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Central Limit Theorems and Proofs

The following gives a self-contained treatment of the central limit theorem (CLT). It is based on
Lindeberg’s (1922) method. To state the CLT which we shall prove, we introduce the following
notation. We assume that Xn1, . . . , Xnn are independent random variables with means 0 and
respective variances σ2

n1, . . . , σ
2
nn with

σ2
n1 + . . .+ σ2

nn = τ 2n > 0 for all n

Denote the sum Xn1 + . . .+Xnn by Sn and observe that Sn has mean zero and variance τ 2n, see
Fact 8.28 and 8.31 in Anderson et al.

Lindeberg’s Central Limit Theorem:
If the Lindeberg condition is satisfied, i.e., if for every ε > 0 we have that

Ln(ε) =
1

τ 2n

n∑
i=1

E
(
X2
niI{|Xni|≥ετn}

)
−→ 0 as n→∞ ,

then for every a ∈ R we have that

P (Sn/τn ≤ a)− Φ(a) −→ 0 as n→∞

Proof: Step 1 (convergence of expectations of smooth functions): We will show in
Appendix 1 that for certain functions f we have that

E [f (Sn/τn)]− E [f (Z)]→ 0 as n→∞ , (1)

where Z denotes a standard normal random variable. If this convergence would hold for any
function f and if we then applied it to

fa(x) = I(−∞,a](x) = 1 if x ≤ a and = 0 if x > a,

then
E [fa (Sn/τn)]− E [fa (Z)] = P (Sn/τn ≤ a)− Φ(a)

and the statement of the CLT would follow. Unfortunately, we cannot directly demonstrate the
above convergence (1) for all f , but only for smooth f . Here smooth f means that f is bounded
and has three bounded, continuous derivatives as stipulated in Lemma 1 of Appendix 1.

Step 2 (sandwiching a step function between smooth functions): We will approximate
fa(x) = I(−∞,a](x), which is a step function with step at x = a, by sandwiching it between two
smooth functions. In fact, for δ > 0 one easily finds (see Appendix 2 for an explicit example)
smooth functions f(x) with f(x) = 1 for x ≤ a, f(x) monotone decreasing from 1 to 0 on
[a, a+ δ] and f(x) = 0 for x ≥ a+ δ. Hence we would have

fa(x) ≤ f(x) ≤ fa+δ(x) for all x ∈ R
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a

fa(x)

a + δ

fa+δ(x)f(x)

Since fa+δ(x+ δ) = fa(x), we also get from the second previous “≤”

fa(x) = fa+δ(x+ δ) ≥ f(x+ δ)

Combining these, we can bracket fa(x) for all x ∈ R by

f(x+ δ) ≤ fa(x) ≤ f(x)

a

fa(x)

a + δa − δ

f(x + δ) f(x)

Step 3 (the approximation argument): The following diagram will clarify the approxima-
tion strategy. The inequalities result from the bracketing in the previous step.

E
[
f
(
Sn

τn
+ δ

)]
≤ E

[
fa
(
Sn

τn

)]
≤ E

[
f
(
Sn

τn

)]
oo oo

E [f (Z + δ)] ≤ E [fa (Z)] ≤ E [f (Z)]

oo means that for any fixed δ > 0 and for fixed f the terms above and below oo become arbitrarily
close, say within ε/3 of each other, as n → ∞ (see Step 1). Since f(Z + δ) − f(Z) = 0 for
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Z 6∈ [a− δ, a+ δ] and |f(Z + δ)− f(Z)| ≤ 1 for a− δ ≤ Z ≤ a+ δ we have1

|E[f(Z + δ)]− E[f(Z)]| =
∣∣∣E [(f(Z + δ)− f(Z)) I[a−δ≤Z≤a+δ]

]∣∣∣ ≤ E
∣∣∣[I[a−δ≤Z≤a+δ]]∣∣∣

= P (a− δ ≤ Z ≤ a+ δ) = Φ(a+ δ)− Φ(a− δ)
≤ Φ(δ)− Φ(−δ) ≤ 2δφ(0) = 2δ/

√
2π

The latter bound can be made as small as ε/3, no matter what f is, by taking δ = ε
√

2π/6.
With this choice of δ, and n sufficiently large, the above diagram entails that∣∣∣∣E [fa (Snτn

)]
− E [fa (Z)]

∣∣∣∣ ≤ ε

3
+
ε

3
+
ε

3
= ε

Since this can be done for any ε > 0 we have shown that∣∣∣∣E [fa (Snτn
)]
− E [fa (Z)]

∣∣∣∣→ 0 as n→∞ 2

From Lindeberg’s CLT other special versions follow at once. The first, the Lindeberg-Levy CLT,
considers independent identically distributed random variables with finite variance σ2. The
second, the Liapunov CLT, considers independent, but not necessarily identically distributed
random variables with finite third moments.

Lindeberg-Levy CLT: Let Y1, . . . , Yn be independent and identically distributed random vari-
ables with common mean µ and finite positive variance σ2 and let Tn = Y1 + . . .+ Yn. Then

for all a ∈ R P

(
Tn − nµ√

nσ
≤ a

)
− Φ(a) −→ 0 as n→∞

Proof: Let Xi = Yi−µ, then Xi has mean zero and variance σ2. Note that Sn = X1+. . .+Xn =
Tn − nµ has variance τ 2n = nσ2 so that

Tn − nµ√
nσ

=
Sn
τn

The Lindeberg function Ln(ε) becomes

Ln(ε) =
1

nσ2

n∑
i=1

E
[
X2
i I[|Xi|≥ε

√
nσ]

]
=

1

nσ2
nE

[
X2

1I[|X1|≥ε
√
nσ]

]
→ 0

as n → ∞. For example, for a continuous r.v. with mean zero and finite variance σ2 this last
convergence follows by noting2

σ2 =
∫
(−a,a)

x2f(x)dx+
∫
(−a,a)c

x2f(x)dx ,

where the first summand on the right converges to σ2 as a → ∞. Thus the second term must
go to zero. But the second term is just∫

(−a,a)c
x2f(x)dx = E

[
X2I[|X|≥a]

]
2

1Using |E(X)| ≤ E (|X|) which follows from −|x| ≤ x ≤ |x| ∀x
2We express the following in terms of densities, but it holds generally, i.e., for discrete r.v.’s as well.
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Liapunov CLT: Let Y1, . . . , Yn be independent r.v. with means µ1, . . . , µn,
variances σ2

1, . . . , σ
2
n and finite absolute central moments, i.e.,

E(|Yi − µi|3) <∞. If Liapunov’s condition is satisfied, i.e.,

`n =
1

τ 3n

n∑
i=1

E
(
|Yi − µi|3

)
→ 0 as n→∞ ,

then

P

∑Yi −
∑
µi√∑

σ2
i

≤ a

− Φ(a)→ 0 as n→∞

Proof: We will simply show that Liapunov’s condition implies Lindeberg’s condition. Note
that Xi = Yi − µi has mean zero and variance σ2

i .

`n =
1

τ 3n

∑
E
(
|Xi|3

)
≥ 1

τ 3n

∑
E
(
|Xi|3I[|Xi|≥ετn]

)
≥ ετn

τ 3n

∑
E
(
|Xi|2I[|Xi|≥ετn]

)
= εLn(ε) 2

Appendix 1

Demonstration of Step 1: A crucial part of the proof is the following form of Taylor’s formula.
You may want to skip the technical proof which is provided only for completeness.

Lemma 1 (Taylor’s Formula): Let f be a bounded function defined on R with three bounded
continuous derivatives f (0) = f , f (1), f (2) and f (3), i.e., with

sup
x∈R

∣∣∣f (i)(x)
∣∣∣ = M

(i)
f <∞ for i = 0, 1, 2, 3.

Then for all h ∈ R

g(h) = sup
x∈R

∣∣∣∣f(x+ h)− f(x)− f (1)(x)h− 1

2
f (2)(x)h2

∣∣∣∣ ≤ Kf min
(
h2, |h|3

)
Proof: From the usual form of Taylor’s theorem we have for any h

f(x+ h)− f(x)− f (1)(x)h− 1

2
f (2)(x)h2 =

h3

6
f (3)(x̃)

where x̃ lies between x and x+ h. Hence for all h ∈ R∣∣∣∣f(x+ h)− f(x)− f (1)(x)h− 1

2
f (2)(x)h2

∣∣∣∣ ≤ M
(3)
f

6
|h|3 (2)

On the other hand by simple application of the triangle inequality
(|a+ b+ . . . | ≤ |a|+ |b|+ . . .) we also have

|f(x+ h)− f(x)− f (1)(x)h − 1

2
f (2)(x)h2|

≤ M
(0)
f +M

(0)
f +M

(1)
f |h|+

1

2
M

(2)
f h2

= h2

2M
(0)
f

h2
+
M

(1)
f

|h|
+

1

2
M

(2)
f
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which for large h, say |h| ≥ bf , and large K ′, say K ′ = 1
2
M

(2)
f + 1, can be bounded by K ′h2. For

|h| < bf we have from the inequality (2)

∣∣∣∣f(x+ h)− f(x)− f (1)(x)h− 1

2
f (2)(x)h2

∣∣∣∣ ≤ M
(3)
f

6
|h|3 ≤ bf

M
(3)
f

6
h2

Taking

Kf = max

bfM (3)
f

6
, K ′,

M
(3)
f
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we have for h ∈ R∣∣∣∣f(x+ h)− f(x)− f (1)(x)h− 1

2
f (2)(x)h2

∣∣∣∣ ≤ Kfh
2 and ≤ Kf |h|3 ,

hence ≤ min(Kfh
2, Kf |h|3) 2.

From Lemma 1 we obtain the following Corollary.

Corollary 1: Under the conditions of Lemma 1 we have

f(x+ h1)− f(x+ h2) = [f (1)(x)(h1 − h2) +
1

2
f (2)(x)(h21 − h22)] + r

with
|r| ≤ g(h1) + g(h2) ≤ Kf

(
min(h21, |h1|3) + min(h22, |h2|3)

)

Proof:

|r| =
∣∣∣∣f(x+ h1)− f(x+ h2)− [f (1)(x)(h1 − h2) +

1

2
f (2)(x)(h21 − h22)]

∣∣∣∣
=

∣∣∣∣f(x+ h1)− f(x)− f (1)(x)h1 −
1

2
f (2)(x)h21

−
[
f(x+ h2)− f(x)− f (1)(x)h2 −

1

2
f (2)(x)h22

]∣∣∣∣
≤ g(h1) + g(h2)

by the triangle inequality 2.
To demonstrate the convergence in (1) consider independent normal random variables Vn1, . . .,
Vnn with mean zero and respective variances σ2

n1, . . ., σ
2
nn, so that3

Z =
Vn1 + . . .+ Vnn

τn

is normal with mean zero and variance one, i.e., standard normal. These Vni’s are also taken to
be independent of the Xnj’s.

3The sum of independent normal r.v.’s is a normal r.v., see Fact 7.9 in Anderson et al.
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First rewrite the approximation difference in the following telescoped fashion (to simplify nota-
tion we write Xi, Vi and σi for Xni, Vni and σni, respectively)

E
[
f
(
Sn
τn

)]
− E [f (Z)] = E

[
f
(
X1 + . . .+Xn

τn

)]
− E

[
f
(
X1 + . . .+Xn−1 + Vn

τn

)]
+ E

[
f
(
X1 + . . .+Xn−1 + Vn

τn

)]
− E

[
f
(
X1 + . . .+Xn−2 + Vn−1 + Vn

τn

)]
+ . . . . . . . . .

+ . . . . . . . . .

+ E
[
f
(
X1 + V2 + . . .+ Vn

τn

)]
− E

[
f
(
V1 + . . .+ Vn

τn

)]
Now let Yi = X1 + . . . + Xi + Vi+2 + . . . + Vn for i = 1, . . . , n − 2 and Y0 = V2 + . . . + Vn and
Yn−1 = X1 + . . . + Xn−1. With this notation and employing the two term Taylor expansion of
Corollary 1 one can express a typical difference term in the above telescoped sum as

E
[
f
(
Yi +Xi+1

τn

)]
−E

[
f
(
Yi + Vi+1

τn

)]
= E

[(
Xi+1 − Vi+1

τn

)
f (1)

(
Yi
τn

)
+
X2
i+1 − V 2

i+1

2τ 2n
f (2)

(
Yi
τn

)
+Rn,i+1

]

where

|Rn,i+1| ≤ g
(
Xi+1

τn

)
+ g

(
Vi+1

τn

)
≤ Kf

[
min

(
X2
i+1

τ 2n
,
|Xi+1|3

τ 3n

)
+ min

(
V 2
i+1

τ 2n
,
|Vi+1|3

τ 3n

)]
(3)

Noting the independence of Yi and (Xi+1, Vi+1) and E(Xi+1) = E(Vi+1) = 0 we find4

E
[(
Xi+1 − Vi+1

τn

)
f (1)

(
Yi
τn

)]
= E

[
Xi+1 − Vi+1

τn

]
E
[
f (1)

(
Yi
τn

)]
= 0

Similarly,

E

[
X2
i+1 − V 2

i+1

2τ 2n
f (2)

(
Yi
τn

)]
= E

[
X2
i+1 − V 2

i+1

2τ 2n

]
E
[
f (2)

(
Yi
τn

)]
=
σ2
i+1 − σ2

i+1

2τ 2n
E
[
f (2)

(
Yi
τn

)]
= 0

Thus ∣∣∣∣E [f (Yi +Xi+1

τn

)]
− E

[
f
(
Yi + Vi+1

τn

)]∣∣∣∣ ≤ E |Rn,i+1|

Using the triangle inequality on the above telescoped sum we have

∣∣∣∣E [f (Snτn
)]
− E [f (Z)]

∣∣∣∣ ≤ n−1∑
i=0

E |Rn,i+1| ≤
n−1∑
i=0

E
[
g
(
Xi+1

τn

)]
+

n−1∑
i=0

E
[
g
(
Vi+1

τn

)]

=
n∑
i=1

E
[
g
(
Xi

τn

)]
+

n∑
i=1

E
[
g
(
Vi
τn

)]
,

changing the running index from i = 0, . . . , n− 1 to i = 1, . . . , n in the last step. We will show
that both sums on the right can be made arbitrarily small by letting n→∞. First consider

E
[
g
(
Xi

τn

)]
= E

[
g
(
Xi

τn

)
I{|Xi|≤ετn}

]
+ E

[
g
(
Xi

τn

)
I{|Xi|>ετn}

]
4For independent X and Y we have E(XY ) = E(X)E(Y ) for finite expectations, Anderson et al., Fact 8.10.

6



and invoke from (3) the bound Kf |Xi/τn|3 for the first term and the bound Kf |Xi/τn|2 for the
second term to get

E
[
g
(
Xi

τn

)]
≤ KfE

[
|Xi|3

τ 3n
I{|Xi|≤ετn}

]
+KfE

[
|Xi|2

τ 2n
I{|Xi|>ετn}

]

≤ ε KfE

[
|Xi|2

τ 2n
I{|Xi|≤ετn}

]
+KfE

[
|Xi|2

τ 2n
I{|Xi|>ετn}

]

≤ ε KfE

[
|Xi|2

τ 2n

]
+KfE

[
|Xi|2

τ 2n
I{|Xi|>ετn}

]
= ε Kf

σ2
i

τ 2n
+Kf

1

τ 2n
E
[
X2
i I{|Xi|>ετn}

]
Summing these we get

n∑
i=1

E
[
g
(
Xi

τn

)]
≤ Kf

n∑
i=1

ε
σ2
i

τ 2n
+Kf

1

τ 2n

n∑
i=1

E
[
X2
i I{|Xi|>ετn}

]
= Kfε+Kf

1

τ 2n

n∑
i=1

E
[
X2
i I{|Xi|>ετn}

]
= ε Kf +KfLn(ε)→ ε Kf

as n→∞ by the assumption of the Lindeberg condition.
Similarly one gets

n∑
i=1

E
[
g
(
Vi
τn

)]
≤ ε Kf +Kf

1

τ 2n

n∑
i=1

E
[
V 2
i I{|Vi|>ετn}

]
→ ε Kf ,

provided we can show that the Lindeberg condition also holds for the Vi’s. These two conver-
gences to Kfε show that the approximation error can be made arbitrarily small as n→∞, since
ε > 0 can be any small number, as long as f and hence Kf is kept fixed.
To show the Lindeberg condition for the Vi’s, we first note that the Lindeberg condition for the
Xi’s entails that

max{σ1/τn, . . . , σn/τn} → 0 as n→∞ (4)

This follows from

σ2
i

τ 2n
=

1

τ 2n
E
[
X2
i I{|Xi|≤ετn}

]
+

1

τ 2n
E
[
X2
i I{|Xi|>ετn}

]
≤ 1

τ 2n
τ 2nε

2E
[
I{|Xi|≤ετn}

]
+

1

τ 2n
E
[
X2
i I{|Xi|>ετn}

]
≤ ε2 +

1

τ 2n
E
[
X2
i I{|Xi|>ετn}

]
≤ ε2 + Ln(ε)

From the Lindeberg condition it follows that the second term vanishes as n → ∞ and hence
σ2
i /τ

2
n ≤ 2ε2 as n→∞ for any ε > 0. This shows (4).

The Lindeberg condition for the Vi’s is seen as follows, using |Vi/(τnε)| > 1 in the first ≤:

1

τ 2n

n∑
i=1

E
[
V 2
i I{|Vi|>ετn}

]
≤ 1

ετ 3n

n∑
i=1

E
[
|Vi|3

]
=

1

ετ 3n

n∑
i=1

σ3
iE

[
|Z|3

]
≤ 1

ε
max{σ1/τn, . . . , σn/τn}

∑n
i=1 σ

2
i

τ 2n
E
[
|Z|3

]
=

1

ε
max{σ1/τn, . . . , σn/τn}E

[
|Z|3

]
→ 0

as n→∞ 2.
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Appendix 2

Here we will exhibit an explicit function f(x) which has three continuous and bounded deriva-
tives and which is 1 for x ≤ 0, decreases from 1 to 0 on the interval [0, 1] and is 0 for x ≥ 1.
The form of this function taken from Thomasian (1969). By taking

h(x) = f
(
x− a
δ

)
we immediately get a corresponding smooth function which descends from 1 to 0 over the interval
[a, a+ δ] instead.
The function f(x) is given as follows for x ∈ [0, 1]:

f(x) = 1− 140
(

1

4
x4 − 3

5
x5 +

1

2
x6 − 1

7
x7
)

Then
f ′(x) = −140x3(1− x)3 for x ∈ [0, 1] ,

hence f is monotone decreasing on [0, 1]. Further, f(1) = 0 and f(0) = 1. To check smoothness
we have to verify that the first three derivatives join continuously at 0 and 1, i.e., are 0. Clearly,
f ′(0) = f ′(1) = 0. Next,

f ′′(x) = −420x2(1− x)2(1− 2x) with f ′′(0) = f ′′(1) = 0

and
f ′′′(x) = −420

(
2x(1− x)2(1− 2x)− 2(1− x)x2(1− 2x)− 2x2(1− x)2

)
with f ′′′(0) = f ′′′(1) = 0.
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