The Hypergeometric Distribution

Math 394

We detail a few features of the Hypergeometric distribution that are discussed in the book by Ross

1 Moments

Let $P[X=k]=\frac{\binom{m}{k}\binom{N-m}{n-k}}{\binom{N}{n}}$ (with the convention that $\binom{l}{j}=0$ if $j<0$, or $j>l$.
We detail the recursive argument from Ross. Consider, for $k=1,2, \ldots$

$$
\begin{equation*}
E\left[X^{r}\right]=\sum_{k=0}^{n} k^{r} \frac{\binom{m}{k}\binom{N-m}{n-k}}{\binom{N}{n}} \tag{1}
\end{equation*}
$$

The sum can also be extended from 1 to n, since the term with $k=0$ does not contribute to the result. Observe that
$k\binom{m}{k}=k \frac{m!}{k!(m-k)!}=k \frac{m \cdot(m-1)!}{k \cdot(k-1)!(m-k)!}=m \frac{(m-1)!}{(k-1)!(m-1-[k-1])!}=m\binom{m-1}{k-1}$ and also, as a consequence,

$$
\binom{N}{n}=\frac{1}{n} \cdot n \cdot\binom{N}{n}=\frac{1}{n} N\binom{N-1}{n-1}
$$

Inserting both identities in (1), after writing $k^{r}=k^{r-1} \cdot k$,

$$
E\left[X^{r}\right]=\frac{n m}{N} \sum_{k=1}^{n} k^{r-1} \frac{\binom{m-1}{k-1}\binom{N-m}{n-k}}{\binom{N-1}{n-1}}
$$

We can now change the summation index from $k-1, \ldots, n$ to $k-1=j=0, \ldots, n-1$, and notice that $n-k=n-(j+1)=(n-1)-j$, while $N-m=(N-1)-(m-1)$, so that

$$
E\left[X^{r}\right]=\frac{n m}{N} \sum_{j=0}^{n-1}(j+1)^{r-1} \frac{\binom{m-1}{j}\binom{(N-1)-(m-1)}{(n-1)-j}}{\binom{N-1}{n-1}}
$$

Now, the red part of the formula can be compared with (1) to show that calling Y a hypergeometrically distributed random variable with parameters $N-1, m-1, n-1$,

$$
E\left[X^{k}\right]=\frac{n m}{N} E\left[(Y+1)^{r-1}\right]
$$

This allows a simple recursion:

- $E[X]=\frac{n m}{N}$
- $E\left[X^{2}\right]=\frac{n m}{N} E[Y+1]=\frac{n m}{N}\left(\frac{(n-1)(m-1)}{N-1}+1\right)$

Consequently,

$$
\begin{aligned}
\operatorname{Var}[X]=E\left[X^{2}\right] & -(E[X])^{2}=\frac{n m}{N}\left(\frac{(n-1)(m-1)}{N-1}+1\right)-\left(\frac{n m}{N}\right)^{2}= \\
& =\frac{n m}{N}\left(\frac{(n-1)(m-1)}{N-1}+1-\frac{n m}{N}\right)
\end{aligned}
$$

Notice that, if we set $\frac{m}{N}=p$, and let $N, m \rightarrow \infty$, with $\frac{m}{N}$ fixed (that is, if we assume $n \ll N, m)$ this expression tends to $n p(1=p)$, the variance of a binomial (n, p). Incidentally, even without taking the limit, the expected value of a hypergeometric random variable is also $n p$.

2 The Binomial Distribution as a Limit of Hypergeometric Distributions

The connection between hypergeometric and binomial distributions is to the level of the distribution itself, not only their moments. Indeed, consider hypergeometric distributions with parameters N, m, n, and $N, m \rightarrow \infty, \frac{m}{N}=p$ fixed. A random variable with such a distribution is such that

$$
\begin{gathered}
P[X=k]=\frac{\binom{m}{k}\binom{N-m}{n-k}}{\binom{N}{n}}=\frac{m!}{(m-k)!k!} \cdot \frac{(N-m)!}{(n-k)!(N-m-n+k)!} \cdot \frac{n!(N-n)!}{N!}= \\
=\binom{n}{k} \frac{m!}{(m-k)!} \cdot \frac{(N-m)!}{(N-m-n+k)!} \cdot \frac{(N-n)!}{N!}= \\
\binom{n}{k} \frac{m(m-1)(m-2) \cdots(m-k+1)}{N(N-1)(N-2) \cdots(N-k+1)} \cdot \frac{(N-m)(N-m-1) \cdots(N-m-(n-k)+1)}{(N-k)(N-k-1) \cdots(N-n+1)}
\end{gathered}
$$

The color coding should help in keeping track where the various terms are coming from. In the last denominator, note also that $N-n+1=N-k-(n-k)+1$. Let's take the limit now. We notice that:

$$
\frac{m(m-1)(m-2) \cdots(m-k+1)}{N(N-1)(N-2) \cdots(N-k+1)} \approx \frac{m^{k}}{N^{k}}=p^{k}
$$

since k is kept finite while m and N diverge. Also, by the same argument, that is n is kept finite,
$\frac{(N-m)(N-m-1) \cdots(N-m-(n-k)+1)}{(N-k)(N-k-1) \cdots(N-n+1)} \approx \frac{(N-m)^{n-k}}{N^{n-k}}=\left(\frac{N-m}{N}\right)^{n-k}=(1-p)^{n-k}$
Adding it all up, we have found that

$$
\lim _{N, m \rightarrow \infty \frac{m}{N}=p} P[X=k]=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

