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Abstract

We analyze the structural determinants of two widely used measures of price

discovery between multiple markets that trade closely-related securities. Using

a structural cointegration model, we show that both the information share (IS)

and component share (CS) measures account for the relative avoidance of noise

trading and liquidity shocks, but that only the IS can provide information on

the relative informativeness of individual markets. In particular, the IS of one

market is higher if it incorporates more new information and/or impounds less

liquidity shocks. Use of the CS in conjunction with the IS can help sort out the

confounding effects of the two types of shocks. Furthermore, we find that the

IS only accounts for the immediate (one-period) responses of market prices to

the news innovation which implies that the IS estimates based on high sampling

frequencies may be distorted by transitory frictions and may miss important

price discovery dynamics.
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1 Introduction

Price discovery is the dynamic process by which market prices incorporate new infor-

mation, and is arguably one of the most important functions of financial markets. A

notable trend in financial markets is the trading of identical or closely related assets

in multiple markets. The important issues related to price discovery are determining

which market first incorporates new information about the underlying fundamental

asset, and how the efficacy of price discovery depends on trading mechanisms, market

liquidity, and the prevalence of asymmetric information.

There are two widely used measures of price discovery for multiple markets that

share a common random walk efficient price (fundamental value). Hasbrouck (1995)

focuses on the variance of the efficient price innovation, and defines one market’s

information share (IS) as the proportion of the efficient price innovation variance at-

tributable to that market. In contrast, Booth et. al. (1999), Chu et. al. (1999), and

Harris et. al. (2002), adopting the permanent-transitory decomposition technique

in Gonzalo and Granger (1995), focus on the composition of the efficient price inno-

vation and measure one market’s contribution to price discovery by the component

weight of that market in forming the efficient price innovation. Hereafter, we refer

to this measure of price discovery as component share (CS). Despite their different

focuses, both approaches use cointegration to constrain multiple market prices to

share a common efficient price, and both approaches use a reduced form vector error

correction (VEC) model for estimation purposes.

Our analysis is motivated by the recent debate and discussion about the inter-

pretation of CS and IS. As illustrated by the papers in the special issue on price

discovery of the Journal of Financial Markets (JFM) (Issue 3, 2002), there has been

substantial confusion in the literature over what the IS and CS imply for price dis-

covery measurement. The fundamental cause of this confusion is that both measures

are defined in terms of the reduced form forecasting errors of individual markets from
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an empirical VEC model. This view is emphasized by Lehmann (2002) who states

“This muddled state is unsurprising because the error correction model is a reduced

form and the role of each market in price discovery depends on the parameters of the

structural model.”

In this paper, we directly address Lehmann’s concern regarding the interpretation

of the IS and CS by proposing a structural cointegration model for the price changes

in multiple markets. Our model features two types of structural price shocks: a

permanent news innovation to the common fundamental value, and a transitory liq-

uidity/noise trading shock. We show that the reduced form VEC forecasting errors

are a mixture of these structural shocks, and this linkage allows us to analyze the

dependency of the CS and IS on how individual markets respond to informational

and non-informational shocks.

Our results show that both the information share (IS) and component share (CS)

measures account for the relative avoidance of noise trading and liquidity shocks, but

that only the IS can provide information on the relative informativeness of individual

markets. In particular, the IS of one market is higher if it incorporates more new

information and/or impounds less liquidity shocks. Use of the CS in conjunction with

the IS can help sort out the confounding effects of the two types of shocks. Further-

more, we find that the IS only accounts for the immediate (one-period) responses of

market prices to the news innovation. As a result, the IS estimates based on high

sampling frequencies may be distorted by transitory frictions and misrepresent which

market moves first in the response to new information.

The rest of the paper is organized as follows. In Section 2, we review the derivation

of the CS and IS from a reduced form cointegration model. In Section 3, we propose

a structural cointegration model for the price changes in arbitrage linked markets and

show that our model is consistent with several stylized market microstructure models

from the extant literature. We derive the structural analysis of the IS and CS in

Section 4, and we illustrate our main results with analytical examples and simulation
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exercises. Our conclusions and suggestions for future research are presented in Section

5. Some technical derivations are given in the Appendix.

2 Reduced Form Price Discovery Cointegration Model

Consider a single asset trading in two distinct markets1. Let pt = (p1,t, p2,t)0 denote

a 2 × 1 vector of (log) prices for the asset from the two markets. In a multiple-

trading environment, these prices may be the trade prices or quotes from different

trading venues. More generally, the prices may be an asset’s cash market price and

the price of its derivatives, or the observed price of an asset and its price synthetically

constructed from other financial assets. As a result, these prices are closely linked

by arbitrage. We assume each of these prices contains a random walk component,

so that pt is a nonstationary process. In time series terminology, these prices are

integrated of order 1, or I(1), and the price changes, ∆pt, are integrated of order

zero, or I(0). We assume that ∆pt has a bivariate moving average (MA) or Wold

representation2

∆pt = Ψ(L)et = et +Ψ1et−1 +Ψ2et−2 + · · · (1)

Ψ(L) =
∞X
s=0

ΨkL
k, Ψ0 = I2

where et is a 2× 1 vector satisfying E[et] = 0 and

E[ete
0
s] =

⎧⎪⎨⎪⎩ 0

Σ

if t 6= s

otherwise

The matrix polynomial Ψ(L) = Ψ(1) + (1 − L)Ψ∗(L) has the property that the

elements of {Ψk}∞k=0 are 1-summable and Ψ(L) is full rank everywhere on |z| ≤ 1.
1For simplicity, we focus on the two market case. Our analysis can be extended to the n market

case. See Yan and Zivot (2006) for details.
2We omit any deterministic terms in the Wold representation for ease of exposition.

3



Since the prices in pt are for the same underlying asset, they are not expected to

drift far apart from each other and so the difference between them should be I(0).

Formally, we assume that pt is cointegrated with known cointegrating vector β =

(1, − 1)0 so that β0pt = p1t− p2t is I(0). It follows from the Granger Representation

Theorem (Engle and Granger, 1987) that Ψ(1) has rank 1, β0Ψ(1) = 0, and there

exists a 2× 1 vector α 6= 0 such that Ψ(1)α = 0. Furthermore, pt has a vector error

correction (VEC) model representation of infinite order which can be approximated

by the finite order VEC(K − 1) model:

∆pt = α(β0pt−1 − μ) +
K−1X
k=1

Γk∆pt−k + et (2)

where μ = E(β0pt−1). The term μ in (2) captures systematic differences in the two

prices, such as the mean bid-ask spread, or the risk free return between the spot and

futures prices. The vector α contains the error correction coefficients that measure

each price’s expected speed in eliminating the price difference3. The VEC model

(2), in turn, is implied by the Kth order vector autoregressive (VAR) model for price

levels:

pt = c+
KX
k=1

Akpt−k + et

where αβ0 = −A(1) = −(I2 −
PK

k=1Ak) and Γk = −ΣKj=k+1Aj .

Applying the Beveridge-Nelson (BN) decomposition (Beveridge and Nelson, 1981)

3Some papers in the price discovery literature (e.g. Harris et. al., 1995) interpret β0pt−1 as a
lagged deviation from the asset’s equilibrium value, and α as the speed of adjustment to any deviation
from the equilibrium. This interpretation, however, may extract more information than what the
error correction model can accommodate. The I(0) requirement on the cointegrating error β0pt−1
only implies that the price difference can not drift without bound. It doesn’t identify the prices’
positions relative to the unobserved equilibrium value. For example, p1,t−1 and p2,t−1 may be either
well above or below the equilibrium and close to each other, so that β0pt−1 only measures the price
difference. The price difference β0pt−1 may be interpreted as the deviation from the equilibrium
only when one of the price variables follows a random walk. In this case, the random walk variable
defines the trend or equilibrium and consequently eliminates the ambiguity in interpreting β0pt−1.
However, this is a special case and should not be taken as a general rule.
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to Ψ(L) in (1) and iterating backward yields the levels relationship:

pt = p0 +Ψ(1)
tX

j=1

ej + st (3)

where Ψ(1) =
P∞

k=0Ψk, st = (s1,t, s2,t)
0 = Ψ∗(L)et, Ψ

∗
k = −

P∞
j=k+1Ψj , k =

0, · · · ,∞. Since the elements of {Ψk}∞k=0 are 1-summable, the elements of {Ψ∗k}∞k=0
are also 1-summable which implies that st ∼ I(0). The matrix Ψ(1) contains the

cumulative impacts of the innovation et on all future price movements, and thus

measures the long-run impact of et on prices. As shown in Hasbrouck (1995), since

β0Ψ(1) = 0 and β = (1, −1)0, the rows ofΨ(1) are identical. As a result, the long-run

impacts of an innovation et on each of the prices are identical. Denote ψ = (ψ1, ψ2)
0

as the common row vector of Ψ(1) and define the permanent innovation:

ηPt = ψ0et = ψ1e1,t + ψ2e2,t (4)

We may then rewrite (3) as the common stochastic trend representation suggested in

Stock and Watson (1988)

pt = p0 +

⎡⎢⎣1
1

⎤⎥⎦mt + st (5)

mt = mt−1 + ηPt

st = Ψ∗(L)et

Equation (5) shows that each of the cointegrated prices for the same underlying

asset is composed of an unobservable, common fundamental full-information valuemt,

a transitory pricing error si,t in market i, and a constant. The common trend, defined

as the efficient price in Hasbrouck (1995), evolves as a random walk driven by new

information on the asset’s future value, and is the driving force of the cointegrated

prices. The pricing error si,t captures any deviation of the price from its current,
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unobservable efficient price. It may arise from trading related frictions, such as the

bid-ask bounce and rounding effects, and lagged adjustment to new information.

Finally, the remaining constant reflects any nonstochastic difference between the price

and its efficient price, e.g. the average (half) bid-ask spread or the initial value. For

simplicity, in what follows assume p0 is equal to the zero vector4.

2.1 Information Share

The innovation ηPt to the common efficient price in (5) impounds new information

about the asset’s fundamental value and has a permanent impact on the price levels.

Hasbrouck (1995) proposes a measure for one market’s contribution to price discovery

based on the share of the variance of ηPt that is attributable to this market. From

(4), the variance of ηPt is ψ
0Σψ. If Σ is diagonal, i.e. the reduced form VEC errors

are uncorrelated, then market i’s information share (IS) is defined as:

ISi =
ψ2iσ

2
i

ψ0Σψ
=

ψ2iσ
2
i

ψ21σ
2
1 + ψ22σ

2
2

, i = 1, 2 (6)

where ψi is the ith element of ψ, and σ2i is the ith diagonal element in Σ. By

construction, IS1 + IS2 = 1. From (6), it is clear that a low (high) information share

for market i implies a small (large) reaction to the arrival of new information about

fundamental value.

If Σ is non-diagonal, the IS measure has the problem of attributing the covariance

terms to each market. Hasbrouck suggests to compute the Cholesky decomposition

of Σ and measure the IS using the orthogonalized innovations. Let F be a lower

triangular matrix such that FF0 = Σ. Then the IS for the ith market is

ISi =
([ψ0F]i)2

ψ0Σψ
(7)

4The common trends representation (5) is often used as the starting point for stylized models of
price discovery (e.g. Hasbrouck 1995, and Harris et. al. 2002). However, interpretation problems
immediately arise because the innovations ηPt and st may be correlated.
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where [ψ0F]i is the ith element of the row matrix ψ0F. The resulting IS depends

on the ordering of price variables. In the bivariate case, the upper (lower) bound

of the ISi is obtained by computing the Cholesky factorization with the ith price

ordered first (last). With n prices, Hasbrouck (2002) shows that one must examine

all permutations of the variables.

For empirical implementations, Hasbrouck (1995, 2003) suggests sampling at very

high frequencies to reduce the contemporaneous correlation in the reduced form resid-

uals between markets that is created by time aggregation. The hope is that sampling

at high frequencies exposes the sequential operation of markets so that the IS can ac-

curately measure which market moves first in response to new information. However,

it is well known (e.g. Andersen et. al. 2002) that sampling too frequently runs the

risk of contaminating the data with transitory microstructure noise. Empirically, how

often to sample prices to reduce residual correlation appears to be context specific.

For example, in his study of determining the relative contribution to price discovery

between the NYSE and regional exchanges, Hasbrouck used a sampling interval of

one second which produced a low contemporaneous residual correlation and a narrow

range of information shares. Tse et. al (2005) and Hendershott and Jones (2005) also

sampled at one second and found low residual correlations in their studies of price

discovery on electronic exchanges. Grammig et. al. (2005), who analyzed exchange

rates along with equity quotes for three German firms trading on the NYSE and the

XETRA, found little residual correlation when sampling at 10 seconds but substan-

tial correlation when sampling at one minute. Theissen (2002), in his study of price

discovery in floor-based and electronic exchanges using data from the German stock

market, found accurate IS measures with one minute sampling but inaccurate mea-

sures using five minute sampling. In contrast, Sapp (2002) studied price discovery

in DM-$US dealer quotes and found little difference in IS values using 30 second or

five minute sampling. Huang (2002), who studied the quote quality by ECN and

NASDQ dealers, used a one minute sampling interval which produced a substantial
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contemporaneous residual correlation and wide upper and lower bounds for the IS.

In general, if the contemporaneous residual correlation is large, it is not unusual for

the lower bound of one market’s IS to be lower than the upper bound of another

market’s IS making interpretation of the results difficult.

2.2 Component Share

Booth et. al. (1999), Chu et. al. (1999), and Harris et. al. (2002) propose using

the permanent-transitory (PT) component decomposition of Gonzalo and Granger

(1995) to measure a market’s contribution to price discovery. The Gonzalo-Granger

PT decomposition of pt has the form

pt = A1ft +A2zt (8)

where ft is the permanent component, zt is the transitory component, and A1 and

A2 are loading matrices. The components ft and zt are linear combinations of pt

such that ft ∼ I(1), zt ∼ I(0), and zt does not Granger cause ft in the long run.

In particular, Granger and Gonzalo define ft = γ0pt and A1 = β⊥(α
0
⊥β⊥)

−1, where

γ = (α0⊥β⊥)
−1α0⊥, α⊥ and β⊥ are 2× 1 vectors such that α0⊥α = 0 and β0⊥β = 0.

Since β = (1,−1)0, one choice for β⊥ is 1 = (1, 1)0 implying γ = (α0⊥1)−1α0⊥ so that

the permanent component is a weighted average of observed prices with component

weights γi = α⊥,i/(α⊥,1 + α⊥,2) for i = 1, 25. As a result, Booth et. al. (1999), Chu

et. al. (1999), and Harris et. al. (2002) suggest measuring price discovery in market

i using the component share (CS)

CSi =
α⊥,i

α⊥,1 + α⊥,2
, i = 1, 2 (9)

5 In general, β⊥ = c · 1 where c 6= 0.Therefore setting β⊥ = 1 imposes a particular normalization.
However, the choice of normalization does not matter since the normalizing constant c cancels when
forming CSi.
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From (9), it is clear that a small (large) value of CSi is directly related to a small

(large) contribution of market i to the Granger-Gonzalo permanent component of

prices ft. However, as shown by Granger and Gonzalo, the innovations to the perma-

nent component ft are generally not serially uncorrelated and so are different from

the efficient price innovations ηPt defined by (4). Therefore, the relationship between

CSi and ISi is not immediately apparent. One advantage of the CS over the IS is its

unique determination of a market’s price discovery contribution.

Baillie et. al. (2002) and De Jong (2002) show that the vector of permanent

component weights γ in the Granger-Gonzalo PT decomposition and the vector of

long-run impact coefficients ψ that make up the efficient price innovation (4) are equal

up to a scale factor. This can be seen directly from Johansen’s (1991) decomposition

Ψ(1) = β⊥(α
0
⊥Γ(1)β⊥)

−1α0⊥ = ξα0⊥ (10)

where ξ = β⊥(α
0
⊥Γ(1)β⊥)

−1 and Γ(1) = I2 −
PK−1

j=1 Γj . From (10), the permanent

innovation ηPt from (4) may also be defined as α0⊥et
6. Since a one unit increase in

ηPt has a one unit long-run impact on both prices it follows that ξ = 1 and α⊥ = ψ.

Therefore, γ = (ψ01)−1ψ. As a result, the CS measures may also be defined in terms

of the elements of ψ as

CSi =
ψi

ψ1 + ψ2
, i = 1, 2. (11)

The representation of CS in (11) shows that the two price discovery measures are

closely related and present different views of price discovery. In particular, IS is a

variance weighted version of CS when market innovations are uncorrelated.

Baillie et. al. (2002) note that since α0⊥α = 0, (9) may also be expressed in

terms of the elements of the error correction coefficient vector α. To see this, let

α = (α1, α2)
0 and α⊥ = (α⊥,1, α⊥,2)0. Then, α0⊥α = α⊥,1α1+ α⊥,2α2 = 0 implies

6This is the permanent innovation defined in the Stock and Watson (1988) common trends rep-
resentation and in the Gonzalo and Ng (2001) permanent-transitory decomposition.
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that α⊥,1 = −α⊥,2α2/α1 and so (9) may be reexpressed as

CS1 =
α2

α2 − α1
, CS2 =

−α1
α2 − α1

(12)

The representation (12) was originally derived by Schwarz and Szakmary (1994) using

informal arguments. Interestingly, (12) shows that price discovery occurs entirely in

market i if αi = 0; that is, if the contemporary price change in market i does not

respond to the lagged disequilibrium error β0pt−1 = p1t−1 − p2t−17. Using (8) and

the fact that β0A1 = 0, Booth et. al. (1999) note that β0pt−1 = αβ0A2zt−1 and

argue that the error correction coefficients measure the way in which prices adjust to

lagged differences in their transitory components. In this respect, the CS for market

1 reflects how sensitive market 2 is, relative to market 1, to lagged transitory shocks

and vice-versa.

In the two market framework, the CS may be equivalently represented in terms of

the elements of ψ, α or α⊥. The same is true for the IS. Martens (1998), Baillie et.

al. (2002), and Theissen (2002) provide formulas for the IS based on α or α⊥ and the

elements of the Cholesky factorization of the reduced form VEC(K − 1) covariance

matrix.

3 Structural Price Discovery Cointegration Model

As emphasized by Lehmann (2002), because the IS and CS measures of price discovery

are based on the residuals from a reduced from VEC model their interpretation is not

always clear. A clear interpretation of price discovery is only possible in a structural

model; i.e., in a model in which the sources of shocks are identified. In this section,

we propose a simple structural cointegration model for prices in arbitraged linked

markets that identifies permanent and transitory shocks with minimal restrictions.

7This interpretation of CSi links price discovery in market i with the concept of weak exogeneity
of prices for the cointegrating parameters in market i. See Zivot (2000) for a discussion of weak
exogeneity in error correction models.
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Our model is motivated by the structural VAR models widely used in empirical

macroeconomics (e.g. Bernanke 1986, Blanchard and Quah 1989, and King, Plosser,

Stock and Watson 1991). An excellent survey of these models, which we draw heavily

from, is given in Levtchenkova, Pagan and Robertson (1999).

We start with the following structural moving average (SMA) representation for

the price changes in multiple markets

∆pt = D(L)ηt = D0ηt +D1ηt−1 +D2ηt−2 + · · · (13)

D(L) =
∞X
k=0

DkL
k, D0 6= I2

where the elements of {Dk}∞k=0 are 1-summable and D0 is invertible. We assume

that the number of structural shocks is equal to the number of observed prices, so

that D(L) is invertible. Since pt is cointegrated, one shock is labeled permanent and

the other is labeled transitory so that ηt = (ηPt , ηTt )
0. These structural shocks are

assumed to be serially and mutually uncorrelated with diagonal covariance matrix

diag(σ2P , σ
2
T ). The matrix D0 contains the initial impacts of the structural shocks on

∆pt, and defines the contemporaneous correlation structure of ∆pt. Given the di-

chotomy into permanent and transitory shocks, the SMA model may be re-expressed

equation-by-equation as

⎛⎜⎝ ∆p1t

∆p2t

⎞⎟⎠ =

⎛⎜⎝ dP1 (L) dT1 (L)

dP2 (L) dT2 (L)

⎞⎟⎠
⎛⎜⎝ ηPt

ηTt

⎞⎟⎠
where dPi (L) and dTi (L) (i = 1, 2) are lag polynomials describing the dynamic re-

sponses to the permanent and transitory shocks, respectively.

As in (5), the permanent innovation ηPt is interpreted as new information on the

fundamental value of the underlying asset, and permanently moves the market prices.

The defining characteristic of ηPt is that it has a one-to-one long-run effect on the
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expected price levels for each asset:

lim
k→∞

∂Et [pt+k]

∂ηPt
= lim

k→∞

kX
l=0

∂Et [∆pt+l]

∂ηPt
= lim

k→∞

kX
l=0

DP
l = D

P (1) = 1 (14)

where DP
k and D

P (1) are the first column of the dynamic multiplier matrix Dk and

the long-run impact matrix D(1) that corresponds to ηPt , respectively. Equation

(14) is similar to the identifying condition for the permanent innovation used by

Gonzalo and Granger (1995) that defines the permanent innovation as having a non-

zero long-run effect of the level of variables. Economic considerations further restrict

the long-run effect to be a vector of ones, since a one unit increase in the fundamental

value of one asset eventually cause the multiple market prices for the same asset to

increase by one unit.

The transitory innovation ηTt summarizes all non-information related frictions,

such as the trading by uninformed or liquidity traders, inventory adjustments, and

temporary order imbalances. The defining characteristic of ηTt is that it has no long-

run effect on the expected price levels:

lim
k→∞

∂Et [pt+k]

∂ηTt
= lim

k→∞

kX
l=0

∂Et [∆pt+l]

∂ηTt
= lim

k→∞

kX
l=0

DT
l = D

T (1) = 0 (15)

where DT
k and D

T (1) are the second column of the dynamic multiplier matrix Dk

and the long-run impact matrix D(1) that corresponds to ηTt , respectively. Hence,

the long-run impact matrix of the structural innovations ηt has the form

D(1) =

⎡⎢⎣1 0

1 0

⎤⎥⎦ (16)
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Using (16), the BN decomposition of the SMA model in (13) is

pt = p0 +D(1)
tX

j=1

ηj + st (17)

=

⎡⎢⎣1
1

⎤⎥⎦ tX
j=1

ηPj + st

=

⎡⎢⎣1
1

⎤⎥⎦mt + st

where st = D∗(L)ηt, D
∗
k = −

P∞
j=k+1Dj , k = 0, · · · ,∞, and mt = mt−1 + ηPt .

Equation (17) shows that the SMA model implies the same common efficient price

representation for the multiple market prices as in the reduced form MA model (5),

and the permanent innovation ηPt in the structural VMA model is the same as the

efficient price innovation defined in (4). The only difference is that the transitory

pricing errors st in (17) are now driven by the structural innovations ηt. This implies

that some of the pricing errors may be related to the arrival of new information, ηPt ,

which includes, among others, the liquidity effect of information related trading and

the lagged price adjustment to new information. Equation (17) also suggests that,

although the multiple market prices share the common efficient price, the pricing

errors in diverse markets may have different temporal responses to new information.

Yan and Zivot (2006) show that the parameters of the SMA model (13) may be

uniquely identified from the parameters of the reduced form VEC model (2) using a

modification of Gonzalo and Ng’s (2001) permanent-transitory decomposition. The

permanent shock is defined as ηPt = ψ0et and the transitory shock ηTt is defined from

η̃Tt = β0et such that ηTt is orthogonal to η
P
t . This decomposition uniquely defines D0

and the remaining SMA parameters may be recovered from the relationship D(L) =

Ψ(L)D0.

We emphasize that minimal assumptions have been imposed on the SMA model
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specification (13). Only the long-run impacts of the structural innovations are spec-

ified. How the market prices respond overtime to new information and frictional

factors is left unrestricted. Therefore, the model is general enough to accommodate

various complex market microstructure effects.

3.1 Examples of Structural Models

To illustrate the SMA representation for a stylized market microstructure model,

suppose the price pi,t in market i (i = 1, 2) follows

pi,t = mt + si,t (18)

mt = mt−1 + ηPt

si,t = bP0,iη
P
t + bT0,iη

T
t

ηt = (ηPt , η
T
t )
0 ∼ i.i.d.N

⎛⎜⎝0,
⎡⎢⎣σ2P 0

0 σ2T

⎤⎥⎦
⎞⎟⎠

where ηPt is the informational innovation, η
T
t captures transitory market frictions, mt

is the efficient price common to the two markets, and si,t is the pricing error in

market i due to trading frictions. This model, which we call model 1, is similar to

the structural model used by Lehmann (2002) to illustrate various aspects of price

discovery measures. In (18), the pricing errors si,t are partially due to the frictions

by the information-related trading captured by bP0,i, and partially due to the frictions

by the non-information related trading captured by bT0,i. Since the trading direction,

hitting the offer or taking the bid, is likely to be positively correlated with the nature

of the new information in ηPt , good or bad, b
P
0,1 and bP0,2 are both expected to be

positive. Because ηTt is the non-information related innovation, it simply causes

divergence between the two market prices so that bT0,1 and bT0,2 are expected to have

opposite signs. Without loss of generality, it is assumed that bT0,1 > 0 and bT0,2 < 0.

Unlike the standard model in Glosten (1987), however, the model in (18) does not
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distinguish between public information and private information. Instead, the two

types of new information are grouped into the efficient price permanent innovation,

ηPt , and they both impact the pricing error through trading frictions. Although

a separate specification of the private and public information would allow a richer

interpretation of the model, there are several reasons for the above specification in the

price discovery analysis context. First, the main objective of price discovery studies

is to examine and compare each market’s information processing efficiency, where the

new information is a statistical construct based on a subset of market information.

The analysis is not intended to answer the question of where new information enters

the market or where informed traders might choose to trade. Furthermore, while it is

well accepted that private information enters the market when informed traders trade,

the theoretical finance literature conventionally assumes that public information will

become a part of the efficient price with no necessity of trading. In reality, however,

while the public news release itself, say the US monthly unemployment report, is

common knowledge, the exact quantitative impact of the public news on the asset’s

fundamental value may not be common knowledge immediately following the release.

It is the trading or voting process among market participants that determines or

discovers a market-wide agreed upon or “true” quantitative impact of the public news.

For example, Beaver (1968) argues that surges in trading activity following public

releases of information reflect “a lack of consensus regarding the price”. Therefore,

it is not unreasonable to allow public information to generate trading frictions.

The representation for ∆pi,t (i = 1, 2) from (18) is

∆pi,t = ∆mt +∆si,t

= (1 + bP0,i)η
P
t + bT0,iη

T
t − bP0,iη

P
t−1 − bT0,iη

T
t−1
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which implies a SMA representation of the form (13) with

D0 =

⎛⎜⎝ 1 + bP0,1 bT0,1

1 + bP0,2 bT0,2

⎞⎟⎠ ,D1 =

⎛⎜⎝ −bP0,1 −bT0,1
−bP0,2 −bT0,2

⎞⎟⎠
and Dk = 0 for k > 1. Note that D (1) = D0 +D1 satisfies the long-run restriction

specified by (16). Also, if bP0,i > 0 then the initial impact of news is greater than the

long-run impact.

As another example, consider an asymmetric structural model in which market

1 is a dominant market, and market 2 is a satellite market trading at the stale

(lagged efficient) price. We modify the stylized model (18) to account for the lead-lag

relationship between the two markets as follows:

p1,t = mt + s1,t (19)

p2,t = mt−1 + s2,t

mt = mt−1 + ηPt

si,t = bP0,iη
P
t + bT0,iη

T
t , i = 1, 2

This model, which we call model 2, is similar to one used in Hasbrouck (1995). The

price in Market 1 is based on the current efficient price, whereas the price in market 2

is based on the one-period lagged or stale efficient price. Straightforward calculations

give the SMA representation with

D0 =

⎛⎜⎝ 1 + bP0,1 bT0,1

bP0,2 bT0,2

⎞⎟⎠ ,D1 =

⎛⎜⎝ −bP0,1 −bT0,1
1− bP0,2 −bT0,2

⎞⎟⎠
and D(1) = D0 + D1 given by (16). The price response of market 1 to the infor-

mational innovation ηPt is 1 + bP0,1 in period t, and settles to its permanent one unit

change in period t + 1. The price response of market 2 to ηPt is b
P
0,2 at time t, and
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catches up to the permanent one unit change afterwards. The price responses of the

two markets to the frictional innovation ηTt are b
T
0,1 and bT0,2 at period t, and 0 at

period t+ 1, respectively.

As a final example model with more complicated dynamics, which we call model

3, consider a partial price adjustment model similar to that used in Amihud and

Mendelson (1987) and Hasbrouck and Ho (1987):

pit = pit−1 + δi(mt − pit−1) + bT0,iη
T
t (20)

mt = mt−1 + ηPt

0 ≤ δi ≤ 2

Solving for ∆pit gives

∆pit = [1− (1− δi)L]
−1δiη

P
t + [1− (1− δi)L]

−1(1− L)bT0,iη
T
t

= dPi (L)η
P
t + dTi (L)η

T
t

where dPi (L) = [1 − (1 − δi)L]
−1δi and dTi (L) = [1 − (1 − δi)L]

−1(1 − L)bT0,i. The

SMA representation (13) is determined from the appropriate elements of the lag

polynomials dPi (L) and dTi (L). In particular, the initial impact and long-run impact

matrices are given by

D0 =

⎛⎜⎝ dP1 (0) dT1 (0)

dP2 (0) dT1 (0)

⎞⎟⎠ =

⎛⎜⎝ δ1 bT0,1

δ2 bT0,2

⎞⎟⎠
D(1) =

⎛⎜⎝ dP1 (1) dT1 (1)

dP2 (1) dT1 (1)

⎞⎟⎠ =

⎛⎜⎝ 1 0

1 0

⎞⎟⎠
Amihud and Mendelson (1987) used (20) with bT0,i = 1 to model the dynamics of

price adjustment to fundamental value for a single security. Hasbrouck and Ho (1987)
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used this model with bT0,i = 0 to explain positive autocorrelations in stock returns. In

the price discovery context, δi captures the speed of price discovery or information

processing. Following a one unit change to the efficient price, in each period market

i0s price will move toward, or discover, the new efficient price at rate of δi. A value of

δi closer to one implies a more efficient price discovery process. If δi = 1 and ηTt = 0,

then new information is immediately incorporated and the market price will be equal

to the efficient price. If δi > 1 then overshooting of traders to new information occurs.

4 Structural Interpretations of the IS and CS

Price discovery measures are supposed to distinguish which market prices incorpo-

rate new information regarding fundamental value more quickly and efficiently. For

example, Hasbrouck (1995) interprets the IS as measuring “who moves first in the

process of price adjustment” and gives some simple examples in which the IS ac-

curately reflects this interpretation. More recently, Baillie et. al (2002), Lehmann

(2002) and Hasbrouck (2002) construct simple microstructure models with various

price discovery lead-lag structures and provide a comparative analysis of the IS and

CS. In some examples, the IS and CS give similar results and in other examples they

differ considerably. However, the question of what the IS and CS actually measure in

a structural dynamic model is complicated by the fact that these measures are defined

in terms of the reduced form VEC innovations. Generally, reduced form innovations

are best interpreted as forecasting errors, and are a mixture of various underlying

structural innovations which may include new information (e.g. the efficient price

innovation) and non-information related frictions (e.g. temporary order imbalances).

Forecasting errors by themselves do not have clear structural interpretations except

in some special circumstances. Therefore, to examine what is actually measured by

the IS and CS and to provide a clear linkage between them, a structural analysis of

the two measures in terms of the underlying structural parameters and innovations
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is necessary.

We give a structural interpretation of the IS and CS using the structural cointe-

gration model described in the previous section. From (1) and (13), the reduced form

forecasting errors, et, are related to the structural innovations, ηt, via the relation

et = D0ηt =

⎛⎜⎝ dP0,1 dT0,1

dP0,2 dT0,2

⎞⎟⎠
⎛⎜⎝ ηPt

ηTt

⎞⎟⎠ (21)

whereD0 is the structural initial impact matrix. Equation by equation, (21) becomes

e1,t = dP0,1η
P
t + dT0,1η

T
t (22)

e2,t = dP0,2η
P
t + dT0,2η

T
t

In (22), each of the forecasting errors can be attributed to the unobservable infor-

mational innovation ηPt and frictional innovation ηTt . The parameters d
P
0,i and dT0,i

(i = 1, 2) are the contemporaneous responses of pi,t to the informational and frictional

innovations, respectively.

Given that D0 is invertible, the structural errors may be expressed in terms of

the reduced form errors via ηt = D
−1
0 et. Straightforward algebra then gives

ηPt =
dT0,2
∆

e1,t −
dT0,1
∆

e2,t (23)

ηTt = −
dP0,2
∆

e1,t +
dP0,1
∆

e2,t

where ∆ = |D0| = dP0,1d
T
0,2 − dT0,1d

P
0,2. Since the permanent innovation, ηPt , in the

SMA model (13) is the same as the efficient price innovation, ηPt = ψ1e1,t + ψ2e2,t,

defined from the reduced form common trend model (4), the parameters ψ1 and ψ2

are linked to the initial impact structural parameters in D0 through

ψ1 =
dT0,2
∆

, ψ2 = −
dT0,1
∆

(24)

19



Another way to derive (24) is to first note thatD(L) = Ψ(L)D0 gives the relationship

between the SMA polynomial matrix D(L) from (13) and the reduced form MA

polynomial matrix Ψ(L) from (1). It follows that

D(1) = [1 : 0] = Ψ(1)D0 = 1ψ
0D0

Therefore, the elements of ψ may be expressed in terms of the elements ofD0 through

the relation D(1)D−10 = 1ψ0. Straightforward algebra confirms (24).

While ψ1 and ψ2 are weights on the respective market forecasting errors used to

define the efficient price innovation in (4) and used in the IS and CS to measure each

market’s contribution to discover new information, equation (24) reveals that they

are, in fact, proportional to the markets’ contemporaneous responses to the structural

frictional innovation. This seemingly paradoxical result can be explained by the

mixture nature of the forecasting errors (i.e., they contain both informational and

frictional innovations) and the fact that the long-run structural impact parameters

in D(1) are normalized to unity by assumption. When equation (4) extracts the

permanent innovation ηPt from the reduced form forecasting errors et, the transitory

innovation ηTt must be purged. It can be shown that it is the requirement to remove

the frictional innovation that leads to the result in (24).

4.1 Component Share

We are now ready to consider the structural interpretation of the CS. Using (24), the

structural representation of the CS for markets 1 and 2 is

CS1 =
dT0,2

dT0,2 − dT0,1
, CS2 =

−dT0,1
dT0,2 − dT0,1

(25)
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provided dT0,2 6= dT0,1
8. Surprisingly, (25) shows that the CS only involves the struc-

tural parameters governing the price responses to the frictional innovation. Instead of

measuring the relative strength of how a given market price responds to new informa-

tion9, the CS measures the relative response to contemporaneous transitory frictions.

In particular, CS1 will be higher than CS2 if market 2 responds more strongly to the

transitory shock than market 1. Moreover, it follows from (25) that CS1 = 0 only if

dT0,2 = 0 and vice-versa. The structural representation of the CS in (25) is similar to

reduced form representation (12) based on the error correction coefficients. In fact,

(12) and (25) imply that the error correction coefficients αi are proportional to the

contemporaneous transitory impact parameters dT0,i. However, the interpretation is

slightly different. In the reduced form representation (12), CS1 measures the relative

lagged response of market 2 to the Granger-Gonzalo transitory components of the

disequilibrium error β0pt.

To illustrate the structural representation of the CS, consider the three stylized

microstructure models presented in subsection 3.1. Since the initial impacts of the

transitory shocks are specified in the same way across the three models, application

of (25) gives

CS1 =
bT0,2

bT0,2 − bT0,1
, CS2 =

−bT0,1
bT0,2 − bT0,1

(26)

for all three models. As a further illustration, Table 1 gives two parameterizations

of model 1 given by (18). The first row of the table gives the SMA representation

of (18) with bP0,1 = bP0,2 = 0, bT0,1 = 0 and bT0,2 = ε 6= 0. In this case, both markets

fully incorporate the impact of new information when it arrives. Market 1 does not

respond to the transitory shock at all and its price is equal to the efficient price,

8Notice that the CS is not defined if dT0,2 = dT0,1. In this case, (24) shows that ψ
01 = ψ1+ψ2 = 0 so

that ψ = α⊥ is orthogonal to 1. Since β = (1,−1)0 is also orthogonal to 1, it follows that α0⊥β⊥ = 0
which implies that there is no common permanent component in the vector of prices. In other words,
β = (1,−1)0 cannot be a cointegrating vector if dT0,2 = dT0,1. Also, if both markets react in the same
way to the permanent and transitory shocks, then D0 is not invertible and these shocks cannot be
separately identified from the data.

9Lehmann (2002) reaches the same conclusion based on the observation that the CS only involves
the long-run impacts of the reduced form innovations on the prices.
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whereas ε captures the contemporaneous impact of the transitory shock on market

2. From (26), we see that CS1 = 1 and CS2 = 0. This result holds even if ε is

arbitrarily close to zero. The second row of Table 1 gives the SMA representation

with bP0,1 = ε − 1, bP0,2 = 0, and bT0,1 = −bT0,2 = δ 6= 0. In this case, market 1

only incorporates the fraction ε of the permanent shock in the initial period whereas

market 2 fully incorporates the shock. Additionally, both markets respond equally (in

absolute value) to the transitory shock. Using (26), it follows that CS1 =CS2 = 0.5

regardless of the value of ε. These two examples illustrate situations in which the CS

may give highly misleading information regarding the price discovery efficiency of a

market.

4.2 Information Share

Now consider the structural interpretation of the IS. A full structural analysis of

the IS is complicated by covariance structure of the reduced form forecasting errors.

When the reduced form innovations, et, are uncorrelated, the IS is supposed to give

unambiguous results. This special case also allows for a clear structural interpretation

of the IS using the structural cointegration model.

The relationship between the reduced form innovations and the structural inno-

vations is given in (22). Since ηPt and ηTt are uncorrelated by assumption,

var(e1t) =
¡
dP0,1

¢2
σ2P + (d

T
0,1)

2σ2T

var(e2t) =
¡
dP0,2

¢2
σ2P + (d

T
0,2)

2σ2T

cov(e1t, e2t) = dP0,1d
P
0,2σ

2
p + dT0,1d

T
0,2σ

2
T

There are three cases in which cov(e1t, e2t) = 0 and an unambiguous structural in-

terpretation of IS can be made.

The first case occurs when dP0,2 = dT0,1 = 0 and dP0,1d
T
0,2 6= 0 so that e1t = dP0,1η

P
t

and e2t = dT0,2η
T
t . Here, market 1 only responds contemporaneously to the permanent
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shock and market 2 only responds to the transitory shock. This case has the structure

of the stale price model (19). Using (6) and (24), it follows that IS1 = 1 so that the IS

correctly captures “who moves first” with respect to new information. Since dT0,1 = 0

it follows from (25) that CS1 = 1 and so the IS and CS give the same results. The

second case in which cov(e1t, e2t) = 0 occurs is when dP0,1 = dT0,2 = 0 and d
P
0,2d

T
0,1 6= 0,

so that only market 2 responds contemporaneously to the permanent shock. Here,

IS2 = CS2 = 1 and these measures again correctly capture “who moves first”. These

two cases correspond to Hasbrouck’s explanation that sampling at high frequencies

exposes the sequential operation of markets so that the IS can accurately measure

which market moves first in response to new information

The third case in which cov(e1t, e2t) = 0 occurs is when

σ2T
σ2P

=
dP0,1d

P
0,2

−dT0,1dT0,2
(27)

and all elements of D0 are nonzero such that |D0| 6= 0. Using (27), (24) and (6), it

can be shown (see Appendix) that

IS1 =
dP0,1d

T
0,2

∆
, IS2 =

−dT0,1dP0,2
∆

(28)

where ∆ = dP0,1d
T
0,2 − dT0,1d

P
0,2. In this case, the structural representation of the IS

consists of contemporaneous responses to both permanent and transitory shocks.

This result is in contrast to Hasbrouck’s claim that the IS effectively ignores transient

price disturbances (Hasbrouck 1995, page 1184). The expressions for the IS in (28)

reduce to the expressions for the CS in (25) if dP1,0 = dP2,0. In this case, both the IS

and CS only depend on the contemporaneous impacts of the transitory shocks.

Compared with the structural representation of the CS in (25), the IS represen-

tation with uncorrelated residuals is more appropriate for measuring price discovery

in that the IS for one market contains that market’s response to new information.
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However, the presence of the frictional innovation’s contemporaneous impact in (28)

implies that the IS cannot always be interpreted without ambiguity. Specifically, a

high IS value for one market due to the market’s strong response to new information

cannot be distinguished from a high IS value due to another market’s strong response

to frictions. That is, a high value for IS1 can be caused by a high value for dP0,1, a

high value for dT0,2, or high values for both parameters. Hence, even in the presence

of uncorrelated reduced form errors the IS, by itself, cannot always be interpreted

without ambiguity. Additional information from the CS, however, may help to re-

move some of the ambiguity associated with the IS. Because the CS purely measures

one market’s response to transitory frictions relative to another market, a high IS

accompanied with a low CS provides some evidence that a market has a relatively

strong response to the informational innovation. A high IS together with a high CS

would suggest otherwise.

Table 2 gives the IS values for the three stylized microstructure models presented

in subsection 3.1 under the assumption that the reduced form errors are uncorrelated

based on (27). In general, the IS cannot be interpreted without ambiguity for the

three models. For example, in the stale price model (19), IS1 could be small if

|bT0,1| is very large relative to |bT0,2|. This situation can be uncovered by looking at

|CS1/CS2| = |bT0,2/bT0,1|. Similarly, in the partial adjustment model (20), the market

with the most efficient price discovery is the one in which δi is closest to 1. However,

the IS measures are confounded by the transitory impact parameters. As with the

stale price model, the relative magnitude of the transitory impact parameters can be

measured by the ratio of the CS measures.

As a final illustration of the structural interpretation of the IS, consider the pa-

rameterizations of the stylized model (18) given in Table 1 under the zero covariance

restriction (27). For the first parameterization, since the initial impacts to the per-

manent shocks are the same the IS values are the same as the CS values and attribute

all price discovery to the first market. For the second parameterization, IS1 = ε
1+ε
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and IS2 = 1
1+ε . If ε ≈ 0 then market 1 does not have an immediate impact from the

permanent shock and IS1 ≈ 0 and IS2 ≈ 1. In contrast, if ε ≈ 1 then market 1 and

market 2 react in the same way to the permanent shocks and IS1 ≈IS2 ≈ 0.5.

4.3 Simulation Example

To illustrate the empirical relevance of the analytical results for the CS and IS in

(25) and (28), we compare the estimated CS and IS to their true analytical values

using simulated data from two parameterizations of the stylized partial adjustment

microstructure model (20). For the first parameterization, we set δ1 = 0.8, δ2 = 0.2,

bT0,1 = 0.5 and bT0,2 = −0.5. Market 1 has a greater speed of price discovery than

market 2, and both markets respond equally, in absolute value, to the transitory

shocks. Using (27) with σ2P = 1 and σ2T = 0.64 removes the correlation between

the reduced form residuals. From (25) and (28), the analytic values for the CS

and IS for market 1 are CS1 = 0.5 and IS1 = 0.8, respectively. From (24), the

analytic value for ψ = α⊥ is (1, 1)0 which implies that α = (α1,−α1)0. For the

second parameterization, we set δ1 = 0.8, δ2 = 0.2, bT0,1 = 0.9, b
T
0,2 = −0.1, σ2P = 1

and σ2T = 1.778. Here, market 1 responds more strongly to the contemporaneous

transitory shock than market 2. The corresponding values for the CS and IS for

market 1 are CS1 = 0.1 and IS1 = 0.308, respectively, and ψ = (0.385, 3.462)0. Here,

the low values of CS1 and IS1 indicate that market 1 responds more strongly to the

contemporaneous transitory shock than market 2 and not that market 2 responds

more strongly to the contemporaneous permanent shock.

Based on the specified parameters, we generate 1000 artificial samples of size 100,

250, 500, 750, 1000, 5000 and 10000 observations from the bivariate price system

(20) assuming normally distributed errors. To mimic what a researcher would do

in practice, we fit the reduced form VEC(K − 1) model (2) using ordinary least

squares with the lag order of the system determined by minimizing the Bayesian

Information Criterion (BIC). We then estimate the CS from (11) and the IS from
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(7) using the parameters of the fitted VEC(K − 1) model. To estimate Ψ(1), we use

the Johansen factorization (10) and the estimate of ψ is taken to be the common

row of the estimate of Ψ(1). To estimate α⊥ and β⊥ up to a scale factor, we use the

normalized eigenvectors associated with the matrices αα0 and ββ0, respectively.

The results of the experiments are summarized in Tables 3 - 5. For each experi-

ment, the tables report estimates (averaged over the 1000 simulations) of some of the

VEC(K−1) parameters (α1, α2, K− 1, ψ1, ψ2, ρ = cov(e1t, e2t)) as well as the price

discovery measures for market 1 (ISL,1, ISU,1, and CS1) for various sample sizes. The

results in Tables 3 and 4 show that the IS and CS are very accurately estimated for

samples larger than 500 observations. For small sample sizes, the IS and CS tend

to be underestimated with high variability across the simulations. Table 5 reports

the results from an experiment in which 500 observations are simulated from the

second parameterization of the partial adjustment model but the VEC(K−1) model

(2) is estimated using data sampled at every mth observation for m = 1, 2, . . . , 5.

This experiment is designed to illustrate the impact of high frequency transitory mi-

crostructure effects on the IS and CS when these measures are estimated using data

sampled at different frequencies. At coarse sampling frequencies (e.g., m = 5) there

are severe biases in the VEC(K−1) parameter estimates, and the estimated residual

correlation is large and positive. As a result, ISL,1 is close to zero and ISU,1 is close

to one so that these estimates are not informative about price discovery. Interest-

ingly, the CS estimates are not as badly biased as the IS estimates. As the sampling

frequency approaches the true frequency (m = 1) the VEC(K − 1) estimates become

more accurate and the estimated residual correlation approaches zero. However, the

IS estimates are still influenced by the contemporaneous transitory shock. The low

values of IS1 and CS1 indicate that market 1 responds more strongly to the con-

temporaneous transitory shock than market 2 and not that market 2 responds more

strongly to the contemporaneous permanent shock.
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5 Conclusions

Using a structural cointegration model, we investigate the structural determinants

of the information share and the component share - two widely used price discovery

measures. We find that the two measures alone cannot distinguish the price discov-

ery dynamics between markets. In particular, the component share does not reflect

a market’s price responses to new information at all, and the information share can

not be interpreted unambiguously even when the cross-market innovations are un-

correlated. We show how the CS and IS may be used together to disentangle the

impacts of permanent and transitory shocks. In addition, we show that the CS and

IS are essentially static measures since they only account for contemporaneous price

responses to the underlying structural innovations.

In a two market framework, our structural cointegration model can be used to

define unambiguous measures of price discovery that capture the full dynamic process

of how new information impacts prices. This is possible because the underlying

structural shocks may be uniquely identified using a modification of the permanent-

transitory decomposition of Gonzalo and Ng (2001). These new dynamic measures

of price discovery are described and analyzed in detail in Yan and Zivot (2006).
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Appendix

From (22), it follows that

var(e1t) = σ21 = (d
P
0,1)

2σ2P + (d
T
0,1)

2σ2T (29)

and

cov(e1,t, e2,t) = dP0,1d
P
0,2σ

2
P + dT0,1d

T
0,2σ

2
T (30)

Assuming all elements ofD0 are nonzero and |D0| 6= 0, the restriction cov(e1,t, e2,t) =

0 implies the result in (27)
σ2T
σ2P

=
dP0,1d

P
0,2

−dT0,1dT0,2

With uncorrelated reduced form VEC errors, the IS of market 1 is given by

IS1 =
ψ21σ

2
1

var(ηPt )
(31)

Substituting (24) and (29) into (31) yields

IS1 =
(dT0,2)

2

∆2
×
(dP0,1)

2σ2P + (d
T
0,1)

2σ2T
σ2P

(32)

=
(dT0,2)

2

∆2

∙
(dP0,1)

2 + (dT0,1)
2σ

2
T

σ2P

¸
=

(dT0,2)
2

∆2

"
(dP0,1)

2 + (dT0,1)
2
dP0,1d

P
0,2

−dT0,1dT0,2

#
=

1

∆2
£
(dP0,1d

T
0,2)

2 − dT0,2d
T
0,1d

P
0,1d

P
0,2

¤
=

dP0,1d
T
0,2

∆2
£
dP0,1d

T
0,2 − dT0,1d

P
0,2

¤
=

dP0,1d
T
0,2

∆

which verifies the result in (28). The derivation in (32) from the second to third

line involves a substitution from (27), while the result in the last line is based on

28



the definition of ∆, the determinant of the D0 matrix. Because the ISs of the two

markets are normalized to sum to 1,

IS2 = 1− IS1 (33)

= 1−
dP0,1d

T
0,2

∆

= −
dP0,2d

T
0,1

∆
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Table 1: CS and IS from Stylized Structural Models

This table reports the analytical results of the information share (IS) and
component share (CS) based on two parameterizations of the following 2-market
model:

pi,t = mt + si,t

mt = mt−1 + ηPt

si,t = bP0,iη
P
t + bT0,iη

T
t

where the structural errors ηt = (η
P
t , η

T
t ) are normally distributed with zero means,

diagonal covariance matrix diag(σ2P , σ
2
T ), and are mutually uncorrelated at all

leads and lags. D0 and D1 correspond to the price responses to innovations ηt at
time t (contemporaneous) and t+ 1 (one period later). CSi and ISi are the CS and
IS for market i respectively. The first row of the table is based on bP0,1 = bP0,2 = 0,

bT0,1 = 0 and bT0,2 = ε 6= 0. The second row is based on bP0,1 = ε− 1, bP0,2 = 0, and
bT0,1 = −bT0,2 = δ 6= 0. The IS values are based on the zero covariance restriction on
the reduced form errors.

D0 D1 CS1 CS2 IS1 IS2µ
1 0
1 ε

¶ µ
0 0
0 −ε

¶
1 0 1 0

µ
ε δ
1 −δ

¶ µ
1− ε −δ
0 δ

¶
0.5 0.5 ε

1+ε
1
1+ε

Table 2: IS from Stylized Structural Models

This table reports the analytical results of the information share (IS) based on the
three stylized microstructure models presented in subsection 3.1 under the zero
covariance restriction (27).

Model IS1 IS2 ∆

1 ∆−1(1 + bP0,1)b
T
0,2 −∆−1(1 + bP0,2)b

T
0,1 (1 + bP0,1)b

T
0,2 − (1 + bP0,2)b

T
0,1

2 ∆−1(1 + bP0,1)b
T
0,2 −∆−1bP0,2bT0,1 (1 + bP0,1)b

T
0,2 − bP0,2b

T
0,1

3 ∆−1δ1bT0,2 −∆−1δ2bT0,1 δ1b
T
0,2 − δ2b

T
0,1
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Table 3: CS and IS Estimates from Simulated Prices

This table reports the estimates of the information share (IS) and component share (CS)
from the price data simulated from the following partial adjustment model:

pi,t = pi,t−1 + δi(mt − pi,t−1) + bT0,iη
T
t

mt = mt−1 + ηPt

where the structural errors ηt = (η
P
t , η

T
t )
0 are normally distributed with zero means, and

diagonal covariance matrix diag(σ2P , σ
2
T ), and are mutually uncorrelated at all leads and

lags. The simulation parameterization is δ1 = 0.8, δ2 = 0.2, bT0,1 = 0.5, b
T
0,2 = −0.5, σ2P = 1

and σ2T = 0.64. For each sample, the VEC model (2) is fitted with the BIC optimal lag
length and the CS and IS values are computed using (11) and (7). The numbers in each
column represent averages over the simulations with Monte Carlo standard deviations in
parentheses. Total simulations = 1000.

Sample Size
True
Value

100 250 500 750 1000 5000 10000

α1 -0.196 -0.177 -0.167 -0.165 -0.163 -0.161 -0.161
(0.077) (0.045) (0.031) (0.025) (0.022) (0.010) (0.007)

α2 0.161 0.160 0.159 0.161 0.160 0.160 0.160
(0.038) (0.022) (0.015) (0.012) (0.011) (0.005) (0.003)

K − 1 1.001 1 1 1 1 1 1
(0.032) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ψ1 1 0.929 0.959 0.982 0.992 0.990 0.996 0.998
(0.328) (0.204) (0.153) (0.123) (0.106) (0.050) (0.035)

ψ2 1 1.050 1.028 1.016 1.005 1.003 1.003 1.002
(0.302) (0.185) (0.131) (0.108) (0.091) (0.041) (0.029)

ρ 0 -0.002 0.002 0.002 0.000 -0.000 0.000 0.000
(0.105) (0.063) (0.047) (0.037) (0.032) (0.014) (0.010)

ISL,1 0.800 0.672 0.736 0.762 0.777 0.779 0.792 0.795
(0.178) (0.107) (0.076) (0.061) (0.051) (0.024) (0.016)

ISU,1 0.800 0.742 0.777 0.793 0.800 0.800 0.801 0.801
(0.167) (0.102) (0.072) (0.060) (0.050) (0.023) (0.016)

CS1 0.500 0.465 0.481 0.491 0.497 0.496 0.498 0.499
(0.116) (0.072) (0.053) (0.043) (0.037) (0.018) (0.012)
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Table 4: CS and IS Estimates from Simulated Prices

This table reports the estimates of the information share (IS) and component share (CS)
from the price data simulated from the following partial adjustment model:

pi,t = pi,t−1 + δi(mt − pi,t−1) + bT0,iη
T
t

mt = mt−1 + ηPt

where the structural errors ηt = (η
P
t , η

T
t )
0 are normally distributed with zero means, and

diagonal covariance matrix diag(σ2P , σ
2
T ), and are mutually uncorrelated at all leads and

lags. The simulation parameterization is δ1 = 0.8, δ2 = 0.2, bT0,1 = 0.9, b
T
0,2 = −0.1, σ2P = 1

and σ2T = 1.778. For each sample, the VEC model (2) is fitted with the BIC optimal lag
length and the CS and IS values are computed using (11) and (7). The numbers in each
column represent averages of the estimates over the simulations with Monte Carlo standard
deviations in parentheses. Total simulations = 1000.

Sample Size
True
Value

100 250 500 750 1000 5000 10000

α1 -0.583 -0.568 -0.558 -0.557 -0.555 -0.555 -0.554
(0.112) (0.069) (0.047) (0.039) (0.033) (0.015) (0.010)

α2 0.058 0.059 0.060 0.061 0.060 0.061 0.061
(0.019) (0.011) (0.008) (0.006) (0.006) (0.003) (0.002)

K − 1 1.003 1 1 1 1 1 1
(0.054) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ψ1 0.385 0.353 0.365 0.377 0.381 0.380 0.383 0.383
(0.162) (0.099) (0.075) (0.060) (0.051) (0.024) (0.017)

ψ2 3.462 3.466 3.451 3.462 3.462 3.448 3.458 3.460
(0.985) (0.605) (0.433) (0.351) (0.293) (0.132) (0.096)

ρ 0 -0.015 -0.006 -0.003 -0.004 -0.004 -0.001 -0.000
(0.101) (0.063) (0.044) (0.037) (0.032) (0.014) (0.010)

ISL,1 0.308 0.238 0.263 0.281 0.289 0.291 0.300 0.303
(0.141) (0.091) (0.068) (0.057) (0.048) (0.023) (0.015)

ISU,1 0.308 0.304 0.308 0.313 0.316 0.315 0.311 0.310
(0.153) (0.095) (0.069) (0.057) (0.049) (0.022) (0.015)

CS1 0.1 0.092 0.096 0.098 0.099 0.099 0.010 0.010
(0.032) (0.019) (0.014) (0.011) (0.010) (0.005) (0.003)
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Table 5: CS and IS Estimates from Simulated Prices Sampled at Different
Frequencies

This table reports the estimates of the information share (IS) and component share (CS)
from the price data simulated from the following partial adjustment model:

pi,t = pi,t−1 + δi(mt − pi,t−1) + bT0,iη
T
t

mt = mt−1 + ηPt

where the structural errors ηt = (η
P
t , η

T
t )
0 are normally distributed with zero means, and

diagonal covariance matrix diag(σ2P , σ
2
T ), and are mutually uncorrelated at all leads and

lags. The simulation parameterization is δ1 = 0.8, δ2 = 0.2, bT0,1 = 0.9, b
T
0,2 = −0.1, σ2P = 1

and σ2T = 1.778. For each sample, the VEC model is fitted to data sampled at increments
m = 1, 2, .., 5 with the BIC optimal lag length and the CS and IS values are computed using
(11) and (7). Then numbers in each column represent averages of the estimates over the
simulations with Monte Carlo standard deviations in parentheses. Total simulations = 1000.

Sampling Increment, m
True
Value

1 2 3 4 5

α1 -0.558 -0.719 -0.761 -0.777 -0.753
(0.047) (0.093) (0.139) (0.188) (0.232)

α2 0.060 0.091 0.116 0.143 0.177
(0.008) (0.025) (0.048) (0.076) (0.113)

K − 1 1 1 1.003 1.002 1.001
(0.000) (0.000) (0.055) (0.045) (0.032)

ψ1 0.385 0.377 0.315 0.296 0.299 0.323
(0.075) (0.102) (0.135) (0.171) (0.214)

ψ2 3.462 3.462 2.453 1.927 1.600 1.363
(0.433) (0.358) (0.378) (0.387) (0.431)

ρ 0 -0.003 0.441 0.625 0.717 0.765
(0.044) (0.051) (0.048) (0.045) (0.043)

ISL,1 0.308 0.281 0.120 0.078 0.065 0.068
(0.068) (0.060) (0.060) (0.060) (0.065)

ISU,1 0.308 0.313 0.515 0.648 0.723 0.780
(0.069) (0.098) (0.109) (0.114) (0.121)

CS1 0.100 0.098 0.114 0.137 0.166 0.211
(0.014) (0.036) (0.065) (0.100) (0.144)
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