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Abstract

For many applications in the pharmaceutical industry, achieving the rapid, homogeneous

mixing of very small volumes can have a dramatic impact on the success or failure of a

process.  One method of achieving a homogeneous mixture in a small volume (for

instance, a 200 micro liter well in a in a 96-well plate) is the repetitive injection and

subsequent aspiration of a concentrated liquid through an automatic pipette.  Although

the amount and speed of mixing has been measured experimentally using dyes and other

methods, a theoretical/computational approach has not yet been developed.  This report

describes an investigation into the ability of computational methods to model microwell

mixing.  In particular, this report builds on previous work, attempting to include a model

for the surface tension of the fluid inside a microwell.

Objectives

The primary objective for this project was to build on previous models of microwell

mixing by adding in surface tension for the boundary which describes the fluid surface in

the well.

Problem

The particular model in question involved the addition of 90 µL of a concentrated fluid

through a pipette tip into a flat-bottomed cylindrical microwell containing 200 µL of

stagnant liquid.  This was to be followed by the removal of 90 µL through the same

pipette tip (Fig 1).



Figure 1: Diagram of microwell mixing problem (not-to-scale). 90 µL of high

concentrated fluid is injected and then aspirated from a microwell initially containing 200

µL.

This problem proved to be difficult to solve not only because a convection/diffusion

problem had to be evaluated simultaneously with a fluid dynamics problem, but also

because the model had to account for a moving, deformed boundary at the surface of the

fluid in the microwell.

Procedure

There are two primary equation systems that must be solved simultaneously in this

problem.  The first is a momentum balance represented by the incompressible Navier

Stokes equation as shown in Eq. 1.
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The second equation is a mass transfer equation accounting for convective and diffusive

driving forces as shown in Eq. 2.
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These two equation systems would be evaluated using the Comsol Multiphysics package

of Femlab.

In an attempt to build off of previous work, we added surface tension to the boundary

describing the fluid surface in the well.  In order to accomplish this, a “weak” term was

add to the neutral equations for that surface, as shown below in Eq. 3.
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In Eq. 3, σ represents the surface tension (in dimensionless terms), n represents the unit

vector normal to the surface, u represents the fluid velocity in the radial direction, v

represents the fluid velocity in the vertical (axial)  direction, r and z are radial and axial

distances, respectively, and 

€ 

ϕ represents the “test” function.

The parameters defining the fluid properties were approximated using common values for

water at standard temperature and pressure.  In particular, the model used a fluid density

of 998 kg/m3 and a dynamic viscosity of 0.001 Pa_s.  The pipette has a diameter of 0.5

mm.  The velocity in the pipette oscillates with a period of 8.3 seconds, and a peak



average velocity of 0.23 m/s.  This gives a Reynolds number of 116 based on the

diameter of the pipette and the peak average velocity.  A diffusivity of 5•10-9 m2/s is

used, giving a Peclet number of 23,000 based on the peak average velocity and diameter

of the pipette.  The geometry of this problem was modeled in two dimensions, assuming

symmetry about the center axis.

The microwell diameter as well as the pipette tip diameter were obtained from the Nealon

article, allowing the calculation of the initial height of the domain representing the initial

fluid in the microwell.  The pipette tip geometry was extended well above the surface of

the fluid in the microwell, allowing the flow within the tip to become fully developed by

the time the fluid exits the pipette tip.  It was assumed that the pipette tip extends 0.001 m

below the surface of the liquid in the microwell.  This geometry, as well as the

corresponding finite-element mesh can be observed in Fig 2, where all given dimensions

are in meters.
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Figure 2: Domain geometry of the microwell mixing model.  All dimensions are in

meters.  The domain is 2-dimensional and is axis-symmetric about R=0 m.

In order to solve this problem computationally, the domain is divided into several smaller

geometries using a mesh.  In this way, each mesh element is assumed to have uniform

properties, including velocity, concentration, etc.  Note that near the finer features of the

domain geometry, mesh elements decrease substantially in size, and increase

substantially in number.  The mesh in this model contains 1,383 individual elements.



In addition to specifying the domain geometry and the appropriate fluid properties, we

must also specify the boundary conditions for each equation model applied to the system.

Although there are only two equation systems that we are solving for in this problem,

there are really three different models applied to the system.  For each boundary in the

domain, we must specify conditions for the fluid dynamics model, the

convection/diffusion model, and the moving-mesh model that allows for deformation and

displacement of the free fluid surface (the surface at the top of the fluid in the microwell).

Each boundary of the domain is assigned a number as shown in Fig 3.  The specified

conditions for each of these domains in each of the three models are described in Table 1.
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Figure 3: Boundary Labels

Table 1: Boundary conditions



Fluid Dynamics Boundaries

• No Slip: fluid touching the boundary does not move.

• Slip Symmetry: fluid is allowed to move along the boundary as though the

boundary was a non-moving fluid.

• Axial Symmetry: fluid is allowed to move along the boundary as though the

boundary were fluid moving at the same velocity.

Conv/Diff Boundaries

• Insulation: material can not diffuse into or out of the boundary.

• C = 1 mol/L: an arbitrary concentration set at the inlet.  Initial concentration

of the rest of the domain is at 0 mol/L.

• Convective Flux: material is allowed to diffuse into or out of the boundary.

Moving Mesh Boundaries

# Description Fluid Dynamics Conv/Diff Moving Mesh

1 Center Axis Axial Symmetry Insulation Displacement=0 m

2 Well Bottom No Slip Insulation Displacement=0 m

3 Inlet Inflow Velocity

(max Re = 1000)

C= 1 mol/L Displacement=0 m

4 Pipette Wall No Slip Insulation Displacement=0 m

5 Pipette Edge Slip Symmetry Insulation Displacement=0 m

6 Inner Well Wall (near surface) Slip Symmetry Insulation Displacement=0 m

7 Fluid Surface Neutral Convective Flux Velocity= u*nr+v*nz

8 Well Wall No Slip Insulation Displacement=0 m

9 Outer Well Wall (near surface) Slip Symmetry Insulation Displacement=0 m



• Displacement = 0 m: the mesh boundary can not move.

• Velocity = u*nr+v*nz: allows the mesh along the boundary to move and

deform according to the radial velocity of each element (u), the axial velocity

of each element (v) and the respective vectors nr and nz.

The entrance velocity (velocity at boundary 3) is a key parameter for controlling

the addition and subsequent removal of fluid from the microwell.  It became necessary to

control the velocity such that after 90 µL had been added, the inlet velocity changed sign

such that fluid was removed.  Although this could be done with a simple Boolean

expression, such a discontinuous function generated serious complications when

attempting to compute a solution.  The way around this problem was to establish a

continuous function of velocity over time, using a periodic function.

Results and Discussion

Unfortunately, a working solution past the time point where the velocity at the inlet

reverses could not be found.  There are many difficulties in trying to arrive at a

convergent solution for a model such as this.  In the first place, this is a transient problem,

and in order to overcome this, several technical barriers must be breeched.  Based on the

scope of this project, simulations were performed on ordinary modern day desktop

computers, which often ran into physical memory limitations preventing the use of very

fine meshes, and smaller timesteps (two things that aid in circumventing difficult

problems).  In the second place, we are dealing with a moving, deformed finite element



mesh.  After several timesteps, the mesh becomes very distorted, resulting in inverted

elements (which, in this model, typically occurred around the very small boundary

corresponding to the edge of the pipette tip) and non-convergent solutions.  Typically, in

order to get around this, one simply has to run the simulation for shorter periods of time,

re-mesh, and continue the solution.  While this enabled us to find solutions for time

points much further than what was accomplished at the outset, we were not able to

achieve a solution beyond 0.125 seconds.

However, although our initial objective was not accomplished over the course of this

project, we do have partial solutions.  In Fig. 4, we can see the concentration gradient

(and mesh displacement) at 0.125 seconds.

Solution with surface tension at t = 0.125 s

Figure 4: concentration gradient at t = 0.125 s for model with surface tension.



We note from Fig. 4 that the majority of the fluid remains at a concentration of 0, except

for the jet of fluid having a concentration of nearly 1 which runs down the center axis of

the well, hits the well bottom, and begins curving up and out.  This is behavior that we

would expect under these conditions from a qualitative standpoint.

For comparison with previous results, Fig. 5 is provided, which depicts a similar model

during the injection phase.  This comparison is purely qualitative in nature, and shows

how the fluid surface for the case without surface tension forms sharp “peaks” – behavior

that we would not expect to see from a qualitative standpoint.

Figure 5: solution during injection phase at t = 2.3 s for case without surface tension.



From Figs. 4-5, we note that there is a distinct difference in the cases with and without

surface tension, but because of the limited results which we were able to obtain for the

case with surface tension, more direct, quantitative comparisons are not possible.

Conclusions

This project had very specific goals, but from an objective standpoint it served as an

investigation into the ability of computational methods to solve a complicated fluid

dynamics problem.  Transient problems involving moving meshes in addition to

fluctuating boundary conditions present many opportunities for failure when applying

computational approaches.  We can conclude that while these sorts of problems can be

exceedingly difficult and challenging, they are certainly not impossible.  Further

complicating matters, we have no existing literature with which to compare our results –

therefore, this report should be seen as purely a theoretical exercise into the abilities of

Comsol© to solve these sorts of problems.


