

1-4244-1243-9/07/$25.00 ©2010 IEEE

The Diagnosis-Resolution Structure in Troubleshooting Procedures

David K. Farkas

University of Washington
farkas@u.washington.edu

Abstract

Troubleshooting procedures are prevalent in the comput-
er industry and in many other industries and subject
areas. In the computer industry, they appear in manuals
and help systems and, especially, as “articles” in the KB
(Knowledge Base) that comprises a core component of
support websites. Developing successful troubleshooting
procedures is both a technical and a rhetorical task.
These procedures take diverse forms and vary greatly in
complexity. Troubleshooting procedures, however, almost
always have a diagnosis-resolution structure consisting of
configurations of symptoms and solution methods. Ex-
amining this structure enables us to meaningfully classify
the very diverse instances of this genre, reveals key design
issues, and can help us identify productive research ques-
tions. Complex troubleshooting procedures present the
user with multiple symptoms. A set of symptoms may cor-
respond directly to particular causes or may comprise a
tree of symptoms. The resolution phase consists of one or
more solution paths each consisting of one or more me-
thods. When feasible, solution paths and methods should
be variable rather than fixed sequences and should em-
power users to choose among solution paths. Keywords:
writing, documentation, procedures, troubleshooting.

Introduction
Troubleshooting procedures are important and highly

prevalent in the computer industry. They very often ap-
pear as “articles” in the KB (Knowledge Base) that com-
prises a core component of the support websites main-
tained by vendors of hardware and software products and
web-based services. Help systems and manuals may also
include troubleshooting procedures. Troubleshooting pro-
cedures are important in many other industries and subject
areas, though they may go under different names. A first-
aid manual, for example, is a set of troubleshooting pro-
cedures. My focus is troubleshooting procedures in the
computer industry, in particular, complex troubleshooting
procedures.

There is a significant, though scattered, literature per-
taining to standard procedures but very little about troub-
leshooting procedures. They are familiar but largely un-
studied. The professional organizations that are most di-

rectly associated with this specific technical communica-
tion genre are the Association of Support Professionals
and the Technology Services Industry Association
(TSIA/SSPA). These organizations conduct research and
disseminate information regarding both support content
and real-time phone and text dialogs. But their main con-
cerns are the business dimension of technical support and
the general features of support websites and call centers.
There is little attention to the specific characteristics of
troubleshooting procedures. My discussions with those
who develop troubleshooting procedures suggest that they
have developed their knowledge and skills largely on their
own, aided by existing company practices and expertise.

I was extensively involved in a large-scale Microsoft
effort to redesign their model for KB troubleshooting pro-
cedures during the spring and summer of 2007, and I have
continued my investigation of this support genre since
then. In this paper, I define troubleshooting procedures
and briefly sketch out how they are developed. Then I
analyze the genre’s underlying architectural structure of
diagnosis and resolution, showing both simple and com-
plex configurations of symptoms and solution methods.
These configurations are in part constrained by the nature
of the technical problem; but they are also the conse-
quence of design decisions. Understanding structure
enables us to meaningfully classify the very diverse in-
stances of this genre, reveals key design issues, and can
contribute to experimental research insofar as structure is
central to many of the most useful research questions we
can ask.

Defining troubleshooting procedures
Standard procedures are task-focused. They state a user

goal (“Encrypting files”) and provide the steps for achiev-
ing this goal [1]. They assume a normally functioning
system and assume, not always correctly, that the user is
consulting the procedure as she begins the task. In con-
trast, troubleshooting procedures articulate and try to
solve a problem other than the user’s lack of familiarity
with the normal operation of the system. In most cases this
problem is a bug, incompatibility, or component failure:

When I save SWF files, they save with meaningless
file names and the file sizes are unusually large

EZGrab 3.0 freezes or closes unexpectedly

My computer no longer plays audio or produces any
sound from the speakers or headset

This distinction between troubleshooting procedures
and standard procedures requires some refinement. First,
some troubleshooting procedures (and other KB content)
are written for situations in which the system is function-
ing normally. For example, a troubleshooting procedure
may address an unexpected limitation of the product: A
user cannot make something happen and thinks the prod-
uct is malfunctioning, whereas the product was simply not
designed to carry out this task. Second, in some cases, a
user’s lack of knowledge is framed as a troubleshooting
problem and included in a KB: “I cannot encrypt files”.
This troubleshooting procedure, whose steps will closely
resemble those of a standard procedure, serves the user
who has gone to the KB on the assumption that a system
problem is the reason she cannot encrypt her files. Finally,
many standard procedures include a step or note that an-
ticipates and addresses a minor impediment that will sty-
mie some users [1]:

If you don't see the Format button, click More.

In this step, the introductory clause states a symptom and
the main clause states the resolution. This step, then, is a
“mini” troubleshooting procedure.

In certain instances, in particular when diagnosis is es-
pecially difficult, a preferred alternative to a troubleshoot-
ing procedure is a two-way dialog, perhaps via forum
posts, email, live chat, or a telephone support call with the
vendor’s support technician. These dialogs, although
“noisier” than carefully crafted KB content, also follow a
diagnosis-resolution structure.

Developing troubleshooting procedures
Although generalizations are difficult given the size

and diverse nature of the computer industry, a broad
sketch of the development process provides necessary
context for the analysis that follows. The development
process varies greatly according to such factors as the
product or service, the user assistance genre (KB, help
system, support bulletin, etc.), the company (size, budget,
maturity of processes), the problem category and severity,
and the range of users being served. One safe generaliza-
tion is that when indications of a problem first reach a
company, the problem must be analyzed, a plan must be
devised for a troubleshooting procedure (and possibly
other responses), and the content must be created and

tested. This effort is in large part technical: For example,
users who have upgraded to the newly released EZGrab
3.0—but not new purchasers of EZGrab 3.0—report that
the product is saving damaged SWF files. It seems that the
problem arises when users have previously saved a SWF
file with certain other graphics applications. It will be
necessary for the EZGrab company to determine the exact
nature of this conflict and what solutions are possible—
perhaps a more thorough uninstall of EZGrab 2.0, perhaps
a change in the Windows Registry, perhaps downloading
and installing a patched version of EZGrab 3.0. But the
effort is also rhetorical: it is often a daunting challenge to
create procedures that users, especially less sophisticated
users, are able and willing to follow [2].

Because the development of troubleshooting proce-
dures is both a technical and a rhetorical task, it is best
carried out collaboratively by a range of professionals.
Field reps, support technicians answering hotline calls,
and forum moderators will likely have the most complete
understanding of what brings on the problem, what exact-
ly is going wrong, and what are the technical backgrounds
of the various segments of the customer base. Developers
are intimate with the product code. Writers and editors
know how to present the information—how to encourage
the user, how to reduce the effort needed to understand
and follow the steps, and when and how to offer users
alternatives in carrying out a procedure. Finally, writers
should play a central role in designing the template or
model to be used as new procedures are written, a model
that is optimized for the kinds of troubleshooting proce-
dures the company produces most often.

Diagnosis and resolution structure
Almost all troubleshooting procedures lead the user

through phases of diagnosis activity and resolution activi-
ty. Either phase can be brief (sometimes very brief) or
lengthy. The diagnosis phase may consist of a single
symptom or a complex configuration of symptoms. The
resolution phase may consist of a single method (a set of
steps to take) or many methods in a complex configura-
tion. One important distinction is that one or more me-
thods comprising a distinct approach to solving a problem
can be regarded as a solution path.

Although the main structural pattern is diagnosis fol-
lowed by resolution, at times the diagnosis phase may
contain steps for resolution and the resolution content may
include diagnosis steps. That is, the procedure may switch
the reader back and forth between diagnosis and resolu-
tion. Because understanding this diagnosis-resolution
structure is the key to understanding troubleshooting pro-
cedures, I now show how this structure is manifested in a
broad range of troubleshooting procedures.

Figure 1. A simple troubleshooting procedure in a help system [3].

The diagnosis phase

A user comes to a troubleshooting procedure with a
problem. The problem may be slow performance or a
crash. The problem may be continuous or occur only un-
der certain conditions. The problem may be a strange
sound or blinking light that is not currently affecting per-
formance but suggests future trouble.

From the standpoint of diagnosis, the user’s problem,
including associated conditions that the user may or may
not have recognized, are symptoms. The title of the pro-
cedure is part of the diagnosis phase and must state a key
symptom (or a cluster of symptoms) in a way that the user
can recognize. The goal of the diagnosis phase is to ena-
ble the user to match her symptom to a symptom de-
scribed in the troubleshooting procedure. In so doing, the
user and the procedure jointly achieve a diagnosis of the
underlying cause that is sufficiently specific to direct the
reader to one or more solution paths in the resolution
phase.

Figure 1 shows a short and simple troubleshooting pro-
cedure in a web-based online help system. The title is a
concise though not complete statement of the symptom:
the system is apt to crash if the user tries to solve or fit a
model with the Plot or Quikplot window open. A user who
is experiencing crashes should be able to determine
whether this statement corresponds to the behavior of her

system. The Applicability and Description sections elabo-
rate on the symptom as expressed in the title by specifying
associated conditions: the problem pertains only to certain
versions of the product, and the system is apt to crash only
if the user attempts to solve or fit after receiving an error
or warning message. Now the user can confirm whether
the behaviors described in this procedure match the prob-
lematic behaviors of her system. If so, a diagnosis of the
cause has been achieved and a simple work-around is pro-
vided. Note that in this procedure the cause is explained
only at a superficial level: there is a bug. The SAAM II
developers almost certainly understand the bug at the code
level. In many procedures, however, a fuller explanation
of the cause is necessary.

This troubleshooting procedure consists of a symptom
(problem with associated conditions) that is specific and
easy for the user to identify. Furthermore, it provides a
single, reliable solution method (a simple work-around).
More complex problems, however, present more difficult
symptoms. Very often the symptom is broad in scope with
numerous and disparate associated conditions and causes.
For example, there are numerous reasons why a particular
user may be unable to connect to a web-based service: a
hardware malfunction (perhaps nothing more than an un-
connected cable), a conflict between the client software
and a process the user is running, a problem with the us-
er’s local area network, or just user error logging in. This
broad symptom will be stated in the procedure title:

I cannot connect to the service

Following such a title there will very likely be a set of
more specific symptoms. In many instances this list of
more specific symptoms is a “flat list.” By “flat list” I
mean that these symptoms don’t lead to further symptoms.
Instead, each of these symptom has a clear-cut cause (per-
haps even a one-to-one correspondence of symptom to
cause) and therefore a solution path, possibly consisting of
only a single method. A problem exhibiting a flat list of
symptoms is a relatively favorable situation for those who
are writing a troubleshooting procedure and ultimately for
the users.

In other instances, the set of symptoms is divided still
further into a tree-like structure. The user is asked to iden-
tify increasingly specific symptoms until she reaches a
symptom that is specific enough to indicate a cause (or at
least a set of candidate causes), at which point the proce-
dure transitions to the resolution phase. Symptom trees
can be effectively presented in a wizard-like sequence of
panels. Figure 2 shows one of the initial panels in a wi-
zard-like KB article that addresses problems in Internet
Explorer. This KB article has special functionality. As-
suming that the user is currently using the computer on
which IE is causing problems, the next panel will identify

which version of IE and which version of Windows the
user is running and will ask the user to confirm this. In so
doing, the KB article is moving down through the symp-
tom tree and getting closer to the cause.

Among the symptoms that may appear in a trouble-
shooting procedure are error messages. Error messages,
especially when they are specific to a particular problem,
are very useful symptoms.

If a problem exhibits two very different symptoms, it
will be necessary to write two entirely different trouble-
shooting procedures. For example, if EZGrab 3.0 becomes
damaged, it may save abnormal SWF files (let us say with
meaningless file names and very large file sizes), and it
may close unexpectedly even when the user is not trying
to save SWF files. Because the user may encounter or may
notice only one of the two symptoms, it will be necessary
to write two troubleshooting procedures, each with a title
that corresponds to one of these very different symptoms.

On the other hand, there are many instances when a
problem exhibits symptoms that can be readily described
together: Magic Accountant closes unexpectedly or freez-
es. Now the option to write either one or two proce-
dures—no longer constrained by the nature of the technic-
al problem—becomes a rhetorical decision. Let’s

Figure 2. A wizard-like troubleshooting procedure that begins with a symptom tree [4].

imagine that each of these Magic Accountant symptoms
has a different cause and a different solution path. A sin-
gle procedure will be relatively long and complex; on the
other hand, reducing the number of articles, especially in a
large KB, makes it easier for users to search the KB and
find the most appropriate article.

The resolution phase

As noted above, the resolution phase consists of one or
more solution paths (a particular approach to fixing the
problem). There is always one solution path, even if it is
nothing more than a single one-step method. Often, how-
ever, there are multiple solution paths, and a solution path
may consist of a sequence (perhaps a lengthy sequence) of
methods. For example, if the client software for a web-
based subscription music service is exhibiting a particular
symptom (e.g., playing the wrong song), one solution path
for addressing that problem might consist of three lengthy
methods intended to repair the corrupt database in the
client software. The user will first follow Method A. If
Method A is not successful, the user is directed to Method
B. If Method B is not successful, the user is directed to
Method C, which may also fail. The second solution path
consists of a single method: downloading new client soft-
ware. The second solution path is easier and is very likely
to succeed, but the user will lose her playlists. The KB
article, therefore, starts with the first solution path.

Complexity in the resolution phase very often arises
when the exact cause of the user’s problem cannot be pin-
pointed in the diagnosis phase. If a single, specific cause
can be identified, it should be possible to provide only a
single method. (When you know exactly what has gone
wrong, you know exactly what—if anything—can be done
about it.) Unfortunately, however, there are apt to be
many more user variables than it is feasible to describe as
symptoms in the diagnosis phase. It is impossible to know
all the system states that might arise from the user’s hard-
ware, operating system, applications (e.g., another sub-
scription music service), configuration of the software,
and so forth. In a sense, then, providing multiple methods
is another means to get at the cause. Broadly speaking, a
method that (when properly followed) does not succeed is
a kind of belated diagnosis; it rules out (or, at least, argues
against) a suspected cause. In some instances, therefore, it
makes sense to abbreviate the diagnosis phase in favor of
a lengthier resolution phase.

The sequence of methods within a single solution path
(or the sequence of solution paths) may be fixed (as de-
scribed above) or else variable. That is, it is possible that
a certain outcome of Method A means that Method B is
useless and that the user should bypass Method B and go
directly to Method C—or to an entirely different solution
path. This distinction between fixed and variable sequenc-
ing has a direct analogy in medical treatment. A physician

may have a fixed regimen of treatments for patients suffer-
ing from a particular illness. In other cases, the sequence
is flexible; the outcome of Treatment A (perhaps a lower
white blood cell count) dictates moving directly to Treat-
ment C. To design variable sequencing requires a more
specific understanding of the cause of the problem. But
there is much to be said for keeping the user from follow-
ing methods that have no chance of working.

Thus far, we have been considering instances in which
the diagnosis and resolution phases are distinct. But this is
not always the case. For example, it is possible that an
outcome of a method necessitates further diagnosis. In
other words, diagnosis steps may be embedded in the
resolution phase. In other cases, resolutions may be em-
bedded in the diagnosis phase. Figure 3 is the first section
of a long, complex Adobe Support Center TechNote for
Adobe Reader and Acrobat. It addresses the broad symp-
tom of PDF files that do not print. This section narrows
the symptom by trying to pinpoint one of several asso-
ciated conditions: Is it a general printing problem? Is it a
problem with the Adobe product that generated the PDF?
Is the problem limited to this PDF file? To narrow the
symptom, the user must perform tests, some of which re-
solve the problem. We see, then, that resolution actions
(restarting, turning off the machine) are embedded in the
diagnosis phase. In still other cases, other kinds of content
will be embedded either in the diagnosis or solution
phase; for example, a certain symptom or a certain out-
come of a method may dictate an interim task such as
gaining administrator rights.
We have thus far been considering resolution configura-
tions in which the procedure dictates the user’s next ac-
tion. But it is often highly desirable to empower the user
to choose among solution paths. Individual solution paths
entail trade-offs among time and effort, likelihood of suc-
cess, risk of creating new problems, and the nature of the
resolution. When feasible, users should be invited to make
these choices. For example, in the case of the music sub-
scription service, the user should be fully informed and
empowered to immediately download the new client ra-
ther than try to repair the corrupt database. A particular
user may not have downloaded many tracks and playlists
and so may not want to go through numerous steps in an
effort to repair the corrupt database. If the goal of a troub-
leshooting procedure is to repair a damaged word
processing file, certain methods may entail the loss of
formatting while others promise to retain formatting.
Someone trying desperately to save the text of his novel
will be willing to lose the formatting and will try every
available solution. Someone trying to save an elaborately
formatted document may only be interested in methods
that retain the formatting. To return to the medical analo-
gy, physicians should inform patients about the available
treatment options and empower patients to make their own
choices.

Figure 3. A complex symptom tree that includes resolution actions [5].

Although there are limits to the number of solution

paths and methods that can and should be provided, the
scope of troubleshooting procedures should not be unrea-
listically narrow. For example, an internet service provid-
er (ISP) consistently receives reports that some of their
customers can open but not directly download email at-
tachments. Without much investigation, the ISP responds
with a troubleshooting procedure stating that the problem
lies with the user’s virus protection software. But the ISP
is choosing to ignore (at least temporarily) the possibility

that there is another reason why customers are encounter-
ing this problem.

In many instances, especially when the problem was
brought on by a user error, it is necessary to explain how
to prevent a recurrence, which is often equivalent to ex-
plaining the cause of the problem. For example, the EZ-
Grab company has learned that the problem with EZGrab
3.0 occurs when some users, wanting to run both EZGrab
2.0 and 3.0, circumvent the procedure for uninstalling
version 2.0. The EZGrab troubleshooting procedure,

therefore, must not only fix the problem but must make
clear that users cannot run both versions of EZGrab.

In some cases, verification steps or a complete verifica-
tion method is part of the resolution phase. For example, it
may be advisable to guide the user through repeating the
actions that brought on the problem or perhaps restarting
their system. Through this means, the user will either con-
firm that the procedure was a success or will learn that it
was not—in which case the verification steps will hopeful-
ly direct the reader to a promising solution path. In some
cases, each method concludes with one or more verifica-
tion steps; alternatively, each method may conclude by
directing the user to a single verification section. This
decision to create a separate verification section is one
more variation in the diagnosis-resolution structure of
troubleshooting procedures

When all solution paths fail, the procedure may direct
the user to another resource, such as another troubleshoot-
ing procedure or phone support. At times it is necessary to
express regret that nothing further can be done to solve
the problem.

Conclusion
Troubleshooting procedures, even brief ones, exhibit a

complex architecture based on diagnosis and resolution.
This architecture reveals important underlying similarities
among procedures that may look very different from one
another. For example, two seemingly diverse procedures
with different formatting and other characteristics might
both employ a tree (or a flat list) of symptoms, a variable
(or fixed) sequence of solution paths, or resolution content
embedded in the diagnosis phase. The structural perspec-
tive, then, is like an X-ray view into the architecture of
troubleshooting procedures.

Furthermore, the structure of troubleshooting proce-
dures will be central to many of the most useful research
questions we can ask and many of the most important de-
sign decisions. For example, when do numerous methods,
variable sequences, and the empowerment of users to
make their own choices become overly burdensome? Giv-
en the need to motivate users to follow procedures [2] [6],
how does the architecture of troubleshooting procedures
affect motivation? What is the relationship between em-
powering users to make their own choices and users’ per-
ceptions of the rhetorical stances we assume when we
write troubleshooting procedures [7] [8]?

The diagnosis-resolution structure is closely tied to
modularization, an important direction in the design of
troubleshooting procedures. A promising means to train
new writers, especially those who have stronger technical
than rhetorical skills, is to explain troubleshooting proce-
dures as a set of modules, consisting of mandatory and
optional components that have specified characteristics. A
modular approach also facilitates document re-use, includ-

ing incorporating parts of a troubleshooting procedure—in
particular a solution path or method—into a forum post
that responds to a user’s query. Finally, users may well
benefit from modularized presentation in which modules
and their components are visually distinct and have clear-
cut roles.

When we modularize, we have many choices. For ex-
ample, do we write a single verification section (a highly
modular approach) or else add verification steps to mul-
tiple methods? When does the resolution phase become
one large module and when do we modularize at the more
granular level of solution paths? Almost certainly, as we
entertain options for modularization, we will find that the
basis for modularization will be the underlying architec-
ture of diagnosis and resolution.

References
[1] Farkas, D.K. The Logical and Rhetorical Construction of
Procedural Discourse. Technical Communication. 46(1): 42-54,
1999.

[2] Douglass-Olberg, C., D.K. Farkas, M. Steehouder, J.D. Kie-
ras, A. Roesler, N. Dalal, R. Baker, and D. Brunet. The New
Face of Procedural Content: A Real World Approach, extended
abstract, Proceedings of SIGCHI 2008. Florence, Italy, April 7-
10, 2008.

[3] SAAM II Help System.
http://depts.washington.edu/saam2/support/screencrash.html,
accessed 4/19/10.

[4] Microsoft Support.
http://support.microsoft.com/gp/pc_ie_start, accessed 4/19/10.

[5] Adobe Support Center TechNote. Troubleshoot Printing
Problems in Adobe Reader 9 and Acrobat 9 (Standard, Pro, Pro
Extended) in Windows.
http://kb2.adobe.com/cps/403/kb403914.html, accessed 4/19/10.

[6] Loorbach, N., M. Steehouder, and E. Taal. The Effects of
Motivational Elements in User Instructions. Journal of Business
and Technical Communication. 20(2): 177-199, 2006.

 [7] Coney, M.B. Technical Readers and Their Rhetorical Roles.
IEEE Transactions on Professional Communication. 35(2): 58-
63, 1992.

[8] Coney, M.B. and C.S. Chatfield. Rethinking the Author-
Reader Relationship in Computer Documentation. AMC SIG-
DOC Asterisk Journal of Computer Documentation. 20(2): 23–
29, 1996.

About the Author
David K. Farkas (http://faculty.washington.edu/farkas) is a
Professor in the Department of Human Centered Design &
Engineering at the University of Washington, Seattle
(US). His main professional interests are software user

assistance, presentation graphics (slideware/PowerPoint),
consumer-decision infographics, and the design of innova-
tive documents (QuikScan, SwitchBack). He served as the
program chair or co-chair of this conference in 1988,
1994, and 2007.

	Abstract
	Introduction
	Defining troubleshooting procedures
	Developing troubleshooting procedures
	Diagnosis and resolution structure
	The diagnosis phase
	The resolution phase

	Conclusion
	References
	About the Author

