
especially for longer tolerance chains.

Another relaxation concerns the centering of the distribution on the tol-
erance interval midpoint. The realization that it is difficult to center any
process exactly where one wants it to be has led to several mean shift mod-
els in which the distribution may be centered anywhere within a certain
neighborhood around the tolerance interval midpoint, but usually it is still
assumed that the distribution is normal and its ±3σ spread is still within
the tolerance limits. This means that while we allow some shift in the mean
we require a simultaneous reduction in variability. The mean shifts are then
stacked in worst case fashion. The correspondingly reduced variation of the
shifted distributions is stacked statistically. The overall assembly tolerance
then becomes (in worst case fashion) a sum of two parts, consisting of an
arithmetically stacked mean shift contribution and a term reflecting the sta-
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tistically stacked distributions describing the parts variation. It turns out
that our corner stones of arithmetic and statistical tolerancing are subparts
of this more general model, which has been claimed to unify matters.

However, there is another way of dealing with mean shifts which appears
to be new, at least in the form presented here. It takes advantage of statisti-
cal stacking of mean shifts and stacking that in worst case fashion with the
statistical stacking of the reduced variation in the part dimension distribu-
tions. A precursor to this can be found in Desmond’s discussion of Mansoor’s
(1963) paper. However, there it was pointed out that it leads to optimistic
results. The reason for this was a flaw in handling the reduction of the part
dimension variation caused by the random mean shifts.

When dealing with tolerance stacking under mean shifts one has to take
special care in assessing the risk of nonassembly. Typically only one tail of
the assembly stack distribution is significant when operating at one of the
two worst possible assembly mean shifts. For this reason the method of risk
calculations are discussed in detail, where appropriate.

2 Notation and Conventions

The tolerance stacking problem arises because of the inability to produce
parts exactly according to nominal. Thus there is the possibility that the
assembly of such interacting parts will not function or won’t come together
as planned. This can usually be judged by one or more assembly criteria,
say A1, A2, . . ..

Here we will be concerned with just one such assembly criterion, say A,
which can be viewed as a function of the part dimensions X1, . . . , Xn, i.e.,

A = f(X1, . . . , Xn) .

Here n may be the number of parts involved in the assembly, but n may
also be larger than that, namely when some parts contribute more than one
dimension to the assembly criterion A. Ideally the part dimensions should
be equal to their respective nominal values ν1, . . . , νn. Recognizing the in-
evitability of part variation from nominal one allows the part dimension Xi to
vary over an interval around νi. Typically one specifies an interval symmetric
around the nominal value, i.e., Ii = [νi − Ti, νi + Ti]. However, asymmetric
tolerance intervals do occur and in the most extreme form they become uni-
lateral tolerance intervals, e.g., Ii = [νi − Ti, νi] or Ii = [νi, νi + Ti]. Most
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generally one would specify a tolerance interval Ii = [ci, di] with ci ≤ νi ≤ di.
When dealing with a symmetric or unilateral tolerance interval one calls
the value Ti the tolerance. For the most general bilateral tolerance inter-
val, Ii = [ci, di], one would have two tolerances, namely T1i = νi − ci and
T2i = di − νi. Although asymmetrical tolerance intervals occur in practice,
they are usually not discussed much in the literature. The tolerance stacking
principles apply in the asymmetric case as well but the analysis and expo-
sition tends to get messy. We will thus focus our review on the symmetric
case.

Sometimes one also finds the term tolerance range which refers to the
full length of the tolerance interval, i.e., T ′

i = di − ci. When reading the
literature or using any kind of tolerance analysis one should always be clear
on the usage of the term tolerance.

The function f that shows how A relates to X1, . . . , Xn is assumed to be
smooth, i.e., for small perturbations Xi−νi of Xi from nominal νi we assume
that f(X1, . . . , Xn) is approximately linear in those perturbations, i.e.,

A = f(X1, . . . , Xn) ≈ f(ν1, . . . , νn) + a1(X1 − ν1) + . . . an(Xn − νn) ,

where ai = ∂f(ν1, . . . , νn)/∂νi. Here one would usually treat νA = f(ν1, . . . , νn)
as the desired nominal assembly dimension.

Often f(X1, . . . , Xn) is naturally linear, namely

A = f(X1, . . . , Xn) = a0 + a1X1 + . . . + anXn

with known coefficients a1, . . . , an. The corresponding nominal assembly di-
mension is then

νA = a0 + a1ν1 + . . . + anνn .

Note that we can match this linear representation with the previous approx-
imation by identifying

a0 = f(ν1, . . . , νn)− a1ν1 − . . .− anνn .

In the simplest form the ai coefficients are all equal to one, i.e.,

A = X1 + . . . + Xn ,

or are all of the form ai = ±1. This occurs naturally in tolerance path chains,
where dimensions are measured off positively in one direction and negatively
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in the opposite direction. In that case we would have

A = ±X1 ± . . .±Xn .

We will assume from now on that A is of the form

A = a0 + a1X1 + . . . + anXn

with known coefficients a0, a1, . . . , an. For the tolerance analysis treatment
using quadratic approximations to f we refer to Cox (1986). Although this
approach is more refined and appropriate for stronger curvature over the
variation ranges of the Xi, it also is more complex and not routine. It also
has not yet gone far in accommodating mean shifts. This part of the theory
will not be covered here.

We note here that not all functions f are naturally smooth. A very simple
nonsmooth function f is given by the following:

f(X1, X2) =
√

X2
1 + X2

2

which can be viewed as the distance of a hole center from the nominal origin
(0, 0). This function does not have derivatives at (0, 0), its graph in 3-space
looks like an upside cone with its tip at (0, 0, 0). There can be no tangent
plane at the tip of that cone and thus no linearization. Although we have
found these kinds of problems appear in practice when performing tolerance
analyses in the context of hole center matching and also in hinge tolerance
analysis (Altschul and Scholz, 1994) there seems to be little recognition in
the literature of such situations.

Let us return again to our assumption of a linear assembly criterion. The
whole point of a tolerance stack analyses is to find out to what extent the
assembly dimension A will differ from the nominal value νA while the Xi

are restricted to vary over Ii. This forward analysis can then be turned
around to solve the dual problem. For that problem we specify the amount
of variation that can be tolerated for A and the task is that of specifying the
part dimension tolerances, Ti, so that desired assembly tolerance for A will
be met.

Although this is a review paper, it is far from complete, as should be clear
from the above remarks. Nevertheless, it seems to be the most comprehensive
review of the subject matter that we are aware of. Many open questions
remain.

6



3 Arithmetic Tolerance Stack (Worst Case)

This type of analysis assumes that all part dimensions Xi are limited to Ii.
One then analyzes what range of variation can be induced in A by varying
all n part dimensions X1, . . . , Xn independently (in the nonstatistical sense)
over the respective tolerance intervals. Clearly, the largest value of

A = a0 + a1X1 + . . . + anXn

= a0 + a1ν1 + . . . + anνn + a1(X1 − ν1) + . . . + an(Xn − νn)

= νA + a1(X1 − ν1) + . . . + an(Xn − νn)

is realized by taking the largest (smallest) value of Xi ∈ Ii = [ci, di] whenever
ai > 0 (ai < 0). For example, if a1 < 0, then the term a1(X1 − ν1) becomes
largest positive when we take X1 < ν1 and thus at the lower endpoint ci of
Ii. Thus the maximum possible value of A is

Amax = max {A : Xi ∈ Ii, i = 1, . . . , n} = νA +
∑
ai>0

(di−νi)ai +
∑
ai<0

(ci−νi)ai .

In similar fashion one obtains the minimum value of A as

Amin = min {A : Xi ∈ Ii, i = 1, . . . , n} = νA +
∑
ai<0

(di− νi)ai +
∑
ai>0

(ci− νi)ai .

If the tolerance intervals Ii are symmetric around the nominal νi, i.e.,
Ii = [νi − Ti, νi + Ti] or di − νi = Ti and ci − νi = −Ti, we find

Amax = νA +
∑
ai>0

ai Ti −
∑
ai<0

ai Ti = νA +
n∑

i=1

|ai| Ti

and

Amin = νA +
∑
ai<0

ai Ti −
∑
ai>0

ai Ti = νA −
n∑

i=1

|ai| Ti .

Thus

A ∈ [Amin, Amax] =

[
νA −

n∑
i=1

|ai| Ti, νA +
n∑

i=1

|ai| Ti

]

=
[
νA − T arith

A , νA + T arith
A

]
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where

T arith
A =

n∑
i=1

|ai|Ti (1)

is the symmetric assembly tolerance stack. Aside from the coefficients |ai|,
which often are one anyway, (1) is a straight sum of the Ti’s, whence the
name arithmetic tolerance stacking.

The calculated value T arith
A should then be compared against QA, the

requirement for successful assembly. If all part dimensions satisfy their indi-
vidual tolerance requirements, i.e., Xi ∈ Ii, and if T arith

A computed from (1)
satisfies T arith

A ≤ QA, then every assembly involving these parts will fit with
mathematical certainty. This is the main strength of this type of tolerance
calculation.

In the special case where |ai| = 1 and Ti = T for i = 1, . . . , n we get
T arith

A = n T , i.e., the assembly tolerance grows linearly with the number n of
part dimensions. If proper assembly requires that T arith

A ≤ QA = .004′′, then
the common part tolerances have to be T = T arith

A /n ≤ .004′′/n. For large
n this can result in overly tight part tolerance requirements, which often are
not economical. This is the main detracting feature of this form of tolerance
stack analysis. It results from the overly conservative approach of stacking
the worst case deviations from nominal for all parts. In reality, such worst
case stackup should be extremely rare and usually occurs only when it is
realized deliberately.

The assumption that all parts satisfy their respective tolerance require-
ments, Xi ∈ Ii, should not be neglected. Without this there is no 100%
guarantee of assembly. In effect this assumption requires an inspection of
all parts, typically through simple check gauges. This form of inspection is
a lot simpler than that required for statistical tolerancing. For the latter
the part measurements Xi themselves are required, at least for samples, in
order to demonstrate process stability. Samples of part measurements are
more easily amenable to extrapolation and inference about the behavior of
the whole population. For samples of go/no-go data this would be a lot more
difficult. There may be a cost tradeoff here, namely 100% part checking by
inexpensive gauging versus part sampling (less than 100%) with expensive
measuring.

Another plus for the arithmetic tolerancing scheme is that the underlying
assumptions are very minimal, as can be more appreciated in the next section.
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4 Statistical Tolerancing (RSS Method)

The previous section employed a form of tolerance stacking that guards
against all allowed variation contingencies by stacking the part tolerances in
the worst possible way. It was pointed out that this can only happen when
done deliberately, i.e., choosing the worst possible parts for an assembly.
If one were to choose parts in a random fashion, such a worst case assembly
would be extremely unlikely. Typically the part deviations from nominal will
tend to average out to some extent and the tolerance stack should not be as
extreme as portrayed under the arithmetic tolerance stacking scheme. Sta-
tistical tolerancing exploits this type of variation cancellation in a systematic
fashion.

We will introduce the method under a certain standard set of assump-
tions, first assuming a normal distribution describing the part variation, then
relaxing this to other distributions by appealing to the central limit theorem
(CLT), and we finally address the issue of assessing the risk of nonassembly.

4.1 Statistical Tolerancing With Normal Variation

The following standard assumptions are often made when first introducing
the method of statistical tolerancing. These should not necessarily be ac-
cepted at face value. More realistic adaptations will be examined in subse-
quent sections.

Randomness: Rather than assuming that the Xi can fall anywhere in the
tolerance interval Ii, even to the point that someone maliciously and
deliberately selects parts for worst case assemblies, we assume here that
the Xi vary randomly according to some distributions with densities
fi(x), i = 1, . . . , n, and cumulative distribution functions

Fi(t) =
∫ t

−∞
f(x) dx , i = 1, . . . , n.

The idea is that most of the occurrences of Xi will fall inside Ii, i.e.,
most of the area under the density fi(x) falls between the endpoints of
Ii. As a departure from worst case tolerancing we do accept a certain
small fraction of part dimensions that will fall outside Ii. This frees
us from having to inspect every part dimension for compliance with
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the tolerance interval Ii. Instead we ask/assume that the processes
producing the part dimensions are stable (in statistical control) and
that these part dimensions fall mostly within the tolerance limits. This
is ascertained by sampling only a certain portion of parts and measuring
the respective Xi’s.

Independence: The independence assumption is probably the most essen-
tial corner stone of statistical tolerancing. It allows for some cancella-
tion of variation from nominal.

Treating the Xi as random variables, we also demand that these random
variables are (statistically) independent. This roughly means that the
deviation Xi − νi has nothing to do with the deviation Xj − νj for
i 6= j. In particular, the deviations will not be predominantly positive
or predominantly negative. Under independence we expect to get a
mixed bag of negative and positive deviations which essentially allows
for some variation cancellation. Randomness alone does not guarantee
such cancellation, especially not when all part dimension show random
variation in the same direction. This latter phenomenon is exactly
what the independence assumption intends to exclude.

Typically the independence assumption is reasonable when part dimen-
sions pertain to different manufacturing/machining processes. How-
ever, situations can arise where this assumption is questionable. For
example, several similar/same parts (coming from the same process)
could be used in the same assembly. Thermal expansion also tends to
affect different parts similarly.

Distribution: It would be nice to have data on the part dimension varia-
tion, but typically that is lacking at the design stage. For that reason
one often assumes that fi is a normal or Gaussian density over the in-
terval Ii. Since that latter is a finite interval and the Gaussian density
extends over the whole real line R = (−∞,∞), one needs to strike a
compromise. It consists in asking that the area under the density fi

over the interval Ii should represent most of the total area under fi,
i.e. ∫

Ii

fi(x) dx ≈ 1 .
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Figure 1: Normal Distribution Over Tolerance Interval
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In fact, most proposals ask for∫
Ii

fi(x) dx = .9973 .

This rather odd looking probability (≈ 1) results from choosing fi to
be a Gaussian density with mean µi = νi at the center of the tolerance
interval and with standard deviation σi = Ti/3, i.e.,

fi(x) =
1

σi

ϕ
(

x− µi

σi

)
, where ϕ(x) =

1√
2π

e−x2/2

is the standard normal density. We thus have

Ii = [νi − Ti, νi + Ti] = [µi − 3σi, µi + 3σi]

and ∫
Ii

fi(x) dx =
∫ µi+3σi

µi−3σi

1

σi

ϕ
(

x− µi

σi

)
dx

=
∫ 3

−3
ϕ(x) dx = Φ(3)− Φ(−3) = .9973 ,

where

Φ(t) =
∫ t

−∞
ϕ(x) dx

is the standard normal cumulative distribution function.

Thus the odd looking probability .9973 is the result of three assump-
tions, namely i) a Gaussian density fi, ii) νi = µi, i.e., the part dimen-
sion process is centered on the nominal value, and iii) Ti = 3σi. The
first two assumptions make it possible that the simple and round fac-
tor 3 in 3σi produces the probability .9973. This is a widely accepted
choice although others are possible. For example, Mansoor (1963) ap-
pears to prefer the factor 3.09 resulting in a probability of .999 for part
dimension tolerance compliance.

One reason that is often advanced for assuming a normal distribution is
that the deviations from nominal are often the result of many additive
contributors which are random in nature, and each of relatively small
effect. The central limit theorem (see next section) is then used to claim
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normality for the sum of many such contributors. It is assumed that
the person producing the part will aim for the nominal part dimension,
but for various reasons there will be deviations from the nominal which
accumulate to an overall deviation from nominal, which then is claimed
to be normal. Thus the values Xi will typically cluster more frequently
around the nominal νi and will less often result in values far away. This
view of the distribution of Xi represents an important corner stone in
the method of statistical tolerancing.

Under the above assumptions we can treat the assembly criterion

A = a0 + a1X1 + . . . + anXn

as a random variable, in fact as Gaussian random variable with mean

µA = a0 + a1µ1 + . . . + anµn = a0 + a1ν1 + . . . + anνn = νA

and with variance

σ2
A = a2

1σ
2
1 + . . . + a2

nσ
2
n = a2

1

T 2
1

32
+ . . . + a2

n

T 2
n

32
=

1

32

(
a2

1T
2
1 + . . . + a2

nT
2
n

)
.

The first equation states that the mean µA of A coincides with the nominal
value νA of A. This results from the linear dependence of A on the part di-
mensions Xi and from the fact that the means of all part dimensions coincide
with their respective nominals. The above formula for the variance can be
rewritten as follows

3σA =
√

a2
1T

2
1 + . . . + a2

nT
2
n .

If we call 3σA = TRSS
A , we get the well known RSS-formula for statistical

tolerance stacking:

TRSS
A =

√
a2

1T
2
1 + . . . + a2

nT
2
n . (2)

Here RSS refers to the root/sum/square operation that has to be performed
to calculate TRSS

A . Since A is Gaussian, we can count on 99.73% of all as-
sembly criterion values A to fall within ±3σA = ±TRSS

A of its nominal νA, or
only .27% of all assemblies will fail.

What have we gained for the price of tolerating a small fraction of as-
sembly failures? Again the answer becomes most transparent when all part
tolerance contributions |ai|Ti are the same, i.e., |ai|Ti = T . Then we have

TRSS
A = T

√
n
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as opposed to T arith = T n in arithmetic tolerancing. The factor
√

n grows
a lot slower than n. Even for n = 2 we find that

√
2 = 1.41 is 29% smaller

than 2 and for n = 4 we have that
√

4 is 50% smaller than 4.

If proper assembly requires that TRSS
A ≤ QA = .004′′, then the common

part tolerance contributions have to be T = TRSS
A /

√
n ≤ .004′′/

√
n. Due

to the divisor
√

n, these part tolerances are much more liberal than those
obtained under arithmetic tolerancing.

4.2 Statistical Tolerancing Using the CLT

One assumption used heavily in the previous section is that of a Gaussian
distribution for all part dimensions Xi. This assumption has often been chal-
lenged, partly based on part data that contradict the normality, partly based
on mean shifts that result in an overall mixture of normal distributions, i.e.,
more smeared out, and last but not least based on the experience that the
assembly fallout rate was higher than predicted by statistical tolerancing.
We will here relax the normality assumption by allowing more general dis-
tributions for the part variations Xi. However, we will insist that the mean
µi of Xi still coincides with the nominal νi. Relaxing this last constraint will
be discussed in subsequent sections.

To relax the normality assumption for the part dimensions Xi we appeal
to the central limit theorem of probability theory (CLT). In fact, we will now
use the following assumptions

1. The Xi, i = 1, . . . , n, are statistically independent.

2. The density fi governing the distribution of Xi has mean µi = νi and
standard deviation σi.

3. The variability contributions of all terms in the linear combination A
become negligible for large n, i.e.,

max (a2
1σ

2
1, . . . , a

2
nσ

2
n)

a2
1σ

2
1 + . . . + a2

nσ
2
n

−→ 0 as n →∞ .

Under these three conditions1 the Lindeberg-Feller CLT states that the linear

1In fact, they need to be slightly stronger by invoking the more technical Lindeberg
condition, see Feller (1966).
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combination
A = a0 + a1X1 + . . . + anXn

has an approximately normal distribution with mean

µA = a0 + a1µ1 + . . . + anµn = a0 + a1ν1 + . . . + anνn = νA

and with variance
σ2

A = a2
1σ

2
1 + . . . + a2

nσ
2
n .

Assumption 3 eliminates situations where a small number of terms in the
linear combination have so much variation that they completely swamp the
variation of the remaining terms. If these few dominating terms have non-
normal distributions, it can hardly be expected that the linear combination
has an approximately normal distribution.

In spite of the relaxed distributional assumptions for the part dimen-
sions we have that the assembly criterion A is again approximately normally
distributed and its mean µA coincides with the desired nominal value νA

(because we deal with a linear combination and since we assumed µi = νi).
From the approximate normality of A we can count on about 99.73% of all
assembly criteria to fall within [νA − 3σA, νA + 3σA].

This is almost the same result as before, except for one “minor” point.
In the previous section we had assumed a particular relation between the
part dimension σi and the tolerance Ti, namely we stipulated that Ti = 3σi.
This was motivated mainly by the fact that under the normality assumption
almost all (99.73%) part dimensions would fall within ±3σi of the nominal
νi = µi. Without the normality assumption for the parts there is no such
high probability assurance for such ±3σi ranges. However, the Camp-Meidell
inequality (Encyclopedia of Statistical Sciences, Vol. I, 1982), states that for
symmetric and unimodal densities fi with finite variance σ2

i we have

P (|Xi − µi| ≤ 3σi) ≥ 1− 4

81
= .9506.

Here symmetry means that fi(νi + y) = fi(νi − y) for all y, and thus that
µi = νi. Unimodality means that fi(νi + y) ≥ fi(νi + y′) for all 0 ≤ |y| ≤ |y′|,
i.e., the density falls off as we move away from its center, or at least it does
not increase. Although this covers a wide family of reasonable distributions,
the number .9506 does not carry with it the same degree of certainty as .9973.
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We thus do not yet have a natural link between the standard deviation
σi and the part dimension tolerance Ti. If the distribution of Xi has a finite
range, then one could equate that finite range with the ±Ti tolerance range
around νi. This is what has commonly been done. In the case of a Gaussian
fi this was not possible (because of the infinite range) and that was resolved
by opting for the ±3σi = ±Ti range. By matching the finite range of a
distribution with the tolerance range [νi − Ti, νi + Ti] we obtain the link
between σi and Ti, and thus ultimately the link between TA and Ti. Since the
spread 2Ti of a such finite range distribution can be manipulated by a simple
scale change which also affects the standard deviation of the distribution by
the same factor it follows that σi and Ti will be proportional to each other,
i.e., we can stipulate that

cTi = 3σi ,

where c is a factor that is specific to the type of distribution. The choice of
linking this proportionality back to 3σi facilitates the comparison with the
normal distribution, for which we would have c = cN = 1.

Assuming that the type of distribution (but not necessarily its location
and scale) is the same for all part dimensions we get

TRSS,c
A = 3σA =

√
(3a1σ1)2 + . . . + (3anσn)2

=
√

(ca1T1)2 + . . . + (canTn)2

= c
√

a2
1T

2
1 + . . . + a2

nT
2
n = c TRSS

A .

This leads to tolerance stacking formulas that essentially agree with (2),
except that an inflation factor, c, has been added. If the distribution type also
changes from part to part (hopefully with good justification), i.e., we have
different factors c1, . . . , cn, we need to use the following more complicated
tolerance stacking formula:

TRSS,c
A =

√
(c1a1T1)2 + . . . + (cnanTn)2 , (3)

where c = (c1, . . . , cn).

In Table 1 we give a few factors that have been considered in the literature,
see Gilson (1951), Mansoor (1963), Fortini (1967), Kirschling (1988), Bjørke
(1989), and Henzold (1995). The corresponding distributions are illustrated
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Figure 2: Tolerance Interval Distributions & Factors

normal density

c = 1

uniform density

c = 1.732

triangular density

c = 1.225

trapezoidal density: a = .5

c = 1.369

elliptical density

c = 1.5

half cosine wave density

c = 1.306

beta density: a = 3, b = 3

c = 1.134

beta density: a = .6, b = .6

c = 2.023

beta density: a = 2, b = 2  (parabolic)

c = 1.342

DIN - histogram density: p = .7, f = .4

c = 1.512
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Table 1: Distributional Inflation Factors

normal 1 uniform 1.732

triangular 1.225 trapezoidal
√

3(1 + a2)/2

cosine half wave 1.306 elliptical 1.5

beta (symmetric) 3/
√

2a + 1

histogram density (DIN)
√

3
√

(1− p)(1 + f) + f 2

in Figure 2. For a derivation of these factors see Appendix A. For the beta
density the parameters a > 0 and b > 0 are the usual shape parameters, a in
the trapezoidal density indicates the break point from the flat to the sloped
part of the density, and p and f characterize the histogram density (see the
last density in Figure 2), namely the middle bar of that density covers the
middle portion νi±fTi of the tolerance interval and its area comprises 100p%
of the total density.

Some factors have little explicit justification and motivation and are pre-
sented without proper reference. For example, the factor c = 1.6 of Gilson
(1951) derives from his crucial empirical formula (2) which is prefaced by
“Without going deeply into a mathematical analysis . . ..” Evans (1975) seems
to welcome such lack of mathematical detail by saying: “None of the results
are derived, in the specialized sense of this word, so that it is readable by
virtually anyone who would be interested in the tolerancing problem.”

Bender (1962) gives the factor 1.5 based mainly on the fact that produc-
tion operators will usually give you 2/3 of the true spread (±3σ range under
a normal distribution) when asked what tolerance limits they can hold and
“quality control people recognize that this 2/3 total spread includes about
95% of the pieces.” To make up for these optimistically stated tolerances,
Bender suggests the factor 3/2 = 1.5.

4.3 Risk Assessment with Statistical Tolerance Stacking

In this section we discuss the assembly risk, i.e., the chance that an assembly
criterion A will not satisfy its requirement. As in the previous section it is
assumed that all part dimensions Xi have symmetric distributions centered
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on their nominals, i.e., with means µi = νi, and variances σ2
i , respectively.

The requirement for successful assembly is assumed to be |A − νA| ≤ K0,
where K0 is some predetermined number based on design considerations. We
are then interested in assessing P (|A− νA| > K0). According to the CLT we
can treat (A− νA)/σA = (A− µA)/σA as an approximately standard normal
random variable. Thus the assembly risk is

P (|A− νA| > K0) = P

(
|A− νA|

σA

>
K0

σA

)

= P
(

A− νA

σA

< −K0

σA

)
+ P

(
A− νA

σA

>
K0

σA

)

= Φ
(
−K0

σA

)
+ 1− Φ

(
K0

σA

)
= 2Φ

(
−K0

σA

)

= 2Φ

(
− K0

TRSS,c
A /3

)
= 2Φ

(
− 3K0

cTRSS
A

)
. (4)

When the requirement K0 is equal to cTRSS
A = c

√
a2

1T
2
1 + . . . + a2

nT
2
n , then

the nonassembly risk is

P (|A− νA| > K0) = 2Φ(−3) = .0027 ,

the complement of our familiar .9973. The factor c affects to what extent we
will be able to fit cTRSS

A into K0. If cTRSS
A > K0 we have to reduce either c

or TRSS
A . Since c depends on the distribution that gives rise to it and which

portrays our vague knowledge of manufacturing variation, we are left with
reducing TRSS

A , i.e., the individual part tolerances. If we do neither we have
to accept a higher nonassembly risk which can be computed via formula (4).

When we invoke the CLT we often treat the resulting approximations as
though they are exact. However, it should be kept in mind that in reality we
deal with approximations (although typically good ones) and that the accu-
racy becomes rather limited when we make such calculations involving the
extreme tails of the normal distributions. For example, a normal approxima-
tion may suggest a probability of .9973, but in reality that probability may
be only .98. When making corrections for such extreme tail probabilities, it
would seem that one often splits hairs given that these probabilities are only
approximate anyway. However, whatever the correct probability might be,
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if the approximation suggests a degradation in the tolerance assurance level
and if we make an adjustment based on the same approximation, it would
seem that we have had some effect. The only problem is that the counterac-
tive measure may not be enough (case a)) or may be more than needed (case
b)). If in either of these situations we had done nothing, then we would be
much worse off in case a) or are counting on wishful thinking in case b).

5 Mean Shifts

So far we have made the overly simplistic assumption that all part dimensions
Xi be centered on their respective nominals νi. In practice this is difficult
to achieve and often not economical. Such mean shifts may at times be
quite deliberate (aiming for maximal material condition, because one prefers
rework to scrap), at other times it is caused by tool wear, and often one
cannot average out the part manufacturing process exactly at the nominal
center νi, as hard as one may try. A shift of the distribution of the Xi away
from the respective nominal centers will cause a shift also in the assembly
criterion A. This in turn will increase the nonassembly risk, since it will shift
the normal curve more towards one end of the assembly design requirement
[−K0, K0].

Some authors, e.g., Bender (1962) and Gilson (1951), have responded
to this problem by introducing inflation factors, c, as they were discussed
in the previous section, but maintaining a distribution for Xi which is still
symmetric around νi. In effect, this trades one ill effect, namely the mean
shift, against another by assuming a higher variance, but still constraining
Xi to the tolerance interval Ii = [νi − Ti, νi + Ti]. The remedy (inflation
factor c) that accounts for higher variance within Ii will, as a side effect,
also be beneficial for dealing with mean shifts, since it causes a tightening
of part tolerances and thus a more conservative design. Such a design will
then naturally also compensate for some amounts of mean shift. Greenwood
and Chase (1987) refer to this treatment of the mean shift problem as using
a Band-Aid, since this practice is not specific to the mean shift problem.

A mean shift represents a persistent amount of shift and is thus quite
deterministic in its effect, whereas an inflated variance expresses variation
that changes from part to part, and thus allows error cancellation. In defense
of this latter approach one should mention that sometimes one reacts to off-
center means by “recentering” the manufacturing process. Since that will
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presumably produce another off-center mean, this iterative “recentering” will
just add to the overall variability of the process, i.e., mean shifts are then
indeed physically transformed into variability. Whether this “recentering” is
a good strategy, is questionable. A shift will typically produce rejected parts
only on one side of the tolerance interval, whereas the increased variability
due to “recentering” will result in rejects on both sides of the tolerance
interval.

We will now discuss some ways of explicitly dealing with mean shifts
∆i = µi − νi. Although we allow for the possibility of mean shifts we will
still maintain the idea of a tolerance interval, i.e., the ith part dimension Xi

will still be constrained to the tolerance interval Ii. If the distribution of Xi

is assumed to be normal, then its ±3σi range should still fall within Ii, see
Figure 3. This means that σi has to get smaller as |∆i| gets larger. For fixed
tolerance intervals this means that larger mean shifts are only possible with
tighter variation. In the extreme this means that the distribution of Xi is
shifted all the way to νi− Ti or νi + Ti, with no variability at all. This latter
scenario is hardly realistic2, but it is worth noting since it leads back to worst
case tolerancing.

In practice it is not so easy to tighten the variation of a part production
process. It is more practical to widen the part dimension tolerance interval Ii

or to increase Ti. The tolerance stack up analysis is then performed in terms
of these increased Ti. The effect, from an analysis method point of view, is
the same. With increased Ti the unchanged σi will look reduced relative to
Ti. It is only a matter of who pays the price.

Typically the mean shifts are not known a priori and, as pointed out
above, in the extreme case they are unrealistic and lead us right back to worst
case tolerancing. To avoid this, the amount of mean shift one is willing to
tolerate needs to be limited. Such bounds on the mean shift should be arrived
at in consultation with the appropriate manufacturing representatives. For
the following discussion it is useful to represent |∆i| as a fraction ηi of Ti,
i.e., |∆i| = ηi Ti, with 0 ≤ ηi ≤ 1. The bounds on |∆i| can now equivalently
be expressed as bounds on the ηi, namely ηi ≤ η0i or

|∆i| ≤ η0iTi .

It is usually more reasonable to state the bounds on |∆i| in proportionality
to Ti. One reason for this is that Ti captures to some extent the variability

2It usually is much harder to reduce the variability of Xi than to control its mean.
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Figure 3: Shifted Normal Distributions Over Tolerance Interval
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of the part dimension process and one is inclined to assume that the same
force that is behind this variability is to some extent also responsible for the
variation of the mean µi, i.e., that there is some proportionality between the
two phenomena of variation. Also, once such mean shift bounds are expressed
in terms of such proportionality to Ti, one is then more willing to assume a
common bound for these proportionality factors, namely η01 = . . . = η0n =
η0. Having a common bound η0 for all part dimensions Xi is not necessary,
but greatly simplifies the exposition and the practice of adjusting for mean
shifts.

We can now view the part dimension Xi as the sum of two (or three)
contributions:

Xi = µi + εi = νi + (µi − νi) + εi = νi + ∆i + εi

where µi is the mean around which the individual ith part dimensions cluster
and εi is the amount by which Xi deviates from µi each time that part
gets produced. The variation term εi is assumed to vary according to some
distribution with mean zero and variance σ2

i . We can think of the two terms
in ∆i + εi as the total deviation of Xi from the nominal νi. Namely, µi differs
from νi by the mean shift ∆i in a persistent way and then each part dimension
will have its own deviation εi from µi. However, this latter deviation will
be different from one realization of part dimension Xi to the next. Hence
the resulting assemblies will experience different deviations from that part
dimension, each time a new assembly is made. However, the contribution ∆i

will be the same from assembly to assembly.

The above representation then leads to a corresponding representation
for the assembly criterion:

A = a0 + a1X1 + . . . + anXn

= a0 + a1(µ1 + ε1) + . . . + an(µn + εn)

= a0 + (a1µ1 + . . . + anµn) + (a1ε1 + . . . + anεn)

= µA + εA = νA + (µA − νA) + εA = νA + ∆A + εA ,

where

µA = a0 + a1µ1 + . . . + anµn , νA = a0 + a1ν1 + . . . + anνn ,

23



∆A = µA − νA , and εA = a1ε1 + . . . + anεn .

Here µA is the mean of A, νA is the assembly nominal, ∆A is the assembly
mean shift, and εA captures the variation of A from assembly to assembly,
having mean zero and variance

σ2
εA

= a2
1σ

2
1 + . . . + a2

nσ
2
n .

5.1 Arithmetic Stacking of Mean Shifts

The variation of A around the assembly nominal νA is the composite of
two contributions, namely the assembly mean shift ∆A = µA − νA and the
assembly variation εA, which is the sum of n random contributions and thus
amenable to statistical tolerance stacking.

The amount by which µA may differ from νA can be bounded as follows:

|µA − νA| = |a1(µ1 − ν1) + . . . + an(µn − νn)|

= |a1∆1 + . . . + an∆n|

≤ |a1||∆1|+ . . . + |an||∆n|

= η1|a1|T1 + . . . + ηn|an|Tn , (5)

where the latter sum reminds of worst case or arithmetic tolerance stacking.
In fact, that is exactly what is happening here with the mean shifts, in that we
assume all mean shifts go in the most unfavorable direction. The inequality
in (5) can indeed be an equality provided all the ai∆i have the same sign.

The CLT may again be invoked to treat εA as approximately normal with
mean zero and variance σ2

εA
, so that we can expect 99.73% of all assembly

variations εA to fall within ±3σεA
of zero. Thus 99.73% of all assembly

dimensions A fall within
µA ± 3σεA

.

Since (5) bounds the amount by which µA may differ from νA we can cou-
ple this additively (in worst case fashion) with the previous 99.73% interval
bound for A and can claim that at least 99.73% of all assembly dimensions
A will fall within

νA ±
(

n∑
i=1

ηi|ai| Ti + 3σεA

)
. (6)
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Because of the worst case addition of mean shifts one usually will wind up
with less than .27% of assembly criteria A falling outside the interval (6).
That percentage is correct when the assembly mean shift is zero. As the
assembly mean µA shifts to the right or to the left of νA, only one of the
normal distribution tails will significantly contribute to the assembly out of
tolerance rate. That rate is more likely to be just half of .27% or .135%, or
slightly above. The shifted and scaled normal densities in Figure 3 illustrate
that point as well.

So far we have not factored in our earlier assumption that σi should
decrease as |∆i| increases, so that the part dimension tolerance requirement
Xi ∈ Ii is maintained. If we assume a normal distribution for Xi, this means
that we require that the ±3σi ranges around µi still be contained within
Ii. At the same time this means that the fallout rate will shrink from .27%
(for zero mean shift) to .135% as the mean shift gets larger, since only one
distribution tail will contribute. Since with zero mean shift one allows .27%
fallout, one could have allowed an increase in σi so that the single tail fallout
would again be .27%. We will not enter into this complication and instead
stay with our original interpretation, namely require that the capability index
Cpk satisfy

Cpk =
Ti − |∆i|

3σi

=
Ti − ηiTi

3σi

=
(1− ηi)Ti

3σi

≥ 1 .

Assuming the highest amount of variability within these constraints, i.e.,
Cpk = 1, we have

3σi = (1− ηi)Ti. (7)

In view of our initial identification of 3σi = Ti (without mean shift) this
equation can be interpreted two ways. Either σi needs to be reduced by the
factor (1− ηi) or Ti needs to be increased by the factor 1/(1− ηi) in order to
accommodate a ±ηiTi mean shift. Whichever way equation (7) is realized,
we then have

3σεA
=
√

a2
1(3σ1)2 + . . . + a2

n(3σn)2 =
√

(1− η1)2a2
1T

2
1 + . . . + (1− ηn)2a2

nT
2
n .

With this representation of 3σεA
at least 99.73% of all assembly dimensions

A will fall within

νA ±
(

n∑
i=1

ηi|ai| Ti +
√

(1− η1)2a2
1T

2
1 + . . . + (1− ηn)2a2

nT
2
n

)
. (8)
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As pointed out above, this compliance proportion is usually higher, i.e., more
like 99.865%, as will become clear in the next section on risk assessment.

The above combination of worst case stacking of mean shifts and RSS-
stacking of the remaining variability within each tolerance interval was pro-
posed by Mansoor (1963) and further enlarged on by Greenwood and Chase
(1987).

In formula (8) the ith shift fraction ηi appears in two places, first in the
sum (increasing in ηi) and then under the root (decreasing in ηi). It is
thus not obvious that increasing ηi will always make matters worse as far as
interval width is concerned. Since

∂

∂ηj

(
n∑

i=1

ηi|ai| Ti +
√

(1− η1)2a2
1T

2
1 + . . . + (1− ηn)2a2

nT
2
n

)

= |aj| Tj −
(1− ηj)a

2
jT

2
j√

(1− η1)2a2
1T

2
1 + . . . + (1− ηn)2a2

nT
2
n

≥ |aj| Tj −
(1− ηj)a

2
jT

2
j√

(1− ηj)2a2
jT

2
j

= 0

it follows that increasing ηj will widen the interval (8). If all the shift fractions
ηj are bounded by the common η0, we can thus limit the variation of the
assembly criterion A to

νA ±
(
η0

n∑
i=1

|ai| Ti + (1− η0)
√

a2
1T

2
1 + . . . + a2

nT
2
n

)
= νA ± T∆,arith

A (9)

with at least 99.73% (or better yet with 99.865%) assurance of containing A.
The half width of this interval

T∆,arith
A = η0

n∑
i=1

|ai| Ti + (1− η0)
√

a2
1T

2
1 + . . . + a2

nT
2
n

is a weighted combination (with weights η0 and 1 − η0) of arithmetic and
statistical tolerance stacking of the part tolerances Ti. As such it can be
viewed as a unified approach, as suggested by Greenwood and Chase (1987),
since η0 = 0 results in pure statistical tolerancing and η0 = 1 results in pure
arithmetic tolerancing.
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Comparing the two components of this weighted combination it is easily
seen (by squaring both sides and noting that all terms |ai|Ti are nonnegative)
that

n∑
i=1

|ai|Ti ≥

√√√√ n∑
i=1

|ai|2T 2
i ,

where the left side is usually significantly larger than the right. This in-
equality, which contrasts the difference between arithmetic stacking and RSS
stacking, is a simple illustration of the Pythagorean theorem. Think of a rect-
angular box in n-space, with sides |ai|Ti, i = 1, . . . , n. In order to go from
one corner of this box to the diametrically opposed corner we can proceed
either by going along the edges, traversing a distance

∑n
i=1 |ai|Ti, or we can

go directly on the diagonal connecting the diametrically opposed corners.

In the latter case we traverse the much shorter distance of
√∑n

i=1 |ai|2T 2
i

according to Pythagoras. The Pythagorean connection was also alluded to
by Harry and Stewart (1988), although in somewhat different form, namely
in the context of explaining the variance of a sum of independent random
variables.

As long as η0 > 0, i.e., some mean shift is allowed, we find that this type
of stacking the tolerances Ti is of order n. This is seen most clearly when
|ai|Ti = T and |ai| = 1 for all i. Then

T∆,arith
A = nη0T +

√
n(1− η0)T = nT

(
η0 +

1− η0√
n

)
,

which is of order n, although reduced by the factor η0. Thus the previously
noted possible gain in the compliance rate, namely 99.73% ↗ 99.865%, is
typically more than offset by the order n growth in the tolerance stack when
mean shifts are present.

This increased assembly compliance rate could be converted back to
99.73% by placing the factor 2.782/3 = .927 in front of the square root
in formula (9). The value 2.782 represents the 99.73% point of the standard
normal distribution. If, due to the allowed mean shift, we only have to worry
about one tail of the normal distribution exceeding the tolerance stack limits,
then we can reduce our customary factor 3 in 3σεA

to 2.782. To a small ex-
tent this should offset the mean shift penalty. The resulting tolerance stack

27



interval is then

νA ±
(
η0

n∑
i=1

|ai| Ti + .927 (1− η0)
√

a2
1T

2
1 + . . . + a2

nT
2
n

)
= νA ± T̃∆,arith

A .

(10)

So far we have assumed that the variation of the εi terms is normal, with
mean zero and variance σ2

i . This normality assumption can be relaxed as be-
fore by assuming a symmetric distribution over a finite interval, Ji, centered
at zero. This finite interval, after centering it on µi, should still fit inside
the tolerance interval Ii. Thus Ji will be smaller than Ii. This reduction
in variability is the counterpart of reducing σi in the normal model, as |∆i|
increases. See Figure 4 for the shifted distribution versions of Figure 2 with
the accompanying reduction in variability. Alternatively, we could instead
widen the tolerance intervals Ii while keeping the spread of the distributions
fixed.

If Ii has half width Ti and if the absolute mean shift is |∆i|, then the
reduced interval Ji will have half width

T ′
i = Ti − |∆i| = Ti − ηiTi = (1− ηi)Ti .

The density fi, describing the distribution of εi over the interval Ji, has
variance σ2

i and as before we have the following relationship:

3σi = cT ′
i = c(1− ηi)Ti ,

where c is a factor that depends on the distribution type, see Table 1. Using
(6) and

3σεA
=

√
a2

1(3σ1)2 + . . . + a2
n(3σn)2

= c
√

a2
1(1− η1)2T 2

1 + . . . + a2
n(1− ηn)2T 2

n

formula (8) simply changes to

νA ±
(

n∑
i=1

ηi|ai| Ti + c
√

(1− η1)2a2
1T

2
1 + . . . + (1− ηn)2a2

nT
2
n

)
, (11)

i.e., there is an additional penalty through the inflation factor c. If the part
dimension tolerance intervals involve different distributions, then one can
accommodate this in a similar fashion as in (3).
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Figure 4: Shifted Tolerance Interval Distributions & Factors

shifted normal density

c = 1

shifted uniform density

c = 1.732

shifted triangular density

c = 1.225

shifted trapezoidal density: a = .5

c = 1.369

shifted elliptical density

c = 1.5

shifted half cosine wave density

c = 1.306

shifted beta density: a = 3, b = 3

c = 1.134

shifted beta density: a = .6, b = .6

c = 2.023

shifted beta density: a = 2, b = 2  (parabolic)

c = 1.342

DIN - histogram density: p = .7, f = .4

c = 1.512
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Here it is not as clear whether increasing ηi will widen interval (11) or
not. Taking derivatives as before

∂

∂ηj

(
n∑

i=1

ηi|ai| Ti + c
√

(1− η1)2a2
1T

2
1 + . . . + (1− ηn)2a2

nT
2
n

)

= |aj| Tj − c
(1− ηj)a

2
jT

2
j√

(1− η1)2a2
1T

2
1 + . . . + (1− ηn)2a2

nT
2
n

≥ 0

if and only if

(1− η1)
2a2

1T
2
1 + . . . + (1− ηn)2a2

nT
2
n

(1− ηj)2a2
jT

2
j

≥ c2 .

This will usually be the case as long as c is not too much larger than one and
as long as (1− ηj)

2a2
jT

2
j is not the overwhelming contribution to

(1− η1)
2a2

1T
2
1 + . . . + (1− ηn)2a2

nT
2
n .

If ηi ≤ η0 then

(1− η1)
2a2

1T
2
1 + . . . + (1− ηn)2a2

nT
2
n

(1− ηj)2a2
jT

2
j

≥ 1 + (1− η0)
2

∑
i6=j a2

i T
2
i

a2
jT

2
j

.

Here the right side is well above one, unless a2
jT

2
j is very much larger than

the combined effect of all the other a2
i T

2
i , i 6= j. This situation usually does

not arise.

As an example where c is too large consider n = 2, (1 − η1)|a1|T1 =
(1 − η2)|a2|T2, and f1 = f2 = uniform. Then c =

√
3 = 1.732 from Table 1

and
(1− η1)

2a2
1T

2
1 + . . . + (1− ηn)2a2

nT
2
n

(1− ηj)2a2
jT

2
j

= 2 < c2 = 3 .

In that case the above derivative is negative, which means that the interval
(11) is widest when there is no mean shift at all. This strange behavior does
not carry over to n = 3 uniform distributions. Also, it should be pointed out
that for n = 2 and uniform part dimension variation the CLT does not yet
provide a good approximation to the distribution of A, which in that case is
triangular.

In most cases we will find that the above derivatives are nonnegative and
that the maximum interval width subject to ηi ≤ η0 is indeed achieved at
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ηi = η0 for i = 1, . . . , n. We would then have that A conservatively falls
within

νA ±
(
η0

n∑
i=1

|ai| Ti + c(1− η0)
√

a2
1T

2
1 + . . . + a2

nT
2
n

)
= νA ± T c,∆,arith

A (12)

with at least 99.73% (or 99.865%) assurance. This latter percentage derives
again from the CLT applied to εA. Taking advantage of the 99.865% we could
again introduce the reduction factor .927 in (12) and use

νA ±
(
η0

n∑
i=1

|ai| Ti + .927c(1− η0)
√

a2
1T

2
1 + . . . + a2

nT
2
n

)
= νA ± T̃ c,∆,arith

A

(13)
with at least 99.73% assurance.

5.2 Risk Assessment with Arithmetically Stacked Mean Shifts

This section parallels Section 6 on the same subject, except that here we
account for mean shifts. These cause the normal distribution of A to move
away from the center of the assembly requirement interval given by |A−νA| ≤
K0. The probability of satisfying this assembly requirement is now

P (|A− νA| ≤ K0) = P (|A− µA + µA − νA| ≤ K0)

= P

(∣∣∣∣∣A− µA

σεA

+
∆A

σεA

∣∣∣∣∣ ≤ K0

σεA

)

= P

(∣∣∣∣∣Z +
∆A

σεA

∣∣∣∣∣ ≤ K0

σεA

)

≥ P

(∣∣∣∣∣Z −
∑n

i=1 ηi|ai|Ti

σεA

∣∣∣∣∣ ≤ K0

σεA

)
where Z is a standard normal random variable and in the inequality we
replaced ∆A by one of the two worst case assembly mean shifts for a fixed
set of {η1, . . . , ηn}, namely by −∑n

i=1 ηi|ai|Ti, see (5). Replacing σεA
by the

corresponding remaining assembly variability, i.e.,

σεA
=

c

3

√√√√ n∑
i=1

(1− ηi)2a2
i T

2
i , (14)
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we get

P (|A− νA| ≤ K0) ≥ P (|Z − C(η1, . . . , ηn)| ≤ W (η1, . . . , ηn)) , (15)

where

C(η1, . . . , ηn) =

∑n
i=1 ηi|ai|Ti

(c/3)
√∑n

i=1(1− ηi)2a2
i T

2
i

≥ 0

and

W (η1, . . . , ηn) =
K0

(c/3)
√∑n

i=1(1− ηi)2a2
i T

2
i

.

Assuming that we impose the restriction ηi ≤ η0 for i = 1, . . . , n, it seems
plausible that the worst case lower bound for P (|A − νA| ≤ K0) in (15) is
attained when ηi = η0 for i = 1, . . . , n. Clearly C(η1, . . . , ηn) is increasing in
each ηi, but so is W (η1, . . . , ηn). Thus the interval

J = [C(η1, . . . , ηn)−W (η1, . . . , ηn), C(η1, . . . , ηn) + W (η1, . . . , ηn)]

not only shifts further to the right of zero as we increase ηi, but it also gets
wider. Thus it is not clear whether the probability lower bound P (Z ∈ J)
decreases as we increase ηi.

Using common part tolerances |ai|Ti = T for all i, we found no counterex-
ample to the above conjecture during limited simulations for c = 1 (normal
case). These simulations consisted of randomly choosing (η1, . . . , ηn) with
0 ≤ ηi ≤ η0.

However, for c > 1 there are counterexamples. For example, when c = 1.5
and again assuming common part tolerances |ai|Ti = T for all i, η0 = .2, n =
3, and K0 = nη0T+c(1−η0)T

√
n as T c,∆,arith

A in (12), then P (Z ∈ J) = .99802
when η1 = . . . = ηn = 0 and P (Z ∈ J) = .99865 when η1 = . . . = ηn = η0 =
.2. As n increases this counterexample disappears. One may argue that
the amount by which the conjecture is broken in this particular example is
negligible, since the ratio ρ = .99802/.99865 = .999369 is very close to one.

Other simulations with c > 1 show that the conjecture seems to hold
(assuming common part tolerances, η0 = .2 and n ≥ 3) as long as c ≤ 1.2905.
For n = 2 the conjecture seems to hold as long as c ≤ 1.05. Also observed in
all these simulations was that by far the closest competitor to our conjecture
arises for η1 = . . . = ηn = 0.
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Although any violation of the conjecture may be only mild, from a purely
mathematical point of view its validity cannot hold without further restric-
tions. It is possible that this violation is only an artifact of using a normal
approximation in situations (small n) where it may not be appropriate.

Proceeding as though ηi = η0 for i = 1, . . . , n provides us with a worst
case probability lower bound we have

P (|A− νA| ≤ K0)

≥ P

∣∣∣∣∣∣Z − 3η0
∑n

i=1 |ai|Ti

c(1− η0)
√∑n

i=1 a2
i T

2
i

∣∣∣∣∣∣ ≤ 3K0

c(1− η0)
√∑n

i=1 a2
i T

2
i



= Φ

3 (η0
∑n

i=1 |ai|Ti + K0)

c(1− η0)
√∑n

i=1 a2
i T

2
i

− Φ

3 (η0
∑n

i=1 |ai|Ti −K0)

c(1− η0)
√∑n

i=1 a2
i T

2
i

 . (16)

If we take

K0 = T c,∆,arith
A = η0

n∑
i=1

|ai|Ti + c(1− η0)
√

a2
1T

2
1 + . . . + a2

nT
2
n , (17)

as in (12) then (16) becomes

P (|A− νA| ≤ K0) ≥ Φ

3 +
6η0

∑n
i=1 |ai|Ti

c(1− η0)
√∑n

i=1 a2
i T

2
i

− Φ(−3)

≥ Φ

(
3 +

6η0

c(1− η0)

)
− Φ(−3)

≈ 1− Φ(−3) = .99865 . (18)

Here we have treated the term

Φ

(
3 +

6η0

c(1− η0)

)

(the argument of Φ already strongly reduced by the second ≥ above) as one,
provided η0 is not too small.
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If instead we take

K0 = T̃ c,∆,arith
A = η0

n∑
i=1

|ai|Ti + .927c(1− η0)
√

a2
1T

2
1 + . . . + a2

nT
2
n ,

we would get

P (|A− νA| ≤ K0) ≥ Φ

(
3 (.927) +

6η0

c(1− η0)

)
− Φ((−3) .927)

≈ 1− Φ(−2.782) = .9973 .

If we are concerned with the validity of the assumed conjecture, we could
calculate P (Z ∈ J) for the closest competitor η1 = . . . = ηn = 0 (according
to our simulation experience), i.e.,

P (Z ∈ J) = Φ(C(0, . . . , 0) + W (0, . . . , 0))− Φ(C(0, . . . , 0)−W (0, . . . , 0))

= Φ

 3K0

c
√∑n

i=1 a2
i T

2
i

− Φ

 −3K0

c
√∑n

i=1 a2
i T

2
i

 (19)

and compare the numerical result of (19) with (16), taking the smaller of the
two. In particular, with K0 as in (17) the expression (19) becomes

P (Z ∈ J) = 2Φ

3(1− η0) +
3η0

∑n
i=1 |ai|Ti

c
√∑n

i=1 a2
i T

2
i

− 1 . (20)

We can than compare our previous lower bound (18) with (20) and take
the smaller of the two as our conservative assessment for the probability of
successful assembly.

5.3 Statistical Stacking of Mean Shifts3

In the previous section the mean shifts were stacked in worst case fashion.
Again one could say that this should rarely happen in practice. To throw
some light on this let us contrast the following two causes for mean shifts.

3A more careful reasoning will be presented in the next section. The treatment here
is given mainly to serve as contrast and to provide a reference on related material in the
literature.
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In certain situations we may be faced with an inability to properly center
the manufacturing processes in which case it would be reasonable to view
the process means µi as randomly varying around the respective nominal
values νi, although once µi is realized, it will stay fixed. For some such µi the
mean shifts µi − νi will come out positive and for some they will come out
negative, resulting in some cancellation of mean shifts when stacked. Hence
the absolute assembly mean shift (if all part mean shifts are of the type just
described) should be considerably less than attained through worst case or
arithmetic stacking of mean shifts.

In other situations the mean shifts are a deliberate aspect of part man-
ufacture. This happens when one makes parts to maximum material condi-
tion, preferring rework to scrap. Depending on how these maximum material
condition part dimensions interact we could quite well be affected by the cu-
mulative mean shifts in the worst possible way. As an example for this,
consider the interaction of hole and fastener, where aiming for maximum
material condition on both parts (undersized hole and oversized fastener)
could bring both part dimensions on a collision course. Even with such un-
derlying motives it seems rather unlikely that a manufacturing process can
be centered at exactly the mean shift boundary. Thus one should view this
adverse situation as mainly aiming with the mean shifts in an unfavorable
direction (for stacking) but also as still having some random quality about
it.

The latter case, in its extreme (without the randomness of the means),
was addressed in the previous section. In this section we address the situation
of process means µi randomly varying around the nominals νi. As pointed
out before, this suggests applying the method of statistical tolerancing to the
means themselves. However, some care has to be taken in treating the one
time nature of the random mean situation.

We will assume that the means µi themselves are randomly chosen from
the permitted mean shift interval [νi− ηiTi, νi + ηiTi]. It is assumed that this
random choice is governed by a distribution over this interval with mean νi

and standard deviation τi. As before we relate ηiTi to 3τi by way of a factor
cµ depending on the distribution type used (see Table 1), i.e.,

cµηiTi = 3τi .

By the CLT it follows that

µA = a0 + a1µ1 + . . . + anµn
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has an approximate normal distribution with mean νA = a0+a1ν1+. . .+anνn

and standard deviation

τA =
√

a2
1τ

2
1 + . . . + a2

nτ
2
n

=
√

a2
1(cµη1T1/3)2 + . . . + a2

n(cµηnTn/3)2

=
cµ

3

√
a2

1η
2
1T

2
1 + . . . + a2

nη
2
nT

2
n .

99.73% of all sets of random process means {µ1, . . . , µn} will result in µA

being within ±3τA of νA, i.e., |µA − νA| ≤ 3τA. Since εA falls with 99.73%
assurance within±3σεA

(see (14)), we can say with at least 99.595% assurance
that

|A− νA| = |(µA + εA)− νA| ≤ |µA − νA|+ |εA| ≤ 3τA + 3σεA
= T ?

A ,

where T ?
A = 3τA + 3σεA

. This slightly degraded assurance level follows from

P (|A− νA| ≤ T ?
A) ≥ P (|µA + εA − νA| ≤ T ?

A, |µA − νA| ≤ 3τA)

≥ P (|εA − 3τA| ≤ T ?
A, |µA − νA| ≤ 3τA)

= P (|µA − νA| ≤ 3τA) P (|εA − 3τA| ≤ T ?
A)

= .9973

[
Φ

(
3τA + T ?

A

σεA

)
− Φ

(
3τA − T ?

A

σεA

)]

= .9973

[
Φ

(
3 +

6τA

σεA

)
− Φ(−3)

]

≈ .9973 (1− Φ(−3)) = .9973 · .99865 = .99595 .

The factorization of the above probabilities follows from the reasonable as-
sumption that the variability of the mean µi is statistically independent from
the subsequent variability of εi, the part dimension variation around µi. This
in turn implies that µA and εA are statistically independent and allows the
above factorization.
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In the above numerical calculation we approximated

Φ

(
3 +

6τA

σεA

)
= Φ

3 +
6cµ

√∑n
i=1 a2

i η
2
i T

2
i

c
√∑n

i=1 a2
i (1− ηi)2T 2

i

 ≈ 1 ,

which is very reasonable when the ηi are not too small. For example, when
the ηi are all the same, say ηi = η, and assuming cµ ≥ c and η ≥ .2 then

Φ

3 +
6cµ

√∑n
i=1 a2

i η
2
i T

2
i

c
√∑n

i=1 a2
i (1− ηi)2T 2

i

 = Φ

(
3 +

6cµη

c(1− η)

)
≥ Φ (4.5) = .999997 .

Concerning the 99.595% assurance level it is worthwhile contemplating
its meaning, since we mixed two types of random phenomena, namely that
of a one time shot of setting the part process means and that of variation as
it happens over and over for each set of parts to make an assembly. If the
one time shot is way off, as it can happen with very small chance or by worst
case mean shifts, then it is quite conceivable that all or a large proportion
of the assemblies will exceed the ±(3τA + 3σεA

) limits. This bad behavior
will persist until something is done to bring the process means closer to the
respective nominals.

If however, |µA−νA| ≤ 3τA as it happens with high chance, then it makes
little sense to take that chance into account for all subsequent assemblies.
Given |µA − νA| ≤ 3τA, it will stay that way from now on and the fraction
of assemblies satisfying |A− νA| ≤ 3τA + 3σεA

is at least .9973.

Using our previous representations of τA and σεA
in terms of the part

tolerances Ti we get

T ?
A = cµ

√
a2

1η
2
1T

2
1 + . . . + a2

nη
2
nT

2
n

+ c
√

a2
1(1− η1)2T 2

1 + . . . + a2
n(1− ηn)2T 2

n . (21)

For c = cµ = 1, with normal variation for εi and the means µi, this was
aready proposed by Desmond in the discussion of Mansoor(1963). In his
reply Mansoor states having considered this dual use of statistical tolerancing
himself, but rejects it as producing too optimistic tolerance limits. Note that
Mansoor’s reluctance may be explained as follows. For c = cµ = 1 and
η1 = . . . = ηn = η0 the above formula (21) reduces to

T ?
A =

√
a2

1T
2
1 + . . . + a2

nT
2
n ,
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which coincides with the ordinary statistical tolerancing formula (2) without
mean shift allowances. Note however, that in our dual use of statistical
tolerancing we may have given up a little by reducing 99.73% to 99.595% in
the assembly tolerance assurance.

The fact that this strong connection between (21) and (2) was not no-
ticed by Desmond and Mansoor is probably related to their notation and to
their more general setup (not all ηi are the same). Desmond suggested (in
Mansoor’s notation and assuming |ai| = 1)

Tprob =

√√√√ n∑
i=1

(Ti − ti)2 +

√√√√ n∑
i=1

t2i ,

where Ti is the tolerance for the part dimension (as we also use it) and ti
is the tolerance for the mean shift. Relating this to our notation we get
ti = ηiTi and Desmond’s formula reads

Tprob =

√√√√ n∑
i=1

(1− ηi)2T 2
i +

√√√√ n∑
i=1

η2
i T

2
i .

When these fractions ηi are all the same, as they reasonably may be, we get

Tprob = (1− η0)

√√√√ n∑
i=1

T 2
i + η0

√√√√ n∑
i=1

T 2
i =

√√√√ n∑
i=1

T 2
i .

More generally, we have the following inequality√√√√ n∑
i=1

(1− ηi)2T 2
i +

√√√√ n∑
i=1

η2
i T

2
i ≥

√√√√ n∑
i=1

T 2
i ,

with equality exactly when η1 = . . . = ηn. This is seen from an application
of the Cauchy-Schwarz inequality, i.e.,√√√√ n∑

i=1

(1− ηi)2T 2
i

√√√√ n∑
i=1

η2
i T

2
i ≥

n∑
i=1

ηi(1− ηi)T
2
i

or

2

√√√√ n∑
i=1

(1− ηi)2T 2
i

√√√√ n∑
i=1

η2
i T

2
i ≥

n∑
i=1

T 2
i (1− η2

i − (1− ηi)
2) ,
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with equality exactly when for some factor β we have (1− ηi)Ti = βηiTi for
all i, and hence when η1 = . . . = ηn. Rearranging terms we get

n∑
i=1

(1− ηi)
2T 2

i +
n∑

i=1

η2
i T

2
i + 2

√√√√ n∑
i=1

(1− ηi)2T 2
i

√√√√ n∑
i=1

η2
i T

2
i ≥

n∑
i=1

T 2
i

which is simply the square of the claimed inequality.

Since statistical tolerance stacking is used both on the stack of mean shifts
and on the part variation it will not surprise that the assembly tolerance
stack T ?

A typically grows on the order of
√

n. This is the case when the |ai|Ti

and mean shift fractions ηi are comparable and it is seen most clearly when
|ai|Ti = T and ηi = η for all i = 1, . . . , n. In that case (21) simplifies to

T ?
A =

√
n (cµη + c(1− η)) T .

Returning to the general form of (21), but making the reasonable assump-
tion assumption η1 = . . . = ηn = η, we get

T ?
A(η) = (cµη + c(1− η))

√
a2

1T
2
1 + . . . + a2

nT
2
n

= (c + η(cµ − c))
√

a2
1T

2
1 + . . . + a2

nT
2
n (22)

which then can be taken as assembly tolerance stack with assurance of at least
99.595%. If we bound the mean shift by the condition η ≤ η0 and if cµ > c,
then T ?

A(η) is bounded by T ?
A(η0). If cµ ≤ c we have that T ?

A(0) ≥ T ?
A(η),

i.e., the worst case arises when all the variability comes from part to part
variability and none from mean shifts. Note however that in this case the
part variability is spread over the full tolerance interval Ii.

One reasonable choice for c and cµ is c = 1 and cµ =
√

3 = 1.732, using
normal part dimension variation and a fairly conservative uniform mean shift
variation. Under these assumption and limiting the mean shift to a fraction
η0 = .2, stacking formula (22) becomes

T ?
A(.2) = 1.146

√
a2

1T
2
1 + . . . + a2

nT
2
n

which seems rather mild. An explanation for this follows in the next section.
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5.4 Statistical Stacking of Mean Shifts Revisited

In the previous section we exploited the cancellation of variation in the part
mean shifts. It was assumed there that the variation of the mean shifts
∆i = µi−νi should be limited to the respective intervals [−ηiTi, ηiTi] and that
any such mean shift should be accompanied by a reduction in part variability,
i.e., in σi. During our treatment we assumed this to mean that the original
σi = Ti/3 (in its worst case form) be reduced by the factor 1−ηi. This is not
correct. It would be correct, if the mean shift was at the boundary of the
allowed interval, i.e., ∆i = ±ηiTi. Since we exploit the fact that the mean
shifts vary randomly over their respective intervals, we should also allow for
the fact that some of the mean shifts are not all that close to the boundary of
the allowed intervals. This in turn allows the standard deviation of εi to be
larger. Recall that we allow mean shifts as long as we maintain Cpk ≥ 1. In
the previous section we took advantage of mean shift variation cancellation
but kept the residual part to part variability smaller than might actually
occur. This fallacy was probably induced by the treatment of arithmetic
stacking of mean shifts. It also explains why the tolerance stacking formulas
of the previous section appeared optimistic. In this section we will rectify
this defect. It appears that the results presented here are new.

Recall that the part dimension measurement was modeled as

Xi = νi + ∆i + εi ,

where the mean shift ∆i = µi − νi was treated as a random variable having
a distribution over the interval [−ηiTi, ηiTi] with mean zero and standard
deviation τi. The latter relates to Ti via

3τi = cµηiTi ,

where cµ depends on the type of distribution that is assumed for the ∆i, see
Table 1. In the following let

Yi =
∆i

ηiTi

so that ∆i = YiηiTi ,

where Yi is a random variable with values in [−1, 1], having mean zero and
standard deviation τi/(ηiTi) = cµ/3.

Conditional on |∆i|, the part to part variation term εi is assumed to vary
over the interval

Ji(|∆i|) = [−(Ti − |∆i|), (Ti − |∆i|)] = [−(1− ηiYi)Ti, (1− ηiYi)Ti].
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This is the part that is different from our previous treatment, where we
assumed that εi varies over

Ji(ηiTi) = [−(Ti − ηiTi), (Ti − ηiTi)] = [−(1− ηi)Ti, (1− ηi)Ti],

i.e., we replaced |∆i| by its maximally permitted value ηiTi. This artifi-
cially reduced the resulting σi for εi and led to optimistic tolerance stacking
formulas. Given Yi, the standard deviation σi = σi(Yi) of εi is such that

3σi(Yi) = cTi(1− |Yi|ηi) ,

where as before c is a constant that takes into account the particular distri-
bution of εi. See Table 1 for constants c corresponding to various distribution
types. Assuming the above form of σi(Yi) in relation to Ti(1− |Yi|ηi) is con-
servative, since the actual σi(Yi) could be smaller. The above form is derived
from Cpk = 1, but the actual requirement says Cpk ≥ 1.

With the above notation we can express the assembly deviation from
nominal as follows

DA = A− νA =
n∑

i=1

ai∆i +
n∑

i=1

aiεi =
n∑

i=1

aiηiTiYi +
n∑

i=1

aiεi . (23)

The first sum on the right represents the assembly mean shift effect. Since
it involves the random terms Yi, it is, for large enough n, approximately
normally distributed with mean zero and standard deviation

τA =

√√√√ n∑
i=1

a2
i τ

2
i =

√√√√ n∑
i=1

a2
i η

2
i T

2
i

(
cµ

3

)2

.

Since this assembly shift is a one time effect, we can bound it by∣∣∣∣∣
n∑

i=1

aiηiTiYi

∣∣∣∣∣ ≤ 3τA = cµ

√√√√ n∑
i=1

a2
i η

2
i T

2
i

with 99.73% assurance. The second sum on the right of equation (23) con-
tains a mixture of one time variation (through the Yi which affect the stan-
dard deviations σi(Yi)) and of variation that is new for each assembly, namely
the variation of the εi, once the Yi and thus the σi(Yi) are fixed.

Given Y = (Y1, . . . , Yn), resulting in fixed (σ1(Y1), . . . , σn(Yn)), we can
treat

∑n
i=1 aiεi as normal (assuming the εi to be normal with c = 1) or, for
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large enough n and appealing to the CLT, as approximately normal with
mean zero and standard deviation

σA(Y ) =

√√√√ n∑
i=1

a2
i T

2
i (1− |Yi|ηi)2

(
c

3

)2

.

Conditional on Y we can expect 99.73% of all assemblies to satisfy

∣∣∣∣∣
n∑

i=1

aiεi

∣∣∣∣∣ ≤ 3σA(Y ) = c

√√√√ n∑
i=1

a2
i T

2
i (1− |Yi|ηi)2 .

σA(Y ) is largest when all Yi = 0, i.e.,

σA(Y ) ≤ σA(0) =
c

3

√√√√ n∑
i=1

a2
i T

2
i .

Regardless of the value of Y we thus have

∣∣∣∣∣
n∑

i=1

aiεi

∣∣∣∣∣ ≤ 3σA(0) = c

√√√√ n∑
i=1

a2
i T

2
i

with 99.73% assurance.

Since the mean shift variation, reflected in Y , is a one time effect, we
stack the two contributions

∑n
i=1 aiεi and

∑n
i=1 aiηiTiYi in worst case fashion,

i.e., arithmetically. This means we bound both terms statistically and then
add the bounds. Thus we obtain the following conservative tolerance stacking
formula

T ??
A = 3τA + 3σA(0)

= cµ

√√√√ n∑
i=1

a2
i η

2
i T

2
i + c

√√√√ n∑
i=1

a2
i T

2
i . (24)

This stacking formula is conservative for three reasons: 1) we stacked the
tolerances of the two contributions

∑n
i=1 aiεi and

∑n
i=1 aiηiTiYi in worst case

fashion, 2) we used the conservative upper bounds σi(0) on the standard
deviations σi(Yi), and 3) we assumed that the σi(Yi) filled out the remaining
space left free by the mean shift, i.e., 3σi(Yi) = cTi(1− |Yi|ηi).
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When the ηi, which bound the fractions of mean shift, are all the same,
say ηi = η0, then (24) reduces to

T ??
A = (η0cµ + c)

√√√√ n∑
i=1

a2
i T

2
i . (25)

This is again the RSS formula with an inflation factor. However, it is not
motivated by increasing the variation around the nominal center. Instead it
is motivated by statistically stacking the mean shifts, and stacking that in
worst case fashion with the statistically toleranced part to part variation.

When the |ai|Ti are all the same or approximately comparable, one sees
again that T ??

A is of order
√

n. This is the main gain in statistically tolerancing
the mean shifts. Recall that worst case mean shift stacking led to assembly
tolerances of order n.

As a particular example, let η0 = .2 and consider normal part to part
variation for all parts, i.e., c = 1, and uniform mean shift variation4 over the
interval [−η0Ti, η0Ti], i.e., cµ =

√
3. Then (25) becomes

T ??
A = 1.346

√√√√ n∑
i=1

a2
i T

2
i .

A less conservative and more complicated approach to the above toleranc-
ing problem looks at the sum of both contributions

∑n
i=1 aiεi and

∑n
i=1 aiηiTiYi

conditionally given Y . Conditional on Y , the sum of these two contributions,
namely DA = A− νA, has an approximate normal distribution with mean

µDA
(Y ) =

n∑
i=1

aiηiTiYi

and standard deviation

σA(Y ) =

√√√√ n∑
i=1

a2
i T

2
i (1− |Yi|ηi)2

(
c

3

)2

.

Thus the interval I0(Y ), given by

µDA
(Y )± 3σA(Y ) ,

4This assumption is conservative in the sense that among all symmetric and unimodal
distributions over that interval the uniform distribution is the one with highest variance.
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will bracket DA with conditional probability .9973 for a fixed value of Y . For
some values of Y the interval I0(Y ) will slide far to the right and for some it
will slide far to the left. Note that changing the signs of all Yi flips the interval
around the origin. Thus for every interval with extreme right endpoint TB

there is a corresponding interval with extreme left endpoint −TB.

The basic remaining problem is to find a high probability region B for
Y , say P (Y ∈ B) = .9973, such that for all Y ∈ B we have

−TB ≤ µDA
(Y )− 3σA(Y ) and µDA

(Y ) + 3σA(Y ) ≤ TB .

Here TB denotes the most extreme upper endpoint of I0(Y ) as Y varies over
B. It is also assumed that B is such that with Y ∈ B we also have −Y ∈ B,
so that −TB is the most extreme lower endpoint of I0(Y ) as Y varies over
B.

The event Y 6∈ B is very rare (with .27% chance), i.e., about .27% of
all assembly setups (with part processes feeding parts to that assembly) will
have mean shifts extreme enough so that Y 6∈ B.

Let us look at the right endpoint of I0(Y )

µDA
(Y ) + 3σA(Y ) =

n∑
i=1

aiηiTiYi + c

√√√√ n∑
i=1

a2
i T

2
i (1− |Yi|ηi)2

=

√√√√ n∑
i=1

a2
i T

2
i

 n∑
i=1

ηiwiYi + c

√√√√ n∑
i=1

w2
i (1− |Yi|ηi)2


with weights

wi =
aiTi√∑n
j=1 a2

jT
2
j

so that
n∑

i=1

w2
i = 1 .

Note that
√∑n

i=1 a2
i T

2
i is the usual RSS tolerance stacking formula. Thus we

may view the factor

FU(Y ) =
n∑

i=1

ηiwiYi + c

√√√√ n∑
i=1

w2
i (1− |Yi|ηi)2

as an RSS inflation factor. Similarly one can write

µDA
(Y )− 3σA(Y ) =

√√√√ n∑
i=1

a2
i T

2
i

 n∑
i=1

ηiwiYi − c

√√√√ n∑
i=1

w2
i (1− |Yi|ηi)2


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= FL(Y )

√√√√ n∑
i=1

a2
i T

2
i

with

FL(Y ) =
n∑

i=1

ηiwiYi − c

√√√√ n∑
i=1

w2
i (1− |Yi|ηi)2

having the same distribution as −FU(Y ) since the Yi are assumed to have a
symmetric distribution on [−1, 1].

At this point FU(Y ) and FL(Y ) still depend on the conditioning mean
shift variables Y . By bounding FU(Y ) with high probability from above
by F0 and FL(Y ) from below by −F0, for example P (FU(Y ) ≤ F0) =
P (FL(Y ) ≥ −F0) = .99865, we would then have the following more refined,
mean shift adjusted tolerance stack formula

T �
A = F0

√√√√ n∑
i=1

a2
i T

2
i .

We will find later that the inflation factor F0 in front of the RSS term is
again independent of n and thus the growth of T �

A is dictated by the growth
of the RSS contribution which is of order

√
n.

The complication with obtaining the distributions of FU(Y ) and FL(Y )
is that the two summands in each are correlated (involving the same Yi) and
that the second sum is under a square root. Thus it is difficult to get the exact
distribution of FU(Y ) or FL(Y ) analytically. Also, for small n we should not
appeal to the CLT. To shed some light on this we performed some simulations
under the following reasonable and simplifying assumptions. Namely, η1 =
. . . = ηn = η0, Yi is uniform over the interval [−1, 1], i.e., cµ =

√
3, and εi is

normal, i.e., c = 1. Furthermore, we let the |ai|Ti be all the same, so that
wi = 1/

√
n for all i. Then

FU(Y ) = η0

n∑
i=1

Yi√
n

+

√√√√ n∑
i=1

1

n
(1− |Yi|η0)2

and we simulated the distribution of FU(Y ) with 10, 000 replications for
each n = 2, . . . , 10, 12, 15, 20. This exercise was repeated for a different
choice of |ai|Ti, leading to linearly increasing weights wi = m · i with m =

45



Figure 5: Distribution of RSS Factors, n = 2, 3, 4
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Figure 6: Distribution of RSS Factors, n = 5, 6, 7
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Figure 7: Distribution of RSS Factors, n = 8, 9, 10
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Figure 8: Distribution of RSS Factors, n = 12, 15, 20
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√
6/[(n(n + 1)(2n + 1)]. The histograms of FU(Y ) are displayed side by side

for both sets of simulations in Figures 5-8.

Also shown are superimposed normal density curves, which seem to fit
reasonably well for n ≥ 5. These normal distributions arise from applying
the CLT to

η0

n∑
i=1

wiYi ,

i.e., treating it as normal with mean zero (since E(Yi) = 0) and variance

var

(
η0

n∑
i=1

wiYi

)
= η2

0

n∑
i=1

w2
i σ

2
Y = η2

0σ
2
Y ,

independent of the weights wi. With Y being uniform on [−1, 1], we have
σ2

Y = 4/12 = 1/3. Furthermore, we treat the other term in FU(Y ), i.e.,√√√√ n∑
i=1

w2
i (1− |Yi|η0)2 ,

as an approximate constant, since the term under the square root is approxi-
mately constant, the extent of constancy depending somewhat on the weights
wi. However, the constant itself is independent of the weights. To see this
note that

E

(
n∑

i=1

w2
i (1− |Yi|η0)

2

)
=

(
n∑

i=1

w2
i

)
E
(
(1− |Y1|η0)

2
)

= E
(
1− 2|Y1|η0 + Y 2

1 η2
0

)

= 1− η0 +
η2

0

3
,

where in the last line we again assumed for Y1 a uniform distribution over
the interval [−1, 1]. Furthermore

var

(
n∑

i=1

w2
i (1− |Yi|η0)

2

)
=

n∑
i=1

w4
i var

(
(1− |Yi|η0)

2
)

=

(
n∑

i=1

w4
i

)
var

(
(1− |Y1|η0)

2
)
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= κ2
0

(
n∑

i=1

w4
i

)
.

Assuming a uniform distribution over the interval [−1, 1] we have

κ2
0 = var

(
(1− |Y1|η0)

2
)

= E (1− |Y1|η0)
4 −

(
E (1− |Y1|η0)

2
)2

= 1− 4η0E(|Y1|) + 6η2
0E(|Y1|2)− 4η3

0E(|Y1|3)

+ η4
0E(|Y1|4)−

(
1− η0 +

η2
0

3

)2

=
η2

0

3

(
1− η0 +

4

15
η2

0

)
.

For η0 = .2 we have κ0 = .104. The sum
∑n

i=1 w4
i tends to be small as n gets

large. For example, if w1 = . . . = wn = 1/
√

n, we get
∑n

i=1 w4
i = 1/n → 0 as

n →∞. Similarly, if

wi = m i with m =

√
6

n(n + 1)(2n + 1)

we have

n∑
i=1

w4
i = m4

n∑
i=1

i4

=

(
6

n(n + 1)(2n + 1)

)2
n(n + 1)(2n + 1)(3n2 + 3n− 1)

30

=
6

5

3n2 + 3n− 1

n(n + 1)(2n + 1)

≈ 9

5n
→ 0 as n →∞ .

Using the above assumption of Yi ∼ U([−1, 1]) and η1 = . . . = ηn = η0 we
can treat FU(Y ) as approximately normal with mean and standard deviation

µF =

√
1− η0 +

η2
0

3
and σF =

η0√
3

,
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respectively. As pointed out above, the distribution of FL(Y ) is the same as
that of −FU(Y ),i.e., approximately normal with mean and standard devia-
tion

−µF = −
√

1− η0 +
η2

0

3
and σF =

η0√
3

,

respectively.

When η0 = .2, as in the simulations underlying Figure 5-8, we have
µF = .90185 and σF = .1155. The density corresponding to this normal
distribution is superimposed on each of the histograms in Figure 5-8. The fit
appears quite reasonable for n ≥ 5. According to the above derivation and
verified by the simulations, the distribution of FU(Y ) settles down rapidly,
i.e., it does not move with n as n gets larger. Only for n ≤ 4 do we have
larger discrepancies between the histograms and the approximating normal
density. Note however, that for all n ≥ 2 the right tail of the “approx-
imating” normal distribution always extends farther out than that of the
simulated histogram distribution. This is illustrated more explicitly in Fig-
ure 9, which shows the p-quantiles of the 10, 000 simulated FU(Y ) values
plotted against n (for the case with equal tolerances) for high values of p,
namely p = .99, .995, .999, .9995.
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