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Introduction

The purpose of this project was to determine the first normal stress difference of an

elastic polymer flowing through a geometry with a hyperbolic contraction.  The first normal

stress difference has been known to characterize the elasticity of complex fluids, and although

the normal stress difference is difficult to measure in reality, we can take advantage of virtual

tools and solve for the normal stress difference using a computer aided model.

The geometry used is shown below in Figure 1.  It consisted of a rectangle with a quarter

circle contraction and was inspired by Dr. Gareth McKinley, Professor of Mechanical

Engineering at the Massachusetts Institute of Technology, and his presentation entitled

Extensional Rheometry on a Chip: Flows of Dilute Polymer Solutions in Microfluidic

Contractions, given at the American Institute of Chemical Engineers (AICHE) conference in

November 2006.

Figure 1.  Outline of geometry used to model the polymeric fluid.

Method and Materials

The geometry was created in COMSOL Multiphysics 3.3 and contained 1800 elements

and 3997 degrees of freedom.  As shown in Figure 2, the geometry had a length of 40, a height

of 1 at the sides, and a height of 0.2 at the narrow region.
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Figure 2.  Geometry created in COMSOL Multiphysics showing dimensions and mesh pattern.

The viscoelastic fluid parameters were provided by Dr. Bruce Finlayson, Professor

Emeritus of Chemical Engineering at the University of Washington (See Appendix 1 for

equations).

For the Maxwell model, parameters were made dimensionless and boundary conditions

were set so that the average velocity in the narrow portion was equal to one.  For the Phan-

Thien-Tanner model, the average velocity in the entrance region was set equal to one.  The

viscosity was also set equal to one and the density was set equal to zero.  In order to find the first

normal stress difference, we desired to know the pressure drop that took place through the

geometry.  To solve for this, the predicted pressure drop was calculated using Eq. (1):

(1)

where Δp/L is the calculated pressure drop, ε is equal to 0 for the Maxwell model and 0.02 for

the Phan-Thien-Tanner model, and the We is the Weissenberg number, which represents the

ratio relaxation time over specific process time.

By changing the Weissenberg number and the calculated pressure drop, different

solutions were obtained.  The outlet pressure was assumed to be zero, so the excess pressure drop

could be calculated using Eq. (2):

(2)
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The first normal stress could be calculated from the calculated pressure drop and Eq. (3)

(3)

where λ is a number chosen to fit a model to the experimental data, Δp/L is the calculated

pressure drop, H is the height of the geometry, and η is the viscosity and can be calculated using

Eq. (4):

(4)

where Δp/L is the calculated pressure drop, H is the height of the geometry, <u> is the average

velocity in the x-direction.

Results

Figure 3 below shows a solution obtained for the pressure drop solved for the Maxwell

model at a Weissenberg number of 0.06.  The red lines represent the stream velocity and the

color represents the pressure concentration.

Figure 3.  Sample solution for the Maxwell model.
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After the excess pressure drop was computed, the normal stress was calculated using Eq.

(3).  Figures 4 and 5 display plots of the first normal stress differences as a function of the

pressure drop for increasing values of the Weissenberg number.

Figure 4.  Correlation of the First Normal Stress Difference to the Excess Pressure Drop for the

Maxwell Model.



6

Figure 5.  Correlation of the First Normal Stress Difference to the Excess Pressure Drop for the

Phan-Thien-Tanner Model.

In Figure 6, the excess pressure drop was plotted as a function of the Weissenberg

number.  Thus, these charts become useful if one knows the Weissenberg number, because one

can refer to Figure 6 and find the corresponding excess pressure drop, then go to Figure 4 or 5,

depending on the value of epsilon, and find the first normal stress difference.
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Figure 6.  Correlation of the Weissenberg number to the Excess Pressure Drop for the

Maxwell (ε = 0) and Phan-Thien-Tanner Models (ε = 0.02).

As a check, the average velocity was computed in COMSOL Multiphysics software to ensure

that it was equal to one in the narrow region for the Maxwell model and equal to one in the

entrance for the Phan-Thien-Tanner model.

Conclusions

The first normal pressure differences were obtained for various Weissenberg numbers for

the Maxwell and Phan-Thien-Tanner models.  For future experimentation, one could change the

value of epsilon, find solutions for the pressure drop, and create more correlations between the

Weissenberg number, the excess pressure drop, and the first normal stress difference.
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Appendices

Appendix 1: Equations for Non-Newtonian Fluid
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Appendix 2: Sample Calculations

Calculating Δp excess:
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Calculating first normal pressure difference:
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