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Introduction
The purpose of this research is to characterize the mixing in a micro fluidic

device.  This will be achieved by looking at the variance (a measure of mixing) versus the
length of the device divided by the Peclet number (z’/Pe).  From looking at graphs of
variance versus Z’/Pe we expect to see a relationship.  To test this relationship, the length
of the device will be varied from one half unit in length to two and a half units in length.
The Peclet numbers will be chosen at different lengths so that the ratio of Z’/Pe will be
identical for five points, one at each of the different lengths.  Each of the five data sets
will then be graphed and a relationship should be present between these ratios of Z’/Pe
and the variance.

Another graph will be created with Peclet numbers ranging from 10 to 1,000 in
different length devices to create a large range of values to see if a consistent trend is
followed in a wider range of Z’/Pe values.

The 2-D geometry will be compared to a 3-D geometry to assess the differences
in mixing that takes place in a 3-D mixer as compared to the 2-D version of the device.
In addition, the variance data will be compared to the variance data for a T sensor to
compare how efficient of a mixer my micro fluidic device is compared to a T sensor.

The Problem in Detail

To solve this problem, the Incompressible Navier-Stokes equation and the
Convection and Diffusion equation will be solved simultaneously in their non-
dimensional forms.

For the Navier-Stokes equation, we start out with the dimensional form of the
equation:
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To non-dimensionalize this equation we then define the following quantities:
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This equation can then be arranged to give the following non-dimensional form:
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In the non dimensional form of the Navier-Stokes equation, the dynamic viscosity
(_) is set equal to one and the density (_) is set equal to one.  A normal inflow velocity of
one is used at the inlet of the device.  The outlets have been set to a pressure of zero with
no viscous stress.  All other boundaries of the device are walls with a no slip boundary
condition.

For the Convection and Diffusion Equation we will solve the equation in a non
dimensional form.  The Convection and Diffusion equation we start with is:
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To make the equation dimensionless we define the following quantities:
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The Convection and Diffusion equation then becomes:
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Since the non-dimensional form of the equation will be used,  
  
D =

1

Pe
 and we can

simply put in 

1Pe

 for diffusivity to vary our Peclet number in the sub domain settings.

Also in the sub domain settings the x and y velocities are set to u and v respectively
which are quantities solved for in the Navier-Stokes Equations.  The upper half of the
inlet is set to a concentration of zero and the lower half is set to a concentration of one in
the boundary conditions.  The outlets are set to convective flux and all other walls are set
to insulation/symmetry.

A picture of the device follows with the dimensions of the device:

Figure 1.  The dimensions on this device are one unit for the inlet width, and .1 units for the width of each
outlet.  The length in the above device was varied from 0.5 units to 2.5 units while all other dimensions
were kept constant.  This figure shows the velocity field present in a device with a Peclet number of 200

and a length of one unit.

To calculate the variance in the device, the mixing cup concentration must be
determined using the following equation:
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In the mixing cup concentration equation, c is concentration and v is the velocity.  This
equation is integrated over A, the area of the boundary.  Since half the inlet is at a
concentration of zero and half at a concentration of one the cmixing cup will be equal to 0.5.

From this the variance can be calculated using the following equation:
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Boundary integrations are performed across all outlet boundaries and the inlet boundary
to give the desired quantities.

Results
Figure two shows a plot of Z’/Pe versus the variance for the five cases with the

same Z’/Pe ratios in five different length devices:

Figure 2.  This Figure shows a plot of the variance versus the length over Peclet number.  Notice that the
relationship is consistent for all devices despite different dimensions of the device.

The results of the calculations presented in the graph above have been verified by hand
for the case with a length of 2.5 and a Peclet number of 100 (See Appendix).  Identical
calculations were used to obtain the results for the other cases.  The typical mesh solved
for has approximately 1,600 elements and around 13,000 degrees of freedom.
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The effects of mesh refinement were determined by refining the mesh of a
particular case and examining its effects on the calculated variance.

Effects of a More Refined Mesh
L=1 Pe=2.5

Case 1 Case 2 Case 3
Elements 1612 6448 16302

Degrees of Freedom 12946 46844 113898
Solution Time (s) 4.204 17.062 43.297

Variance 9.55E-02 9.89E-02 9.95E-02
Percent Error From Best Solution 3.96 0.55 0

Figure 3.  This table compares the results of calculating the variance with a more refined mesh.  The
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by continuing to refine the mesh and solve the problem until the computer ran out of memory to solve the
problem.

This table shows that the error in using an unrefined mesh has a less than 5% error from
the best solution obtainable.

The results for a larger range of Z’/Pe data have been tabulated and presented
below in Figure 4.

Figure 4.  This figure presents data of Z’/Pe in a wider range.  The Peclet numbers in this data were
ranged from 10 to 1,000.

The data presented in figure four show that the variance follows a distinct curve
regardless of the dimensions or Peclet number of the device.  The only quantity that
matters is Z’/Pe which characterizes the mixing of the device.

To examine the effects of a 3-D geometry versus a 2-D geometry, the calculations
presented in the graph of figure five were carried out.
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2-D vs. 3-D Variance
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Figure 5.  This figure compares the variance of a 2-D model against a 3-D model.  The calculations were
carried out at a range of Peclet numbers with a length of 0.5 units. The 3-D geometry has been extruded by

one unit.

From the results of figure five, a conclusion can be drawn that there is not a significant
difference between the 3-D and 2-D models.  The small change in variance of a 3-D
model can be attributed to the no slip conditions applied to four surfaces instead of two,
which slows down the flow and allows slightly more diffusion than the 2-D geometry.

To compare the mixing obtained in my micro fluidic device to that of a T sensor,
a plot of variance comparing both devices has been constructed.

Figure 6.  This figure compares the variance of a T sensor to the research geometry.  The actual
geometries are shown at the right of the variance graph.

In figure six, it is seen that the variance of a T sensor is lower and therefore the T sensor
is a better mixer than the geometry chosen for research.
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Comparisons to Literature Data

For the results obtained above it is important that they compare to the paper
“Generating fixed concentration arrays in a micro fluidic device,” by Holden ET. All.
Comparisons can be drawn between the authors of this paper and my own simulations to
verify the simulations that I have performed are correct.  I have verified the papers results
by plotting the wall concentration and examining the effects of an increasing flow rate on
concentration plots.

The wall concentration from the literature results and my own simulation are
presented in figure seven.

Figure 7.  The wall concentrations plotted across half of the inlet channel at the start of the first micro
channel outlet.  The definition of _ is given in the experimental data (left) which is compared to the

literature data.  X=0.5 and Pe=250 for the experimental data.

The diffusion of the dye in the literature data has diffused out from the wall farther than
in the experimental data.  This result is consistent because of the values of _.  As the
Peclet number increases the _ value decreases allowing less diffusion to take place.
Since the experimental results plot a lower concentration across the half channel, these
results are consistent.

Another check between the literature and experimental data is the comparison of
concentration plots.  The literature plots concentration as the flow rate of the device is
increased from 50 to 500 nL/min.  To simulate this change in flow rate I have created
plots of concentration across the channels with varying Peclet numbers.  The results show
that the literature and the experimental data agree qualitatively.  As the Peclet number
and flow rate increases, the mixing that takes place in the device decreases.  This
decrease in mixing is evident by the amount of outlets with concentrations around zero
and one.  Near the edges of the device, as the flow rate increases, less time is available
for diffusion to occur in the device, creating a steeper variation of concentrations that is
present in both literature and experimental data.  These results are presented in the
Appendix.
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Conclusions:

As can be seen from the graphs above, as Z’/Pe increases, the variance becomes
smaller.  This trend is consistent for various lengths and could be extended to
approximate the relationship for other devices of this type.  The effect on variance by
using a 2-D versus 3-D model for this micro fluidic device is very small and well within
an order of magnitude.  Since the 2-D and 3-D results are comparable, a 2-D geometry
may be used to approximate results that would be obtained in 3-D modeling of similar
devices.  Finally, the micro fluidic device chosen is a less successful mixer than a T
sensor.

Appendix:

Results Tables:

Table of Results (Width=.5) Used in Sample Calculation
z (Dimensionless) Peclet Number (Dimensionless) z'/Pe (Dimensionless) Variance (Dimensionless)

0.5 20 0.025 0.00777
0.5 40 0.0125 0.02711
0.5 60 0.00833 0.04895
0.5 80 0.00625 0.06786
0.5 100 0.005 0.08335
1 40 0.025 0.00831
1 80 0.0125 0.03314
1 120 0.00833 0.05747
1 160 0.00625 0.07663
1 200 0.005 0.09138

1.5 60 0.025 0.02010
1.5 120 0.0125 0.04532
1.5 180 0.00833 0.07019
1.5 240 0.00625 0.08963
1.5 300 0.005 0.10447
2 80 0.025 0.02046
2 160 0.0125 0.04732
2 240 0.00833 0.07266
2 320 0.00625 0.09193
2 400 0.005 0.10638

2.5 100 0.025 0.01974
2.5 200 0.0125 0.04501
2.5 300 0.00833 0.06844
2.5 400 0.00625 0.08678
2.5 500 0.005 0.10121



2-D Data at Chosen Ratios (Width =1) Figure 4
Z'

(Dimensionless)
Pe

(Dimensionless)
Z'/Pe

(Dimensionless)
Variance

(Dimensionless)
Pressure Drop

(Dimensionless)
0.5 20 0.0250 4.84E-02 2974
0.5 40 0.0125 8.93E-02 2974
0.5 60 0.0083 1.14E-01 2974
0.5 80 0.0063 1.31E-01 2974
0.5 100 0.0050 1.43E-01 2974
1 40 0.0250 6.42E-02 2981
1 80 0.0125 1.10E-01 2981
1 120 0.0083 1.34E-01 2981
1 160 0.0063 1.50E-01 2981
1 200 0.0050 1.61E-01 2981

1.5 60 0.0250 7.25E-02 2986
1.5 120 0.0125 1.19E-01 2986
1.5 180 0.0083 1.43E-01 2986
1.5 240 0.0063 1.58E-01 2986
1.5 300 0.0050 1.68E-01 2986
2 80 0.0250 7.76E-02 2991
2 160 0.0125 1.24E-01 2991
2 240 0.0083 1.48E-01 2991
2 320 0.0063 1.63E-01 2991
2 400 0.0050 1.74E-01 2991

2.5 100 0.0250 8.12E-02 3007
2.5 200 0.0125 1.27E-01 3007
2.5 300 0.0083 1.50E-01 3007
2.5 400 0.0063 1.63E-01 3007
2.5 500 0.0050 1.72E-01 3007

2-D Data at a Large Range (Width=1) Figure 4, Figure 6
Z’

(Dimensionless)
Pe

(Dimensionless)
Z'/Pe

(Dimensionless)
Variance

(Dimensionless)
Pressure Drop

(Dimensionless)
0.5 10 0.05 0.0199 2974
0.5 100 0.005 0.1456 2974
0.5 500 0.001 0.2000 2974
0.5 1000 0.0005 0.2112 2974
1 10 0.1 0.0075 2980
1 100 0.01 0.1234 2980
1 500 0.002 0.1974 2980
1 1000 0.001 0.2148 2980

1.5 10 0.15 0.0039 2986
1.5 100 0.015 0.1067 2986
1.5 500 0.003 0.1874 2986



1.5 1000 0.0015 0.2084 2986
2 10 0.2 0.0027 2993
2 100 0.02 0.0935 2993
2 500 0.004 0.1868 2993
2 1000 0.002 0.2126 2993

2.5 10 0.25 0.0026 3000
2.5 100 0.025 0.0819 3000
2.5 500 0.005 0.1787 3000
2.5 1000 0.0025 0.2038 3000

T Sensor Data Figure 6
Z'/Pe Variance

0.0000 0.1876
0.0050 0.1359
0.0100 0.1026
0.0150 0.0780
0.0200 0.0593
0.0250 0.0453
0.0000 0.1745
0.0071 0.1144
0.0143 0.0772
0.0214 0.0523
0.0286 0.0355
0.0357 0.0242
0.0000 0.1347
0.0167 0.0543
0.0333 0.0222
0.0500 0.0091
0.0667 0.0037
0.0833 0.0016
0.0000 0.0581
0.0500 0.0054
0.1000 0.0005
0.1500 0.0001
0.2000 0.0000
0.2500 0.0000
0.0000 0.2048
0.0025 0.1689
0.0050 0.1443
0.0075 0.1248
0.0100 0.1085
0.0125 0.0946



Literature Concentration Plots



Experimental Concentration Plots
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Sample Calculation of Variance:
Calculation of the Variance of Figure 1 geometry with Width=0.5, L=2.5 and Pe=100

Start with the Equation for Variance:
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We will evaluate the top half of the integral by doing boundary integrations on each
outlet with the cmixing cup equal to .5.

Integration 1:
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∫ = .002421

Integration 2: 0.002163
Integration 3: 0.001626
Integration 4: 0.001126
Integration 5: 7.258641e-4
Integration 6: 4.39248e-4
Integration 7:2.459387e-4
Integration 8:1.32477e-4
Integration 9: 6.957116e-5
Integration 10: 3.768569e-5
Integration 11: 2.435543e-5
Integration 12: 1.98145e-5
Integration 13: 1.827043e-5

Next the total is computed by summing all of the 13 channels:
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To compute the bottom of the integral we use continuity to note that:
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Variance is therefore:
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= 1.974e − 2  This hand calculation agrees with the

entry in the table above for variance with a width of 0.5, Pe=100 and a length=2.5.


