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Introduction

The purpose of the project was to determine the friction loss coefficient of the

laminar flow, which is useful in microfluidic devices, to analyze the pressure drop in

different shape of the models.  COMSOL Multiphysics was used in 2-D axial symmetry

model. Geometry of Eight models is shown below in Figure 1.

Figure 1. Eight models:  Different Geometries in microfluidic devices

General dimensions, subdomain, and boundary conditions:

In Comsol Multiphysics, all of the parameters were dimensionless. General

conditions for subdomain were set for all models: with the density was equal to the

Reynolds number ranged from 0 to 100. The viscosity was set to 1 for every models.



From the Figure 2, general conditions for Boundary involved: boundary 1 was set

axial symmetry. The boundary 2 was laminar flow with the velocity to be 1 if the flow

entered the small entrance, and to be -1 if the flow entered the large entrance. The

boundary 3,4,5,7 would be no slip. If the flow entered the small entrance, the boundary

8 would be set to normal pressure, if the flow entered the large entrance, that boundary

would be set to neutral. Finally, the boundary 7 would be neutral (considered there was

no wall on both sides).

Figure 2. General shape and dimension for eight cases

More specifically, each model would have different length, width, height and
shape at the fitting.



Materials and Methods

From Comsol Multiphysics, the steady state, incompressible Navier-Stokes

Equation was used to find the total pressure drop in each model.  The incompressible

Navier-Stokes equation is given by Eq. 1: 

€ 

ρu •∇u = −∇p +η∇2u,  ∇ • u = 0  (1)

From equation 1, the nondimentional Navier-Stokes equation is derived [2]:

€ 

Re∂u'
∂t'

+ Reu'•∇'u'= −∇' p'+∇'2u'

where Re is the Reynolds number, u is the velocity, ρ is the density of the fluid, p is the

pressure, η is the viscosity.

From the Boundary Integration of Comsol, the total pressure drop would be

determined using equations 2 and 3:
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Δptotal =
µ < v1 >
d1

Δp' (3)

For the fully developed flow in the small and large pipes, the pressure drop would

be determined from equation 4 and 5: (4)
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Where <v1> is the velocity in the small pipe, <v2> is the velocity in the large pipe, d1 is

the diameter of the small pipe, d2 is the diameter of the large pipe, L1 is the fully

developed length of the small pipe, L2 is for the large pipe.

By continuity, the velocity in the large pipe would be calculated using equation 6:

(6)

Because the diameter of the large pipe is large and can be expanded to infinity (no wall

on both sides), the average velocity of the large pipe was negligible and the pressure

drop would be negligible.

The excess pressure drop at the fitting would be calculated using equation 7:

 

€ 

Δpexcess = Δptotal −Δpsmall −Δpl arg e (7)

Finally, the friction loss coefficient would be calculated using the equation 8:

(8)
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RESULT and DISCUSSION

Figure 3. Bellmouth Model with velocity profile

Table 1: KL Values for all 8 models with different geometries at Re=0

GEOMETRIES KL Degrees of freedom No. of Elements

Sharp edge (small
entrance)

69.23 86001 14775

Sharp edge ( large
entrance)

69.12 65039 14275

Well round (small entrance) 60.89 85300 14507

Well round ( Large
entrance)

60.91 65039 14275

Slightly round 56.636 58354 15350

Bellmouth 74.51 78210 16670



Projecting ( small entrance) 94.74 78250 13203

Projecting (large entrance) 94.742 62105 16520

When the Reynolds number is small, the kinetic energy change is negligible, the

flow entered or exit the small pipe had the same KL value (Re=0) [1]. The KL values in

the table 1 obtained in the average values of taking three different mesh elements.

From Fig. 4, three models were put into a same group to be compared by having

the same flow direction into the small pipe entrance: 1 is for the well round shape, 2 is

for sharp edge shape, 3 is for the projecting shape. From Fig.5, five other models were

compared to each other by having the same flow direction into the large pipe entrance:

1 is for the well round shape, 2 is for the sharp edged shape, 3 is the slightly round

shape, 4 is for the bellmouth shape and 5 is for the projecting shape.

From Fig. 5, the model with the well round geometry had the lowest KL value

based on its shape; the excess pressure drop was small compared to others.  The

same trend occurred in other five models, based on their geometries, the model with

slightly round geometry had the least resistance to the flow, and therefore, it had the

lowest KL value.



Comparision of KL among 3 types of Geometries
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Figure 4. Comparison of KL for Well round, projecting, and sharp edge models (Re=0)

Figure 5. Comparison KL for well round, projecting, bellmouth, slightly round, sharp
edged models (Re=0)



Re vs KL for the small entrance
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In the range of Reynolds number from 0 to 100,  the group of three models also had the

similar trends compared with each other, and the model with well round geometry also

had the lowest KL values. As the Reynolds numbers increased, the KL values would

become constant.

Figure 6. Comparison of KL among 3 shapes at different Reynolds numbers

From Fig. 7, the group of five models had the similar trends compared with each

other and with the fig. 8.4, the laminar flow excess pressure drop due to contraction in a

circular channel [1].  When the fluid flowed into the large pipe entrance, due to the

geometry, the excess pressure drop increased in the order from slightly round, well

round, sharp edged, bellmouth to projecting models.



Figure 7. Comparison of KL among 5 shapes at different Reynolds numbers.

Finally, the result for each model was checked to see if the Comsol worked

correctly. The streamline profile showed that the flow was fully developed. From Figure

10, it appeared to have some flow across the interior boundary of the bell mouth, which

was set to be no slip. By using the cross plot, the velocity across that boundary was

close to 0, based on fig. 12.

Re vs KL for the small exit
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CONCLUSION

Overall, Comsol provided good results. By using Comsol, the KL can be

estimated for a lot of different geometry.  Therefore, without using any device, with the

given geometry, the pressure drop in the microfluid devices could still be obtained by

using the correlation KL, the pressure drop coefficient.

RECOMMENDATION

To obtain better data, the triangle with the red dot in the middle can be used to

refine the local regions such near boundaries and separation points. Always check the

boundary condition and interior boundary condition for complex geometries.
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Appendix A

Appendix A1: Sample Calculation

By continuity: 

where d1 is the diameter of the small pipe, and d2 is the diameter of the large pipe, <v1>
and <v2> is the average velocities in the small and large pipes respectively. The
average velocity in the large pipe was equal to 0.

The fully developed pressure drop in the small pipe was

where L=3, <v1> =1, d1=1

The fully developed pressure drop in the larger pipe was:

Where L=3, <v2>=0, d2=7

The total pressure drop was found from Comsol:

The excess pressure drop is equal to :

Finally, KL was found:
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Appendix A2: Additional Streamline profiles for  other models:

Figure 8 . Sharp edged exit (Re=0)



Figure 9 . Rounded exit
& well rounded entrance (Re=0)



Figure 10. Slightly round entrance



Figure 11. Bellmouth Streamline profile at Re=0

Figure 12. Velocity at the interior boundary of the curve



Figure 13 . Projecting pipe exit, projecting pipe entrance


