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Abstract 
 
It is a well accepted empirical result that forward exchange rate unbiasedness is rejected 
in tests using the “differences regression” of the change in the logarithm of the spot 
exchange rate on the forward discount. The result is referred to in the International 
Finance literature as the forward discount puzzle. Competing explanations of the negative 
bias of the forward discount coefficient include the possibilities of a time-varying risk 
premium or the existence of “peso problems.” We offer an alternative explanation for this 
anomaly. One of the stylized facts about the forward discount is that it is highly 
persistent. We model the forward discount as an AR(1) process and argue that its 
persistence is exaggerated due to the presence of structural breaks. We document the 
temporal variation in persistence, using a time-varying parameter specification for the 
AR(1) model, with Markov-switching disturbances. We also show, using a stochastic 
multiple break model, suggested recently by Bai and Perron (1998), that for the G-7 
countries, with the exception of Japan, the forward discount persistence is substantially 
less, if one allows for multiple structural breaks in the mean of the process. These breaks 
could be identified as monetary shocks to the central bank’s reaction function, as 
discussed in Eichenbaum and Evans (1995). Using Monte Carlo simulations we show 
that if we do not account for structural breaks which are present in the forward discount 
process, the forward discount coefficient in the “differences regression” is severely 
biased downward, away from its true value of 1.  

                                                           
* The authors would like to thank Charles Engel and the participants of the macroeconomics seminar at the 
New York Federal Reserve Bank for helpful comments and suggestions and Jushan Bai for generously 
providing the GAUSS code to estimate the multiple break models. The usual disclaimer applies. 
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1. Introduction 

A recurring theme in the international finance literature is the investigation of 

forward market efficiency. Starting with Bilson (1981) and Fama (1984), the regression 

that most people have looked at when they test the forward rate unbiasedness hypothesis 

(FRUH) is the “differences regression”: 

 
kttktkt sfs

++
+−+=∆ εβα )( ,      (1) 

 
where, st is the log of the spot exchange rate, ft,k is the log of the k-period forward 

exchange rate at time t, ft,k - st is the forward discount, which, under covered interest 

parity, equals the interest rate differential between two countries, εt+k is the regression 

error and ∆ is the difference operator. FRUH stipulates that under the joint hypothesis of 

risk neutrality and rational expectations, the current forward rate is an unbiased predictor 

of the future spot rate; that is, under FRUH, α = 0, β = 1, and Et(εt+1) = 0, so that a 

domestic investor who invests in a foreign market cannot gain “excess returns” from 

foreign currency between times t and t+k. Nevertheless, the typical finding in the 

literature is that FRUH is compellingly rejected; not only the forward rate is not an 

unbiased predictor of the future spot rate, but typical estimates of β in (1) are 

significantly negative1. This anomalous empirical finding is so well documented that it is 

referred to as the forward discount anomaly. 

  A large number of researchers focused on the puzzling estimates of β from (1) 

and tried to explain what could be causing them to deviate from the theoretical value of 1. 

Two of the competing explanations that have been put forth are discussed in Engel (1996) 

and Lewis (1995). The first of these explanations was pioneered by Fama (1984). Fama 

suggests that the anomaly is due to an omitted variables problem. He shows that if risk 

neutrality fails, then negative estimates of β are consistent with a time-varying exchange 

rate risk premium rpt, which is correlated with the forward discount so that equation (1) 

is mispecified. In the case of a negative estimate of β, the covariance of the risk premium 

with the expected change in the spot exchange rate must be negative and the variance of 

the risk premium must be greater than the variance of the expected change. Nevertheless, 

                                                           
1 Froot (1990) reports an average value for β  of –0.88 over 75 published studies. 



 2

empirical models of the risk premium thus far, have been unable to adequately address 

the anomaly. Engel (1996) concludes: 

 

“...First, empirical tests routinely reject the null hypothesis that the forward rate is a 

conditionally unbiased predictor of future spot rates. Second, models of the risk premium 

have been unsuccessful at explaining the magnitude of this failure of unbiasedness...” 

 

The second explanation is based upon the idea of systematic forecast errors being 

made by the foreign exchange market participants. Frankel and Froot (1987) and Froot 

and Frankel (1989) show, using various measures of expectations based on survey data, 

that excess returns are mainly due to systematic forecast errors and not risk premia. At 

any given time, some of the market participants do not use all available information 

efficiently, or in other words, they form expectations in an irrational manner. Their 

behavior generates additional risk in asset prices that has a two-fold effect: First, 

irrational agents earn higher expected returns because they bear higher risk. Secondly, 

rational agents, being more risk-averse, are not necessarily able to drive the first group 

out of the market by aggressively betting against them. In terms of equation (1), such 

behavior could bias the estimate of β, if the forecast error is negatively correlated with 

the forward discount. 

    Lewis (1989) and Lewis and Evans (1995) suggest a different reason why the 

forecast error could be negatively correlated with the forward discount. They attribute 

systematic errors in the presence of “learning” or “peso” problems. Briefly, the economy 

undergoes infrequent regime changes, due to shocks hitting the real, as well as the 

nominal side of the economy. In the case of “peso” problems, economic agents revise 

their future expectations in a rational manner, while trying to incorporate in their 

information set the probability of being in a different regime next period. If the 

anticipated regime is not realized within the sample examined, serial correlation in the 

forecast errors could be introduced in small samples. Although these models can partially 

explain the puzzle, Lewis (1995) admits that a substantial amount of variability in excess 

returns remains unexplained. 
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Alternatively, some authors have investigated statistical reasons for the anomaly 

focussing on the time series properties of exchange rates and the forward discount in the 

differences regression (1).  It is well established that nominal exchange rates behave like 

I(1) processes so that ∆st+k is I(0). However, one of the stylized facts about the forward 

discount is that it is highly persistent. The high persistence of the forward discount means 

that the differences regression is potentially “unbalanced”; that is, the amount of 

persistence in the dependent variable is much less than the amount in the regressor. It is 

well known that in unbalanced regressions the coefficient on the highly persistent 

regressor is potentially downward biased2. 

At one extreme, Crowder (1994) and Lewis and Evans (1995) have gone as far as 

to conclude that the forward discount, appears to have a unit root component. This would 

make (1) are regression of an I(0) variable, ∆st+k, on an I(1) variable, ft – st, and so the 

least squares estimate of β converges in probability to zero. A unit root in the forward 

discount, however, is unappealing for the following reason. Consider the following 

decomposition, in the presence of a time-varying risk premium rpt+1 = ft – Et[st+1], 

originally due to Fama (1984): 

 
111 +++

++= tttt rpsf η       (2) 
 
This equation relates today’s forward rate, ft, to next period’s spot rate, st+1, a risk 

premium, rpt+1, and a rational expectations forecast error term, ηt+1. We can rewrite the 

future spot rate as: 

 
11 ++

∆+= ttt sss        (3) 
 
If we substitute equation (3) into (2) and rearrange, we get 

 
111 +++

++∆=− ttttt rpssf η      (4) 
 
Equation (4) shows that the forward discount consists of three components: the change in 

the spot exchange rate; the risk premium; and a rational forecast error. Since both the 

change in the spot exchange rate and the forecast error are I(0), the supposed unit root 
                                                           
2 See Kim and Nelson (1993?) – Journal of Finance, Stambaugh (19xx?) – predictive regressions paper. 
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component of the forward discount is identified as the risk premium. A unit root risk in 

the risk premia would be very hard to rationalize since standard models of time-varying 

risk premia imply them to be I(0) since they depend on the time series properties of other 

I(0) variables, such as the growth rate in consumption.3 

More recently, models with long memory or fractional integration in the forward 

discount have been put forth in an attempt to address the possible connection between the 

forward discount bias and its persistence. These models include Baillie and Bollerslev 

(1994, 2000), as well as Maynard and Phillips (1998) among others. Baillie and 

Bollerslev (2000) model the forward discount as a mean-reverting fractionally integrated, 

I(d), process , where d is the order of fractional differencing, such that the autocorrelation 

function decays very slowly. They show, using Monte Carlo simulations that in this case 
^
β  in (1) will converge to its true value of unity, very slowly. Maynard and Phillips 

(1998) develop an asymptotic theory to provide theoretical justification for these results. 

Together, these results in these papers suggest that the forward discount anomaly is just a 

statistical artifact. It takes place exactly because the autocorrelations in the forward 

discount are very persistent and the sample size fairly small. Even if the forward discount 

is a biased predictor of the future spot rate, it is not possible to statistically reach a 

definite conclusion, given the typical size of exchange rate samples.  

The main criticism against using models of fractional integration is whether 

fractionally integrated processes occur in the actual economy. Granger (1999) argues that 

such processes are at very low spectral frequencies where information accumulates very 

slowly. As a result long time series are required to provide estimates of d, the order of 

fractional integration, which are significantly different from 0 or 1. Typical 

macroeconomic series are not long enough to provide us with such evidence. Granger 

advocates the use of non-linear models as plausible alternatives to fractional integration. 

For example, using simulated data, as well as daily absolute returns for the S&P 500 

index, Granger shows that the stochastic break model developed by Bai (1997) can 

                                                                                                                                                                             
Mention what is required for the bias to be highly negative. 
3 This is also the argument made in Evans and Lewis (1995). They cite Grossman and Shiller (1981),        
Backus, Gregory, and Zin (1989) as examples of studies of time-varying risk premia. For a complete 
discussion of theoretical models of foreign exchange risk premia see Engel (1995). 
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produce many of the “long memory” properties of the data. In the present context, Choi 

and Zivot (2001) provide evidence that the long-memory properties of the forward 

discount can be largely explained by multiple breaks in the mean of the forward discount. 

Moreover, Diebold and Inoue (1999) analytically show that stochastic regime-switching 

is observationally equivalent to long memory, even asymptotically, thus offering 

additional evidence of the empirical relevance of such models.  

Our starting point, as in Baillie and Bollerslev (1998), is an investigation into the 

time series properties of the forward discount, ft - st. We start with the prior that the 

forward discount does not have a unit root or long-memory and that its observed 

persistence is due to structural changes that take place in the economy during the time 

period of our sample. Starting with Perron (1989), it is well documented in the 

econometrics literature that structural breaks could induce I(1) as well as I(d) like 

behavior in observed time series. We hypothesize that the forward discount is subject to 

structural breaks, and perhaps there is more than one instance of structural breaks in the 

data. Such breaks could be arising from changes in monetary policy objectives of the 

central banks of different countries, discrete change in policy where new initiatives take 

form such as the Plaza Agreement, as well as exogenous shocks to the decision rule of 

the monetary authority. For example, Eichenbaum and Evans (1995) consider three 

different measurements of the latter type of shocks. Applying VAR techniques, they find 

that contractionary shocks to U.S. monetary policy result in persistent increases in U.S. 

interest rates and persistent decreases in the spread between foreign and U.S. interest 

rates. Cushman and Zha (1997), Kim and Rubini (1995), Clarida and Gertler (1997) reach 

similar conclusions when  applying different monetary policy shock measures to the 

foreign policy maker’s decision rule4. Eichenbaum and Evans attribute the source of 

these policy shocks to political factors, factors pertaining to the views of the members of 

the FOMC, as well as technical factors such as measurement error in the data available to 

the FOMC.  

 To illustrate the evidence for structural change in the forward discount, we utilize  

an AR(1) model with a time–varying autoregressive parameter and Markov-switching 

                                                           
4 These results, as well as the general issues concerning monetary policy shocks, are discussed in great 
detail in Christiano, Eichenbaum, and Evans (1998) “Monetary Policy Shocks: What Have We Learned and 
to What End?” 
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variance. Using data from G-7 countries, we find that the forward discount appears to be 

highly persistent at the very beginning of the sample and again starting at the late 1980s, 

and not before.  The timing of the most noticeable changes in the time-varying coefficient 

suggests the presence of multiple structural breaks. While this model captures the 

temporal instability of the forward discount it does not explain its source. Based on the 

idea that changes in the mean of a process can induce both parameter instability and 

persistence in the AR coefficient, we estimate a stochastic multiple break model, using 

the methodology developed recently by Bai and Perron (1998). Similar approaches have 

been used, for instance, by Wang and Zivot (2000) in a Bayesian framework, as well as 

by Garcia and Perron (1995) in a Markov-switching framework.  Interestingly enough, 

we find that once we account for structural breaks in the mean of the forward discount, it 

is not as persistent, even after the late 1980s[e1].  

Finally, we investigate, using Monte Carlo simulations, the implications of our 

finding of structural change in the forward discount for the forward discount puzzle. 

Assuming that the true generating process of the forward discount is given by our 

stochastic break model, we construct spot and forward rates based on our estimated 

parameters and test for unbiasedness using equation (1). We show that even when the 

true β coefficient in (1) is equal to 1, the least squares estimate of β is significantly biased 

downward. Therefore, although our modeling strategy of the forward discount is different 

than that of Baillie and Bollerslev, we arrive to a similar conclusion. The forward 

discount anomaly is not as bad as we think and it is, at least partly, due to the statistical 

properties of the data[e2].  

The plan of the paper is as follows: In Section 2 we present some stylized facts of 

exchange rate data. In Section 3 we present the two alternative models design to capture 

structural change in the forward discount. In section 4 we discuss the empirical results. In 

section 5 we develop the Monte Carlo simulations based on the estimated parameters. We 

conclude in section 6. 

 

2. Exchange Rate data 

Let st denote the log of the spot exchange rate in month t and ft denote the log of 

the forward exchange rate in the same month. We consider monthly data for which the 
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maturity date of the forward contract is the same as the sampling interval, in order to 

avoid modeling complications arising from overlapping data, so k = 1 in (1). Our 

exchange rates are spot and forward rates which are obtained from Datastream. The data 

are end of month, average of bid and ask rates, for the German Mark, French Franc, 

Italian Lira, Canadian Dollar, British Pound, and Japanese Yen. Exchange rates are 

expressed as the home country price of the foreign currency, where the foreign currency 

is the US dollar. They span the period 1976:01-1999:01 except in the case of Japan where 

they span the period 1978:07-1999:01. All logs have been multiplied by 100, so that the 

final series of the forward discount and changes in the exchange rates, are expressed in 

percentage differences. Figure 1 plots the forward discount, ft - st, for all the currencies. 

Notice that the forward discount is much more volatile at the beginning of the sample and 

especially so between 1980-83. Table 1 gives some summary statistics of the data. Spot 

and forward rates behave very similarly and exhibit random walk type behavior. The 

forward premiums are all highly autocorrelated. The variances of ∆st+1 and ∆ft+1 are 

roughly ten times larger than the variance of the forward discount. Finally, with the 

exception of France and Italy, for all currencies, ∆st+1 and ∆ft+1 are negatively correlated 

with ft - st.  

3.  The Models 
 

Godbout and von Norden (1995), Mark et al (1998), Mark and Wu (1998), and 

Zivot (2000) among others, show that the stylized facts of the monthly exchange rate data 

reported in the previous section can be captured by a simple cointegrated VAR(1) model 

for yt = (ft, st)′:  

ttt yy εµ +Π+=∆
−1        (5) 

where εt ~ iid (0, Σ) and Σ has elements σij (i, j = f, s). Under the assumption that spot 

and forward rates are I(1) and cointegrated, Π has rank 1 and there exist  2× 1 vectors β 

and γ such that  Π = βγ’. Using the normalization γ = (1, -γs)′, (5) becomes a vector error 

correction model (VECM) with equations: 

,11 )( fttstfft sff εγβµ +−+=∆
−−

     (6a) 
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,11 )( sttstsst sfs εγβµ +−+=∆
−−

     (6b) 
 
Since spot and forward rates usually do not exhibit a systematic tendency to drift up or 

down it may be more appropriate to restrict the intercepts in (6) to the error correction 

term, so that µf = -βfµc  and µs = -βsµc.  Under this restriction st and ft are I(1) without 

drift and the cointegrating residual, ft - γsst, is allowed to have a non-zero mean µc. 

With the intercepts in (6) restricted to the error correction term, the VECM can be 

solved to give a simple AR(1) model for the co-integrating residual γ′yt - µc = ft -γsst - µc.   

 
tctstctst sfsf ηµγφµγ +−−=−−

−−

)( 11    (7) 
 
where φ = 1 + γ′β = 1 + (βf  - γsβs) and ηt = γ′εt = εft - γsεst. Notice that according to (7) if 

γs = 1, then the forward discount is I(0) and follows an AR(1) process and the VECM (6) 

becomes[e3] 

 
1 1 ,( )t f t t c ftf f sβ µ ε

− −

∆ = − − +      (8a) 

1 1 ,( )t s t t c sts f sβ µ ε
− −

∆ = − − +      (8b) 

 
(8b) is exactly equation (1) which is used to test the FRUH, where β = βs.  

Using similar data as that used in this paper, Zivot (2000) estimates γs using Stock 

and Watson’s (1993) dynamic OLS (DOLS) and dynamic GLS (DGLS) lead-lag 

estimator, and Johansen’s (1995) reduced rank MLE. The hypothesis that γs = 1 cannot 

be rejected using the appropriate asymptotic t-tests. Zivot also uses various tests of the 

null of no co-integration between spot and forward rates, imposing the cointegrating 

vector (1,-1)′, and finds mixed evidence that ft – st is I(0[e4]).  

We choose to model the forward discount as the AR(1) process that is implied 

from the VECM (8). Since our purpose is to model and hopefully capture structural 

change effects, we look at two different kinds of models. The first model is a hybrid of a 

time-varying parameter AR(1) model and a Markov-switching model. Specifically, we 

allow the autoregressive coefficient to be time varying and the error variance to be 

Markov-switching. The idea here is that structural change is better captured in a 

continuous framework for some of the parameters of the model, while discrete changes 
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are more appropriate for others. Plots of the estimated time-varying coefficients provide 

us with information on how structural change takes place continuously over time. We 

model the variance as a Markov-switching process in order to capture the stylized fact of 

high and low volatility regimes in the forward discount process. 

The second model is one which allows multiple stochastic structural breaks in 

some of the parameters. We use this model to capture breaks in the mean of the level of 

the forward discount that could potentially have two effects. First, in a regular regression 

where breaks are not accounted for, they could bias the autoregressive coefficient 

upward. Second, a structural break in the mean has a more natural interpretation as the 

direct effect of an economic shock to the level of a process that could also explain the 

temporal variation in the time-varying parameter model. 

 

3.1 The Time-varying Coefficient with Markov-switching Variance Model 

 One way to model time variation in a regression coefficient is to treat it as an 

unobserved component which evolves according to a transition equation. We start with 

an AR(1) process for the forward discount as in (7), but assume that the autoregressive 

coefficient φ is time-varying 

 
  tctttctt sfsf ηµφµ +−−=−−

−−

)( 11     (9) 
 
where µc is the mean of the process, which for the time being is assumed to be constant 

over time and φt is the time-varying coefficient. We assume that φt follows a random walk 

process  

 
ttt v+=

−1φφ         (10) 
 
where vt is an iid (0, σv

2) process, independent of ηt. 
 

Engle and Watson (1987) suggest that for most economic series a unit root 

specification for the evolution of the unobserved component is appropriate. Garbade 

(1977) shows using Monte Carlo simulations that a random walk specification is a 

parsimonious way of modeling the transition equation of regression coefficients as long 

as the true parameters follows a persistent AR(1) processes. 
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To compute the high and low volatility states of the forward discount, we specify 

a two-state Markov-switching representation for ηt: 
2
,

2 2 2
, ,0 ,1

2 2
,1 ,0

~  (0, )

(1 )
t

t

t S

S t t

iid N

S S
η

η η η

η η

η σ

σ σ σ

σ σ

= − +

>

 

 
where the binary state variable St describing the high and low volatility states follows a 

first order Markov process with transition probabilities given by: 

 
pSS tt ===

−
]1|1Pr[ 1  and qSS tt ===

−
]0|0Pr[ 1  

 
The estimates of the hyper-parameters can be obtained via maximum likelihood 

estimation based on the prediction error decomposition of the log likelihood, as described 

in Kim and Nelson (1999).5  

 

3.2 Partial Structural Break Model 

 Although the time-varying parameter model appears to be adequate in capturing 

the essential time-series properties of the forward discount, it only provides us with 

information on how the forward discount behavior has changed over time. More 

specifically, it tells us how the persistence has varied over time. We are interested in 

finding out why the forward discount behavior has changed. We hypothesize that 

structural breaks in the mean are mainly responsible for inflating the estimated 

persistence. If our prior has some merit, accounting for such structural breaks should take 

away what we hope to be considerable upward bias from the autoregressive coefficient. 

Since it does not seem that restricting the number of different regimes is appropriate, we 

turn to the class of multiple break models considered by Bai and Perron (1998), BP 

hereafter. 

 BP consider multiple structural changes in a linear regression model, which is 

estimated by minimizing the sum of squared residuals. They consider models of both 

pure structural change, where all the regression coefficients are subject to change, and 

partial structural change models, where only some of the coefficients are subject to 

                                                           
5 For details about the filter and parameter estimation, see Appendix 1.A. 
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change. Their models allow heterogeneity in the regression errors but they do not provide 

methods for parametrically estimating this heterogeneity. We use the partial structural 

change model, since we want to address potential the upward bias to the autoregressive 

coefficient of the forward discount.  This model given by: 

 
  tttjtt usfcsf +−+=−

−−
)( 11φ , t  = Tj-1+1,...,Tj  (11) 

 
for j = 1,...,m+1,  T0 = 0 and Tm+1 = T. The process is subject to m breaks (m+1 regimes), 

cj is the constant of the regression6, subject to structural change, φ is  the autoregressive 

coefficient of the lagged forward discount, which is not subject to structural change and 

is estimated using the entire sample. (T1 ,...,Tm) are the unknown break points.  

 Using BP’s technique we are able to estimate the regression coefficients along 

with the break points, given T observations of the forward discount. Briefly the method of 

estimation is as follows7. In the case of a pure structural break model, i.e., both c and φ 

change, for each possible m-partition  (T1,...,Tm) the least squares estimators of c and φ are 

obtained by minimizing the sum of square residuals. Then the estimated break points are 

the ones for which 

   ( )1 1
1

ˆ ˆ, , arg min ( , , ), ,m m
m

T T S T TT T T=… …

…

    (12)  

 
where ST(T1,...,Tm) denotes the sum of squared residuals. Since the minimization takes 

place over all possible partitions, the break-point estimators are global minimizers.  BP 

use a very efficient algorithm for estimating the break points which is based on dynamic 

programming techniques. In the partial structural break model case, we can estimate the 

cjs  over the sub-samples defined by the break points, but the estimate of φ depends on 

the optimal partition (T1,...,Tm). BP modify a recursive procedure discussed in Sargan 

(1964) that makes the estimation possible.8  Briefly, they first minimize the sum of square 

residuals with respect to the vector of the changing parameters, keeping φ fixed and then 

minimize with respect to both the vector of changing parameters and φ. For appropriate 
                                                           

6 The implied mean in each regime is simply 
φ

µ
−

=

1
j

j

c
. 

7 Bai and Perron (2000) provide a very detailed discussion of the estimation algorithm. 
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initial values of φ, convergence to the global minimum is attained, in most cases after 

only one iteration.  

 BP show that the break fractions TiTik /
^^

=  converge to their true value 0
ik  at a 

rate T, making the estimated break fractions super-consistent. Hence, we can estimate the 

rest of the parameters, which converge to their true values at rate T1/2, taking the break 

dates as known. BP’s procedure allows for the estimation of the parameters and the 

confidence intervals under very general conditions regarding the structure of the data and 

the errors across segments. In particular, their method is robust to heterogeneous 

variances of the residuals, which is the case we are interested in. 

  

4. Empirical Results 

 Before we proceed discussing the results of the models presented in the previous 

section it is useful to present the standard OLS results for both the differences regression 

and the forward discount without accounting for structural change. Table 2a presents 

OLS estimates of the differences regression (1) as well as t-statistics for the hypothesis 

that β = 1. OLS estimates of an AR(1) specification of the forward discount  is presented 

in table 2b. Notice that the β estimates for the French Franc and the Italian Lira are 

positive and are not statistically different than 1 at the 95% significance level, although 

the point estimates are 0.352 and 0.518 respectively. In the case of Germany, β is 

different than 1 at the 95% but not the 99% significance level. For Canada, UK, and 

Japan, the point estimates as well as the t-tests confirm the usual finding of the forward 

discount being a biased predictor of the change in the future spot rate. In all cases, R2 is 

very small, ranging from 0.001 in the case of the French Franc, to 0.034 for the Japanese 

Yen. Also notice in table 2b that for France and Italy, the forward discount appears to be 

less persistent than in the other countries.  

 

4.1 Time-Varying Parameter with Markov-Switching Variance Model 

 Figure 2 displays the results of the model applied to the six currencies. The 

filtered inferences use information up to time t, and smoothed inferences use information 
                                                                                                                                                                             
8 The complete details of the estimation technique can be found in Bai and Perron (1998) “Computation 
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from the entire sample, although all inferences are conditional on the hyper-parameters of 

the model, which are estimated using the entire sample. With the exception of Japan, φt 

exhibits substantial time variation. For the countries where time-variation is present, the 

forward discount is not highly persistent throughout. Typically, the forward discount 

starts out quite persistent at the beginning of the sample only to decline during the first 

part of the 1980s, as low as 0.60 in the case of Germany for example. It becomes very 

persistent again starting roughly at 1988. In all the cases considered, after that year φt 

abruptly rises toward or even above unity and continues to exhibit unit-root-like behavior 

until 1993. A possible interpretation for this behavior could be given along the lines of 

Siklos and Granger (1996): There exist processes which are cointegrated most of the time  

but not all the time. Perhaps forward and spot exchange rates fall into this category. 

While this is an issue that deserves further investigation, we continue to assume 

throughout the rest of the paper that spot and forward rates are and remain cointegrated 

with a cointegrating vector of (1,-1)′. 

Table 3a reports the maximum likelihood estimates of the hyper-parameters. 

Again, with the exception of Japan, the estimates of the variance for the time-varying 

coefficient are all significant and of the same order of magnitude as the estimates of the 

variance for the forward discount process in the low variance regime. The likelihood ratio 

test statistics for the null hypothesis of no time variation are presented in table 3b. For 

Germany, France, Italy, and Canada, the null hypothesis of parameter stability can be 

rejected at the 1% level, while for the UK the same hypothesis can be rejected at the 5% 

leve. However, parameter stability cannot be rejected in the case of Japan, even at the 

10% level. Table 3b also presents likelihood ratio tests for the null hypothesis of constant 

variance. It should be noted here that since the transition probabilities are not identified 

under the null hypothesis, standard assumptions of asymptotic distribution theory do not 

hold and the likelihood ratio test does not have a χ2 distribution. Hansen (1992) suggests 

a computationally intensive method to determine the asymptotic distributions of the 

relevant statistics. Instead, following Kim, Morley and Nelson (1999) we use a likelihood 

ratio test using the critical values of Garcia (1995). Garcia derives asymptotic 

distributions for a simple two-state Markov-switching model. The null hypothesis, 
                                                                                                                                                                             
and Analysis of Multiple Stuctural Change Models.” 
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2 2
0 ,0 ,1:H

η η
σ σ= , is one of no Markov-switching. We compare these estimates to Garcia’s 

most conservative critical values for a two-state Markov-switching mean and variance 

model.  He reports a critical value of 17.52 for a 1% significance level test. The 

likelihood statistics for all the countries in our sample are much higher than this critical 

value. 

Figure 3 displays the filtered and smoothed probabilities of a low variance state. 

The results are very similar across the different countries. It appears that the most volatile 

state was the period during the latter part of the 1970s and the beginning of the 1980s. 

Changes in monetary policy, abandonment of interest rates as an instrument and attention 

to the monetary base, as well as the 1981-82 recession in the United States seem to be the 

driving force.  Other high volatility periods appear mostly as spikes during 1986, right 

after the Plaza Accord Agreement, and again in September of 1992, when the ERM 

collapsed. While we do not explicitly model possible volatility feedback effects to the 

mean of the forward discount, figure 3 raises the possibility that the forward discount is 

potentially subject to events that could lead to structural change. 

 Table 4 presents some diagnostic tests for the model. We test for serial 

correlation in both standardized forecast errors and the squares of the standardized 

forecast errors. There is evidence of serial correlation for Germany and Canada for the 

standardized forecast errors, as well as evidence of serial correlation for Germany, France 

and less so UK in the square of the standardized forecast errors. This evidence suggests 

that our two-state Markov-switching variance model has not captured completely the 

heteroskedasticity pattern of the forward discount for these countries.9 However, the 

time-varying parameter model seems to adequately capture the time series properties of 

the forward discount process. 

The estimates of the autoregressive coefficient provide evidence of parameter 

instability, while the two distinct and persistent regimes of the variance suggest that 

changes in policy could substantially affect the volatility of the forward discount. High 

variance regimes are significant and are consistent with periods where policy changes are 

                                                           
9 We also tried a three-state Markov-switching variance specification for the countries in our sample. 
Although, the diagnostic tests where somewhat improved, the qualitative inferences regarding the 
autoregressive coefficient of the forward discount did not change. The results from the three-state 
specifications are available upon request. 
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in effect. The time-varying parameter model describes how the forward discount behavior 

has changed over time. The next question that we are interested in addressing is why has 

this behavior changed over the period of our sample. Eichenbaum and Evans (1995) show 

that monetary shocks have a direct effect on the mean of the interest rate differential. 

Thus in the next section we present such evidence using the Bai and Perron methodology 

regarding partial multiple structural break models. 

 

4.2 Partial Structural Break Model 

Tables 5 and 6 present the results for the partial structural break models based on 

(11). The determination of the existence of structural change and the selection of the 

number of breaks depends on the values of various test statistics for structural change 

when break dates are estimated and deserves some discussion. Let supFT(l) denote the F-

statistic for testing the null of no breaks (cj = c for all j) against the alternative of l breaks 

(c1 ≠ c2 ≠ …≠ cl) where the break dates are selected according to (12). Define the double 

maximum statistic )(supmaxmax 1 lFUD TLl≤≤
= , where L is an upper bound on the 

number of possible breaks. BP also consider a version of this statistic, denoted WDmax, 

that applies weights to supFT(l)  such that the marginal p-values are equal across values 

of l. These statistics test the null hypothesis of no breaks against the alternative of an 

unspecified number of breaks subject to a specified upper bound on the number of 

breaks. Next, let supFT(l+1|l) denote the F-statistic for testing the null of l breaks against 

the alternative of l+1 breaks. For this test the first l breaks are estimated and taken as 

given. The statistic supFT(l+1|l) is then the maximum of the F-statistics for testing no 

further structural change in the intercept against the alternative of one additional change 

in the intercept when the break date is varied over all possible dates. All of these test 

statistics have non-standard asymptotic distributions and BP provide the relevant critical 

values. 

BP (1998, 2000) suggest the following strategy for selecting the number of breaks 

based on the above statistics. We first look at the UDmax or WDmax tests to see if at 

least one break is present. If the null of no breaks is rejected, then the number of breaks 

can be determined by looking at the sequential supFT(l+1|l) statistics. We select the 

number of breaks for which the supFT(l+1|l) statistic is significant at least at the 5% level.  
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Table 5 presents the values of all the tests used to determine the number of breaks 

for each country.10 In the case of Germany, the UDmax, and WDmax tests point to the 

presence of multiple breaks. The supFT(l+1|l) tests suggests the use of a model with five 

structural breaks since the supFT(5|4) test is significant at the 1% level. In the case of 

France, the UDmax and WDmax tests reject the null hypothesis of no breaks versus the 

alternative of an unknown number of breaks. The supFT(l+1|l) suggest that a model of 

four breaks should be chosen over a model with three breaks. Notice that the supFT(2|1) 

does not reject the null hypothesis of one break versus two. At the same time, the 

supFT(l) does not reject the null of no breaks versus two but does reject the null when the 

number of breaks is one, three, or four. Therefore, we estimate a model with four breaks 

for France. For Japan neither the UDmax nor any of the WDmax tests point to a number 

of breaks which is significantly different than zero. Hence, we do not estimate a model of 

multiple structural breaks for Japan. Both the time-varying parameter model and the 

stochastic break model single out Japan as the case where parameter instability, or 

structural change is not statistically significant within our sample period.  

The results of the estimated break model (11) for the countries except Japan are 

presented in table 6. Notice that all the point estimates of the φ coefficients across the 

countries have dropped significantly compared to the estimates in table 2b, where we do 

not account for structural breaks. For instance the autoregressive coefficient of the 

forward discount was 0.939 for Germany and 0.907 for the UK when structural breaks 

where not taken into account. The corresponding estimates are 0.666 and 0.728 

respectively, when we allow for such breaks in the process.  

In table 6 we also report the estimates of the break dates with their respective 95% 

confidence intervals. Most of the break dates have been estimated quite accurately given 

that the estimates of the confidence intervals span the period of about two years11. Also, 

with the exception of the first and second break dates for Germany, the confidence 

intervals do not overlap, suggesting that the number of breaks has also been estimated 

accurately.  Finally, most of the break dates estimated for each country are very similar to 

the break dates for the rest of the countries, further attesting to the robustness of our 
                                                           
10 Critical values for these tests can be found in Bai and Perron (1998) 
11 Because there is a lagged dependent variable in the break model (11), the adjustment after the break is 
gradual and depends on the value of the autoregressive coefficient. 
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results. For all the countries, almost half of the breaks take place during the beginning of 

the sample, coinciding with the first period of high volatility captured by the time-varying 

coefficient model. This period is consistent with the change in the US central bank’s 

policy objectives, as well as the subsequent recession of 1981-82. The break dates that 

correspond to the US 1981-82 recession are identified for France, Italy, Canada, and the 

UK as 1981:03, 1981:04, 1980:10, and 1981:07 respectively. Given our definition of the 

exchange rate and covered interest parity, we can write: 

 

US
tttt iisf −=−

*         (13) 

 

where US
ti  and *

ti  represent the nominal interest rates in the US and the foreign country, 

respectively. In all the cases, the implied unconditional means of the interest rate 

differentials have changed significantly, for the duration of the regimes immediately 

following the break dates.12  

 The final question we ask is the following: What are the implications of our 

model, namely that the forward discount is not as persistent when structural breaks are 

taken into account, for the forward discount puzzle? The estimate of β  in equation (1) is 

found consistently to be biased away from its theoretical value 1. Could our partial 

structural change model explain some of this bias? In the next section we show using 

Monte Carlo simulations that this is the case indeed. Although we impose FRUH, the 

least squares point estimates of the coefficient turn out to be significantly biased 

downward. 

  

5. Monte-Carlo Simulations 

In this section we use Monte Carlo simulations in order to assess the implications of 

the presence of structural breaks in the forward discount process for FRUH. We estimate 

the “differences regression” (1) and the AR(1) specification for the forward discount with 

                                                           
12 The estimates of the unconditional mean for France, Italy, Canada and the UK, before these breaks are       
–1.207, 0.450, -0.027, and –0.433 respectively. The means implied after the structural break date are 0.725, 
1.015, 0.169, 0.007. 
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and without structural breaks in the mean of the forward discount. We report the 

performance of the tests for whether β = 1 versus the alternatives of β ≠ 1 and β < 1 in 

(1). We also report the performance of the unit root test for the autoregressive coefficient 

of the forward discount. All experiments are based on 5000 replications. 

 

5.1 Design of the Experiments 

We employ an alternative yet equivalent representation of the cointegrating system 

(9) as our data generating process. This representation is due to Phillips’ (1991) and is 

called a triangular representation. For our purposes, the general form  of the triangular 

representation for yt  is 

  ,fttct usf ++= µ        (12a) 
 
  sttt uss +=

−1        (12b) 
 
where the vector of errors ut = (uft, ust)′ = (ft - st - µc, ∆st)′ has the VAR(1) representation    

ut = Cut-1 + et where 
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Equation (12a) models the structural co-integrating relationship and (12b) is a reduced 

form relationship describing the stochastic trend in the spot rate. The VAR(1) 

representation for  ut  implies 

 
  ,1, ttfft uu ηφ +=

−

       (12c) 
 
  stftsst uu εβ +=

−1        (12d) 
 
Equation (12c) models the disequilibrium error (which equals the forward premium) as 

an AR(1) process and (12d) allows the lagged error to affect the change in the spot rate. 

Letting et = (ηt, εst)′. Note φ is the autoregressive coefficient of the forward discount and 

β is the forward discount coefficient from equation (1). In our simulations we set βs = 1 

so that UIP holds. In our monthly exchange rate data 0≈sησ .  We calibrate forward and 
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spot exchange rates using the parameter estimates from the partial structural break model 

of the forward discount reported in table 6. We also calibrate spot and forward rates 

under the assumption of no break in the mean of the forward discount using the estimates 

reported in table 2b. We estimate the differences regression (1), as well as the AR(1) 

model of the forward discount using ordinary least squares. We also report the rejection 

rates for testing that φ = 1 in the forward discount and βs = 1 in the differences regression. 

Since φ = 1 is a unit root test its rejection rate really measures the power of the 

augmented Dickey–Fuller test against the stationary alternative. Finally, in all the 

experiments, we set the sample size, T = 250 to reflect the number of observations in our 

actual data sample. 

 

5.2 Monte Carlo Results 

  Tables 7 through 11 summarize the results of the Monte Carlo simulations for 

each country. Notice that in the case of no structural breaks, both φ and βs are estimated 

correctly. The adf test has very high power and the size of the t-test is a correct 5%. The 

point estimates of βs range from 0.997 in the case of Italy, to 1.045 in the case of 

Germany. The point estimates for φ are also extremely close to their true values.  

When the data are generated under the assumption of structural breaks the results 

of the Monte Carlo are quite different. Structural breaks, which are unaccounted for, 

seem to produce two different yet interrelated results.  First, the autoregressive coefficient 

of the forward discount is estimated to be very high and the power of the adf test is 

seriously reduced, with the exception of Italy and Canada. In both of these cases though, 

the point estimates of φ are quite higher than their true values. For Germany, France and 

the UK, the power of the adf test is 55.7%, 62.3%, and 25.2 % respectively. 

 Secondly, the point estimate of βs is seriously biased downward away from its 

true value of 1. The point estimates range from 0.162 for Germany, which is the most 

severe case of bias to 0.526 in the case of Canada. Moreover, the size of the t-test for the 

null hypothesis of βs  = 1 is distorted, forcing one to reject the null hypothesis more often 

than she should. On average, at the 5% level, the two-sided t-test rejects the true null 

hypothesis about 20% of the time, while the one-sided t-test’s rejection rate is even worse 

at about 30%. 
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The results of the Monte Carlo simulations seem to justify our prior that the 

forward premium is not as persistent as it appears to be. The presence of structural breaks 

is responsible for generating I(1)-like behavior in its process, that contributes a 

considerable degree of downward bias to the point estimate of β  in equation (1). The 

median estimate of β in our experiments is not negative, as usually is when actual 

exchange rate data is estimated by least squares. Nevertheless, one would still mistakenly 

reject the null hypothesis of forward rate unbiasdeness, if one did not account for the 

presence of structural breaks in the forward discount.  

 

6. Conclusion 

 We employ two different models of the forward discount under the prior that 

structural breaks in its process could explain away the highly stylized fact of its high 

persistence. The first model is a time varying parameter model with Markov-switching 

variance that help us document the pattern of the persistence. We overwhemingly reject 

the null hypothesis of no parameter instability for all G-7 countries with the exception of 

Japan. The time varying parameter model is able to capture structural change that takes 

place in a continuing fashion. The timing of the changes suggested the possibility of 

structural breaks in the mean of the process. Thus, we proceed to use a stochastic partial 

break model developed by Bai and Perron that explicitly allows for the incorporation and 

estimation of structural breaks in the mean of a process. The stochastic break model can 

be viewed as a plausible alternative to the fractionally integrated model of the forward 

discount used by Baillie and Bollerslev (1998) and Maynard and Phillips (1998). We find 

that breaks in the mean are present, and their timing coincides, at least for the case of the 

1981-82 US recession with the types of monetary shocks reported by Eichenbaum and 

Evans (1995). A contractionary shock to the US monetary policy increases the US 

interest rates and, given our definition of the nominal exchange rate, also persistently 

decreases the level of the forward discount which under covered interest parity is equal to 

the interest rate differential of the two countries. Once these breaks are estimated, the 

forward discount’s persistence is considerably lower than previously thought.  

This finding has potentially important implications for what is known in the 

International Finance literature as the “Forward Discount Anomaly.” In the absence of a 
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time-varying risk premium, we simulate spot and forward exchange rates under the 

assumption of FRUH with and without incorporating breaks to the mean of the forward 

discount. We find that when breaks are not accounted for, the least squares’ coefficient of 

the forward discount in the “differences regression” is severely biased downward, away 

from its theoretical value of 1. Furthermore, usual one- and two-sided t-tests suffer from 

significant size distortion, forcing one to reject the null hypothesis of FRUH too often. 

The forward discount puzzle is, to a considerable degree, a statistical artifact arising from 

breaks in the mean of the forward discount. Since the median Monte Carlo estimates of 

the forward discount coefficient in the “differences regression” are not negative, as is 

usually reported when actual data is used, competing explanations of the bias may still be 

valid and worth examining in light of our results. In particular, if a time-varying foreign 

exchange rate risk premium does exist, what is its contribution to the bias, once structural 

change has been accounted for? We hope to address this and related issues in the future. 
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APPENDIX A 
 

 Time-Varying Coefficient with Markov-Switching Variance Model13 

 Letting ]|Pr[ 1 iSjSp ttij ===
−

 with i=0,1 and j=0,1 , the Kalman filter for the 

model described by equations (10) and (11) is given by: 
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where ]|[ 11| −−

Ψ≡ tttt E ββ , is the expectation of βt conditional on information up to time 

t-1; Pt|t-1 is the variance of βt|t-1; ηt-1 is the forecast error and ft|t-1 is the variance of the 

forecast error; yt ≡ ft - st, and xt ≡ ft-1 - st-1. Equations (A.1)-(A.4) are the prediction 

equations of the Kalman Filter, while equations (A.5)-(A.6) are the updating equations.    

We also need to use Hamilton’s (1989) filter which is given in the following three 

steps: 

 Step 1: Given ]|Pr[ 11 −−

Ψ= tt iS , calculate 

 ]|Pr[]|Pr[]|,Pr[ 11111 −−−=−−
Ψ===Ψ== tttjtttt iSiSSiSjS      (A.7) 

where iSS tjt =
−= 1|Pr[ ] is the transition probability 

 

Step 2: Calculate the joint density of yt, St, St-1 and collapse across all possible states to 

find the marginal density of yt: 

                                                           
13 This discussion follows Kim and Nelson (1999) “State-Space Models with Regime Switching” 



 23

 
]|,Pr[

),,|()|,,(

11

1111

−−

−−−−=

Ψ==

Ψ===Ψ=

ttt

ttttttjtt

iSjS
iSjSyfiSSyf

      (A.8) 

Then the marginal density of yt is given by: 
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Step 3: Update the joint probability of St and St-1 given yt and collapse across all possible 

values of St-1: 
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Finally, as in Kim (1994) to complete the Kalman filter we collapse ),(
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ttβ  and ),(
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across all possible values for St-1: 
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In order to get get the maximum likelihood estimates of the parameters as well as 

the filtered inferences for βt|t and Pt|t, we iterate through equations (A.1.1)-(A.1.14) for 

given initial values for i
0|0β , iP 0|0  and ]Pr[ 0 iS = . The initial values for the probability are 

given by 
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Since βt| has no unconditional expectation under the random walk specification, we have 

no choice but to make an arbitrary guess as to its initial value and then assign a very large 

variance to our guess, i.e., 00|0 =
iβ  and ∞≈

iP 0|0 . We then use the first τ observations to 

determine i
ττ

β |  and iP
ττ |  and use these values as the initial values for the maximum 

likelihood estimation. 

 The filtered inferences about βt and the confidence bands based on Pt|t are given 

by: 

 ∑
=

Ψ==

1

0
|| ]|Pr[

j

j
tttttt jS ββ                  (A.16) 

 }))(({]|Pr[ '
|||||

1

0
|

j
tt

j
tt

j
tttt

j
tt

j
tttt PjSP ββββ −−+Ψ==∑

=

             (A.17) 

The parameters of the model can be estimated by: 

 ∑
+=

−
Ψ=

T

t
ttyfl

1
1 )|(ln)(max

τ
θ

θ                  (A.18) 

Using Kim’s (1994) smoothing algorithm, we can also obtain the smoothed 

probability ]|0Pr[ TtS Ψ= . This is accomplished by iterating backward through the 

following equations (conditional on St = j and St+1 = l, where j = 0,1 and l = 0,1): 
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 Finally, we can obtain smoothed inferences about βt conditional up to Information 

T, using the smoothed probabilities given by equations (A.19)-(A.20), and iterating 

backward the following two equations: 
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Figure 1 
 Monthly Forward Discount 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Source: Datastream 
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able 1a: Sum
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ata 

 

 
Table 1b: Sum

m
ary Statistics For Exchange R

ate D
ata 

         N
ote: ρ

1  denotes the first order autocorrelation coefficient. 
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3.325
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3.241
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Table 2a: Estimates of the Differences Regression 
 

OLS: tttt sfs εβα +−+=∆
+

)(1  
 

German French Italian Canadian British Japanese 
Mark Franc Lira Dollar Pound Yen

α -0.269 0.0191 0.019 0.305 0.411 -1.031
(0.240) (0.239) (0.293) (0.099) (0.239) (0.316)

t α=0 -1.12083 0.0795 0.06485 3.08081 1.71967 -3.26266
(0.868) (0.468) (0.474) (0.001) (0.043) (0.000)

β -0.686 0.352 0.518 -1.304 -1.568 -2.680
(0.909) (0.873) (0.484) (0.506) (0.856) (0.090)

t β=1 -1.85 -0.74 -1.00 -4.55 -3.00 -40.89
(0.032) (0.229) (0.159) (0.000) (0.001) (0.000)

σ
1/2

ss 3.33 3.241 3.182 1.377 3.295 3.768

R 2 0.003 0.001 0.004 0.023 0.015 0.034  
 
Note: White heteroskedasticity-consistent standard errors in parentheses. tβ=1   denotes the two-tail 
t-statistic for H0: 1=β . p-values are in bold  parentheses. 
 
Table 2b: Estimates of the AR(1) specification of the Forward Discount 

 
OLS: tvtstfctstf +

−
−

−
+=− )11(φ  

 

 
Note: White heteroskedasticity-consistent standard errors in parentheses 

German French Italian Canadian British Japanese 
Mark Franc Lira Dollar Pound Yen

c -0.009 0.052 0.099 0.0169 0.018 -0.020
(0.005) (0.016) (0.026) (0.009) (0.010) (0.008)

φ 0.939 0.698 0.797 0.840 0.907 0.928
(0.028) (0.108) (0.062) (0.053) (0.038) (0.031)

σ
1/2

v 0.279 0.331 0.433 0.162 0.260 0.259

R 2 0.882 0.486 0.630 0.710 0.824 0.864
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Table 3a 
Maximum Likelihood Estimates of the Time-Varying Coefficient with Markov-

Switching Variance Model of the Forward Discount 
tctttctt sfsf ηµφµ +−−=−−

−−

)( 11  

     ttt v+=
−1φφ , ),0(...~ 2

vt Ndiiv σ          

       0][ =tt vE η , for all t 

     pSS tt ===
−

]1|1Pr[ 1  and qSS tt ===
−

]0|0Pr[ 1  
 

 
 Note: Asymptotic standard errors are reported in parentheses. Samples are    
adjusted for lagged variables and staring values of the Kalman filter     

 
Table 3b 

Likelihood Ratio Tests for Parameter Constancy and Markov-Switching 
Specification 

 Germany France Italy Canada UK Japan 
       

LRT for 
Ho: σ2

vt= 0 
25.866 
(0.000) 

7.278 
(0.006) 

11.824 
(0.000) 

8.275 
(0.004) 

3.755 
(0.0526) 

1.357 
(0.244) 

       
LRT for 

Ho: σ2
η0=σ2

η1 
177.582 
(0.000) 

318.352 
(0.000) 

274.695 
(0.000) 

123.245 
(0.000) 

175.793 
(0.000) 

159.452 
(0.000) 

 
Note: p-values in parentheses 

ttt SS 2
1

2
0

2 )1(
ηηη

σσσ +−=

),0(...~ 2
,ttt Ndii

η
ση

Germany France Italy Canada UK Japan
µ -0.309 0.121 0.366 0.081 0.084 -0.387

(0.043) (0.038) (0.039) (0.027) (0.047) (0.067)
σv 0.016 0.022 0.028 0.031 0.014 0.009

(0.005) (0.012) (0.015) (0.010) (0.003) (0.005)
ση0 0.033 0.056 0.079 0.044 0.047 0.045

(0.002) (0.004) (0.004) (0.002) (0.002) (0.002)
ση1 0.127 0.417 0.428 0.145 0.167 0.169

(0.008) (0.038) (0.042) (0.013) (0.013) (0.017)
q 1.000 0.966 0.988 0.980 0.993 0.992

(0.000) (0.015) (0.007) (0.011) (0.006) (0.007)
p 0.991 0.915 0.944 0.946 0.973 0.957

(0.008) (0.015) (0.031) (0.031) (0.018) (0.030)

Loglik value 343.42 181.71 172.08 332.21 313.94 309.49
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Figure 2: 
 Filtered and Smoothed Probabilities of the Time-Varying Coefficient and Markov-

Switching Variance Model of the Forward Discount 
Filtered and Smoothed Inferences about φφφφt with 95% Confidence Bands 
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Figure 3 
Time-Varying Coefficient and Markov-Switching Variance Model 

Filtered and Smoothed Probabilities of the Low Variance State 
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T
able 4 

D
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Q
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ard D

iscount
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ard D
iscount
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ard D

iscount
Q

(12)
31.315

26.966
20.670

38.654
9.525

9.223
(0.002)

(0.008)
(0.055)

(0.000)
(0.657)

(0.684)

Q
(24)

55.023
40.119

37.668
54.481

24.824
20.627

(0.000)
(0.021)

(0.037)
(0.000)

(0.415)
(0.661)

Q
(36)

62.470
49.854

46.417
64.523

31.685
25.581

(0.004)
(0.062)

(0.076)
(0.002)

(0.674)
(0.850)

Q
-stat of

square of
standardized 

G
E/U
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FR
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S
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S

U
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ard D
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Q
(12)

84.321
194.12

9.333
17.030

39.979
29.859

(0.000)
(0.000)

(0.674)
(0.148)

(0.000)
(0.003)

Q
(24)

90.540
199.68

28.453
25.977

46.945
38.781

(0.000)
(0.000)

(0.241)
(0.354)

(0.003)
(0.029)

Q
(36)

102.61
207.32

53.546
35.858

57.476
41.520

(0.000)
(0.000)

(0.030)
(0.475)

(0.013)
(0.243)

N
ote: p-values in parentheses 
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Table 5 
Structural Break Tests for the Multiple Structural Break Forward Discount Model 

 

 
 

Note: a, b, c
  denote 1%, 5%, and 10% levels of significance respectively 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Wdmax(1%) 20.510a 32.930a 17.752a 7.934a 14.446 9.017

SupFT(2|1) 31.183a 8.579 27.040a 10.486c 5.204 13.005b

SupFT(3|2) 10.550c 38.887a 7.69 19.932a 9.22 13.005b

SupFT(4|3) 12.807c 18.462a 30.293a 10.486 14.550b 13.005b

SupFT(5|4) 29.109a 6.461 7.69 8.128 14.550b 11.691c

Decision: number
of breaks 5 4 4 3 5 0
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Table 6 
Multiple Structural Break Model 

tttjtt usfcsf +−+=−
−−

)( 11φ ,       t =Tj-1+1,...,Tj  

Germany France Italy Canada UK Japan

c1 -0.020 0.2686 0.768 0.098 0.217 -
(0.019) (0.0476) (0.218) (0.018) (0.059) -

c2 -0.139 -0.7053 0.199 -0.008 0.050 -
(0.025) (0.0321) (0.056) (0.020) (0.026) -

c3 -0.082  0.4237 0.449 0.049 -0.118 -
(0.016) (0.1345) (0.104) (0.008) (0.045) -

c4 0.004 0.1209 0.191 -0.027 0.002 -
(0.008) (0.0228) (0.035) (0.007) (0.017) -

c5 0.128 -0.0954 0.027 - 0.106 -
(0.021) (0.0142) (0.012) - (0.018) -

c6 -0.048 - - - 0.028 -
(0.007) - - - (0.006) -

φ  0.666 0.4159 0.558 0.711 0.728 -
(0.052) (0.0901) (0.074) (0.043) (0.045) -

T1 77:05 78:01 77:01 77:01 77:01 -
95% C.I. 76:01-77:10 77:08-77:03 76:09-78:05 76:01-77:02 76:02-78:03 -

T2 84:08 81:03 81:04 80:10 80:06 -
95% C.I. 83:09-90:04 79:09-81:04 79:02-82:09 79:07-86:05 79:07-81:04 -

T3 89:05 83:01 82:11 95:10 81:07 -
95% C.I. 89:02-89:12 82:11-84:08 82:08-84:12 95:07-96:06 80:10-83:04 -

T4 90:11 95:09 96:04 - 84:08 -
95% C.I. 90:08-90:12 95:08-95:10 96:02-96:11 - 84:03-85:09 -

T5 94:01 - - - 92:08 -
95% C.I. 93:11-94:02 - - - 92:05-93:05 -

 
Note: Asymptotic standard errors are reported in parentheses. T1,...,T5  are the estimated break 
dates 
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Figure 4 
Break Dates Estimated by the Multiple Structural Break  Forward Discount Model 
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Table 7 
Monte Carlo Estimates of the Forward Discount and “Differences” Regressions 

Germany 
 

tftftfttct uuusf ηφµ +=++=
−1,  

stftststtt uuuss εβ +=+=
−− 11 ,  






























=








2

2

325.30
0088.0

,
0
0

iidN
st

t

ε

η
 

 
    Estimated regression: ft-st = c + φ(ft-1-st-1) + et 

T = 250         Structural Breaks    
No Structural 

Breaks   
          
  c φ ADF c φ ADF 

β=1 0.003 0.919 -2.92 -0.009 0.655 -6.251 

φ =0.666   (0.557)b    (0.995)b 
       

    Estimated regression: ∆st+1 = α + β(ft-st) + vt+1   

T = 250   Structural Breaks   
No Structural 

Breaks    
              

β=1 α β  tβ=1 α β  tβ=1 
φ =0.666 -0.012 0.162 -1.198 0.027 1.045 -0.003 

    (0.217)a   (0.055)a 

    (0.323)b   (0.050)b 
 

 

Note: 
φ

µ
−

=

1
c

c  is the unconditional mean of the forward discount. When we estimate the 

model with no structural breaks c = -0.009, the estimate from table 2b. When we estimate 
the model with structural breaks then c is set to the estimates given in table 6. We report 
the median estimates of the parameters based on 5,000 simulations. The values in 
parentheses indicate the empirical rejection frequency of nominal 5% two-sided testsa and 
one-sided testsb. 
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Table 8 
Monte Carlo Estimates of the Forward Discount and “Differences” Regressions 

France 
 

tftftfttct uuusf ηφµ +=++=
−1,  

stftststtt uuuss εβ +=+=
−− 11 ,  






























=








2

2

235.30
0214.0

,
0
0

iidN
st

t

ε

η
 

 
    Estimated regression: ft-st = c + φ(ft-1-st-1) + et 

T = 250         Structural Breaks    
No Structural 

Breaks   
          
  c φ ADF c φ ADF 

β=1 0.004 0.874 -2.991 0.052 0.409 -8.048 

φ =0.415   (0.623)b    (0.998)b 
       

    Estimated regression: ∆st+1 = α + β(ft-st) + vt+1   

T = 250   Structural Breaks   
No Structural 

Breaks    
              

β=1 α β  tβ=1 α β  tβ=1 
φ =0.415 -0.005 0.143 -2.545 -0.091 1.004 -0.032 

    (0.719)a   (0.050)a 

    (0.811)b   (0.052)b 
 

Note: 
φ

µ
−

=

1
c

c  is the unconditional mean of the forward discount. When we estimate the 

model with no structural breaks c = 0.052, the estimate from table 2b. When we estimate 
the model with structural breaks then c is set to the estimates given in table 6. We report 
the median estimates of the parameters based on 5,000 simulations. The values in 
parentheses indicate the empirical rejection frequency of nominal 5% two-sided testsa and 
one-sided testsb. 
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Table 9 

Monte Carlo Estimates of the Forward Discount and “Differences” Regressions 
Italy 

 
tftftfttct uuusf ηφµ +=++=

−1,  
stftststtt uuuss εβ +=+=

−− 11 ,  
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    Estimated regression: ft-st = c + φ(ft-1-st-1) + et 

T = 250         Structural Breaks    
No Structural 

Breaks   
          
  c φ ADF c φ ADF 

β=1 0.144 0.728 -4.191 0.101 0.547 -7.068 

φ =0.558   (0.983)b    (0.999)b 
       

    Estimated regression: ∆st+1 = α + β(ft-st) + vt+1   

T = 250   Structural Breaks   
No Structural 

Breaks    
              

β=1 α β  tβ=1 α β  tβ=1 
φ =0.558 -0.248 0.472 -1.087 -0.219 0.997 -0.033 

    (0.196)a   (0.053)a 

    (0.288)b   (0.052)b 
 
 

Note: 
φ

µ
−

=

1
c

c  is the unconditional mean of the forward discount. When we estimate the 

model with no structural breaks c = 0.099, the estimate from table 2b. When we estimate 
the model with structural breaks then c is set to the estimates given in table 6. We report 
the median estimates of the parameters based on 5,000 simulations. The values in 
parentheses indicate the empirical rejection frequency of nominal 5% two-sided testsa and 
one-sided testsb. 
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Table 10 

Monte Carlo Estimates of the Forward Discount and “Differences” Regressions 
Canada 

 
tftftfttct uuusf ηφµ +=++=

−1,  
stftststtt uuuss εβ +=+=
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    Estimated regression: ft-st = c + φ(ft-1-st-1) + et 

T = 250         Structural Breaks    
No Structural 

Breaks   
          
  c φ ADF c φ ADF 

β=1 -0.021 0.824 -3.928 0.017 0.700 -5.827 

φ =0.711   (0.946)b    (0.995)b 
       

    Estimated regression: ∆st+1 = α + β(ft-st) + vt+1   

T = 250   Structural Breaks   
No Structural 

Breaks    
              

β=1 α β  tβ=1 α β  tβ=1 
φ =0.711 0.063 0.526 -0.888 -0.062 1.001 0.018 

    (0.144)a   (0.045)a 

    (0.228)b   (0.047)b 
 
 

Note: 
φ

µ
−

=

1
c

c  is the unconditional mean of the forward discount. When we estimate the 

model with no structural breaks c = 0.0169, the estimate from table 2b. When we estimate 
the model with structural breaks then c is set to the estimates given in table 6. We report 
the median estimates of the parameters based on 5,000 simulations. The values in 
parentheses indicate the empirical rejection frequency of nominal 5% two-sided testsa and 
one-sided testsb. 
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Table 11 

Monte Carlo Estimates of the Forward Discount and Differences Regressions 
UK 

 
tftftfttct uuusf ηφµ +=++=
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    Estimated regression: ft-st = c + φ(ft-1-st-1) + et 

T = 250         Structural Breaks    
No Structural 

Breaks   
          
  c φ ADF c φ ADF 

β=1 0.017 0.897 -2.471 0.0187 0.717 -5.636 

φ =0.728   (0.252)b    (0.996)b 
       

    Estimated regression: ∆st+1 = α + β(ft-st) + vt+1   

T = 250   Structural Breaks   
No Structural 

Breaks    
              

β=1 α β  tβ=1 α β  tβ=1 
φ =0.728 -0.031 0.214 -1.157 -0.064 1.019 -0.015 

    (0.212)a   (0.048)a 

    (0.307)b   (0.046)b 
 
 

Note: 
φ

µ
−

=

1
c

c  is the unconditional mean of the forward discount. When we estimate the 

model with no structural breaks c = 0.018, the estimate from table 2b. When we estimate 
the model with structural breaks then c is set to the estimates given in table 6. We report 
the median estimates of the parameters based on 5,000 simulations. The values in 
parentheses indicate the empirical rejection frequency of nominal 5% two-sided testsa and 
one-sided testsb. 


