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 The mixing of liquids in eleven different microfluidic devices was characterized by a 
group of eleven students in chemical engineering during Spring quarter, 2008.  The goal was to 
characterize in a uniform manner the flow and mixing that occurred in slow, laminar flow.  
Mixing of a dilute chemical in another liquid during slow, laminar flow is a particularly difficult 
task, but the results showed that for Reynolds number of 1.0 the amount of mixing depended 
mainly on the flow length divided by the Peclet number, for all geometries.  Two-dimensional 
simulations frequently gave a good approximation of the three-dimensional simulations, and the 
optical variance (as measured by fluorescence) is not too different from the flow variance 
(sometimes called the mixing cup variance).   The research group is shown in Figure 1.  All 
simulations were done using Comsol Multiphysics. 
 

 
 

Figure 1. Research Group on Mixing, Dreyfus Scholars, Spring, 2008 
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1. Flow and Convection Diffusion Equations 
 
 The equations are solved in non-dimensional form.  The Navier-Stokes equation is 
 

u •∇u = −∇p '+ 1
Re

∇2u  

 
Boundary conditions are no slip on the solid walls, specified velocity profile on the inlet 
boundary, and assigned pressure on the outlet boundary.   Sometimes the inlet velocity profile 
was the fully developed one and sometime it was uniform; this made little difference. 
 
 The convective diffusion equation is valid for a dilute concentration in the carrier fluid; 
since the concentration is dilute, the viscosity of the total fluid does not change and the flow is 
unaffected by the concentration of the dilute material. 
 

u •∇c = 1
Pe

∇2u  

 
The boundary conditions are zero flux on solid walls, convective flux on the outlet boundary, 
and a concentration split on the inlet boundary: zero in one half and 1.0 in the other half.  Thus, 
the average concentration at the inlet was 0.5.  All simulations were done in Comsol 
Multiphysics, v. 3.4. 
 
 The average concentration at the exit was calculated using 
 

cmixing cup avg =
c • vdA

A
∫
vdA

A
∫

 

 
This should also be 0.5, by continuity, and differences from 0.5 were used to asses the accuracy 
of the calculations.  The variance is then defined as 
 

σmixingcup
2 =

[c − cmixing cup avg ]
2 • vdA

A
∫

vdA
A
∫

 

 
These are both referred to as mixing cup averages and mixing cup variances, since they account 
for the fact that the flow velocity in different regions of the outlet plane are different, and hence 
carry differing amounts of the dilute specie.   In flow between flat plates, with concentration 1 on 
one half and zero in the other half, the variance is 0.25; this is then the maximum variance.  In 
biological experiments, it is convenient to measure the average concentration by using 
fluorescence that measures the total amount of material in an optical path.  It takes no account of 
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the differing velocities in different regions.    Thus, optical averages and optical variances were 
also calculated. 
  

  coptical avg =
cdA

A
∫
dA

A
∫

               σ optical
2 =

[c − coptical avg ]
2dA

A
∫

dA
A
∫

 

 
 The meaning of the variance is illustrated in Figure 2. 
 

 
Figure 2.  Concentration profiles leading to different variances. 

Average concentration 0.5; velocity profile is parabolic. 
 
 The focus was on slow flow, and the standard case was for a Reynolds number of 1.0 
with variable Peclet numbers up to 1000 or 2000.  The Reynolds number is defined as 
 

Re =
ρusxs
η

 

 
where ρ is the density and η is the viscosity.  The velocity, us, is the average velocity entering the 
device.  The distance, xs, is a characteristic distance, usually the width of the entrance geometry; 
this must be identified for each geometry.  For comparison purposes, we use water as the carrier 
fluid, so that ρ = 1000 kg/m3 and η =0.001 Pa s.   The base case velocity is taken as 0.005 m s-1 
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and the characteristic dimension was taken as 200 µ.  This gives a Reynolds number of 1.0.  The 
pressure drop is computed from the total pressure drop in the simulations, Δp ' . 
 

Δp(Pa) = ρus
2Δp '  

 
 The Peclet number is defined as 
 

Pe =
usxs
D

 

 
where D is the diffusion coefficient or diffusivity.  Note that Pe = Re Sc, where the Schmidt 
number is 
 

Sc = η
ρD

 

 
Peclet numbers from 10 to 1000 are used.  When Pe = 1000, the diffusivity is 
 

D =
xsus
1000

= 10−9m2  

 
This is a reasonable value for typical organic chemicals, but biological molecules usually have 
smaller values, perhaps by a factor of 10-100.  However, this was as low as we could go given 
the computer equipment available.  Going to higher Peclet numbers requires a much finer mesh, 
which necessitates more memory that was available.  However, as we see below, it is possible to 
predict the mixing for higher Peclet numbers based on calculations in shorter devices with lower 
Peclet numbers.  This was tested, at least, within the range of 10 ≤ Pe ≤ 1000.   
 
2. Goals 
 
 The study is focused on situations with passive mixers (i.e. no mechanical mixing) at low 
Reynolds numbers.  For a few of the geometries, inertial effects (at higher Reynolds numbers) 
are explored.  Special geometries are necessary for this to be effective.  Equestions addressed for 
each geometry are: 

A. Do the variances collapse onto one curve if properly presented? 
B. Do your results follow the same curve of variance vs. z '/ Peas for a T-sensor? 
C. How different are the mixing cup and optical variances?  Is this difference important? 
D. How do 2D and 3D results compare?   
E. What would you need to do in your device to reach a variance of 0.01?  0.001? 
F.  What is the effect of Reynolds number?  (This is pertinent only to a few of the 

geometries.) 
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3. Previous work 
 
 In work published previously1, the T-sensor (shown in Figure 3) is characterized as 
shown in Figure 4.  Note that the variance roughly follows one curve, regardless of the Peclet 
number, provided the results are plotted versus z '/ Pe .  This is expected because the flow is 
basically straight down the device, except for the short entrance region, with diffusion sideways, 
and there is no convection sideways.   Thus, diffusion controls the mixing, and the time in the 
device determines how far the material can diffuse.  The parameter   
 

z '
Pe

=
z
xs

D
usxs

=
z / us
xs
2 / D

=
t flow
tdiffusion

 

 
thus is a ratio of the characteristic time for flow in the axial direction to the time for diffusion in 
the transverse direction.  Alternatively, one can examine the convective diffusion equation when 
there is no transverse velocity 
 

w(x, y) ∂c
∂z

= D
∂2c
∂x2

+
∂2c
∂y2

+
∂2c
∂z2

"

#
$

%

&
'  

 
and deduce that axial diffusion term, D∂2c / ∂z2 , can be neglected compared with the axial 
convection term, w∂c / ∂z , since their ratio is proportional to 1/Pe.  To further validate this 
concept in 3D, Figure 5 shows a geometry with two pipes joining, and Figure 6 shows the 
variance as a function of z '/ Pe ; data for the T-sensor and the two pipes joining essentially 
superimpose on each other. 
 

 
Figure 3. T-sensor; lines are streamlines, color is concentration (red = 1, blue = 0) 

 
 
 A similar result, dependence on mainly z '/ Pe , was reported by Williams, et al. 2 for the 
herringbone mixer. 

 

                                                
1 Bruce A. Finlayson, Pawel W. Drapala, Matt Gebhardt, Michael D. Harrison, Bryan Johnson, Marlina Lukman, 
Suwimol Kunaridtipol, Trevor Plaisted, Zachary Tyree, Jeremy VanBuren, Albert Witarsa, “Micro-component flow 
characterization,” Ch. 8 in Micro-Instrumentation, (M. Koch, K.Vanden Bussche, R. Chrisman (ed.), Wiley, 2007). 
2 http://www.rsc.org/Publishing/Journals/LC/article.asp?doi=b802562b 
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Figure 4. Variance of T-sensor for Reynolds number = 1 

 
 

 

 
 

Figure 5. Two pipes joining3 

                                                
3 Daniel Kress, “Mixing Properties of a Microfluidic Device,” Chem. Eng. 499 Project, Spring, 2007, 
http://courses.washington.edu/microflo/index_Sp07.html.   
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Figure 6. Variance of mixing with two pipes joining and 2D T-sensor2 

 
 Another example of mixing is for the serpentine mixer, discussed in Ref. 1 and Ref.4  
Figure 7 shows a typical concentration profile.  In this case, enhanced mixing occurs due to the 
flow irregularities, even for a Reynolds number of 1.0.  As shown elsewhere,1 the serpentine 
mixer can be several hundred times shorter to achieve the same mixing as in a T-sensor.  The 
progress of the mixing is shown step by step in Figure 8.  Now the curves do not superimpose, 
but the general shape of them is similar. 

 
Figure 7. Serpentine Mixer 

 
                                                
4 Christopher Neils, Zachary Tyree, Bruce Finlayson, Albert Folch,  “Combinatorial mixing of microfluidic 
streams”, Lab-on-a-Chip 4 342-350 (2004). 
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Figure 8. Variance in Serpentine Mixer, Re = 1 

 
4. Characterization of Diffusion in Microfluidic Devices 
 
 Eleven different geometries are characterized below.  These geometries were taken from 
the literature.  For each geometry, shown is a picture of the device, a picture of a solution, the 
plot of variance versus z '/ Pe , and the pressure drop in Pa.  The Reynolds number is 1.0 unless 
otherwise noted.  The first set of geometries are for devices which are similar to the T-sensor; the 
other geometries introduce flow changes to create additional mixing. Full reports for each device 
are available (http://courses.washington.edu/microflo/).   
 
4.1. "Characterizing Mixing in a Lithographed Flow Device5," by Vann Brasher 

 

 
                                                
5 Hinsmann, Lab Chip, 1 16 (2001) 
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4.2. "Mixing in Flow Devices: Spiral Channels6," by Ha Dinh 
 

 
Variance for mixing in spiral channel
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6 Sudarson, Lab Chip, 6 74 (2006) 
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4.3. “Micro-mixing by Rectangular Expansion Channel5,” by Ho Hack Song 

 

 
 

 
 

Overall 2D vs. 3D Comparison at Re =1 
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4.4. "Mixing Efficiency in Rough Channels7," by Francis Ninh 
 

 
 (B) (C) 
All geometries were assigned random ridges. The widths (W) of the ridges were kept constant 
throughout each model but the height (H) was determined randomly. All ridges extend down to a 
maximum of the width of the channel (1 unit). In (c) however, the ridges are allowed to extend 
above the bottom of the plate to a maximum of .6 units. (A) W of ridge = .5, H of ridge = n(.25) 
(B) W = .25 H = n(.25)  (C) W = .25, H =(n)*2, where n is a random integer and of values from 0 
to a value where H was no greater than width of the inlet. 

Variance Across 3D Channel at Varying Peclet Numbers

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E-03 1.E-02 1.E-01 1.E+00

Z/Pe

V
ar

ia
nc

e

Pe 100

Pe 200

Pe 300

Pe 400

Pe 500

Pe 600

Pe 700

Pe 800

Pe 900

Pe 1000

 
Variances all lie on one curve regardless of the Peclet number. That is, variances are essentially 
equivalent at the same z '/ Pe . 

Comparision of Mixing Efficiency of Rough Channel to
T-Sensor and Flat Plates
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7 Kiplik, Phys. Fluids A, 6 1333 (1993) 
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4.5. "Micropillars Mixing in Microfluidic Devices," by Andy Aditya 
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4.6. "Flow in a Cross," by Adam Field 
 

 
3-D Mixing in a Cross
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4.7. “Evaluation of Concentration Variance as a Function of z'/Pe8,” by Jordan Flynn 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The Peclet numbers in this data were ranged from 10 to 1,000.

                                                
8 Holden, Sensors Actuators B, 92 199 (2003) 

Variance as a Function of Z'/Pe
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4.8. “Self Circulating Mixer Chamber9,”  by Cindy Yuen 

 
 

 
 

 

                                                
9 Chung, Lab Chip, 4, 70 (2004). 
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4.9. "Mixing Properties of an Optimized SAR Mixer10," by Lisa Dahl 

 
 
 

Comparison Between the Concentration 
Variances in One Step

-6

-5

-4

-3

-2

-1

0

0 200 400 600 800 1000

Peclet Number Pe

LN
(C

va
r)

 - 
C

on
ce

nt
ra

tio
n 

V
ar

ia
nc

e

Mixing Cup Variance

Optical Variance

 

                                                
10 Schonfeld, Lab Chip, 4 65 (2004 
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4.10. "Microfluidic Research: Mixing Effectiveness of Modified Tesla Structures11," by 
Curtis Jenssen 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                
11 Hong, Lab Chip, 4 109 (2004) 
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4.11. "Folding Flow Mixers12," by Andrew Nordmeier 
 

 
 

2d case, multiple mixers
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5. Conclusion 
 
 The variance for each geometry, for Re = 1, fell on one curve as a function of z '/ Pe .  The 
curve was similar in all cases, but shifted a bit for each device.  The optical variances differed 
from the mixing cup variance somewhat, but not significantly on a logarithmic scale.  Oftentimes 
the 2D simulations give a good representation of the 3D simulations; the cases when this doesn’t 
hold is when the flow is particularly 3D in nature to induce mixing.   If the device is similar to a 
T-sensor, increasing the Reynolds number makes little difference.  The mixing is improved with 
increasing Reynolds number for geometries that induce laminar vortices based on inertial effects. 
 

                                                
12 micronit.com 


