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Abstract 

We use realized volatilities based on after hours high frequency returns to predict next day 

volatility. We extend GARCH and long-memory forecasting models to include additional 

information: the whole night, the preopen, the postclose realized variance, and the overnight 

squared return. For four NASDAQ stocks ( MSFT, AMGN, CSCO, and YHOO)  we find that the 

inclusion of the preopen variance can improve the out-of-sample forecastability of the next day 

conditional day volatility. Additionally, we find that the postclose variance and the overnight 

squared return do not provide any predictive power for the next day conditional volatility. Our 

findings support the results of prior studies that traders trade for non-information reasons in the 

postclose period and trade for information reasons in the preopen period. 
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Predicting Stock Volatility Using After-Hours Information 
 
 

1. Introduction 

Volatility modeling has received much attention over the past two decades in the finance 

literature not only because it relates directly to the profits of traders, but its importance to the 

valuation of derivative instrument. The goals for the modeling and forecasting of volatility are to 

have better risk management, more accurate derivative prices, and more efficient portfolio 

allocations. A good financial decision-making relies on an accurate prediction of the second 

moment of the underlying financial instrument. 

Among various volatility modeling techniques, the most popular models are the GARCH 

models developed by Engle (1982) and Bollerslev (1986). This family of models can explain well 

the stylized facts of financial return volatility:  persistence, mean reversion, and the leverage 

effect. Moreover, as Andersen and Bollerslev (1998) and others have shown, the GARCH model 

can produce good forecasts of daily conditional volatility.  Good modeling and forecasting of 

volatility, however, relies on a useful information set. Until recently, the most commonly used 

information set for modeling daily volatility is historical daily closing prices. However, recent 

research (e.g., Andersen, and Bollerslev, 1998, and Andersen, Bollerslev, and Lange, 1999) has 

shown that the use of intra-day high frequency data can substantially improve the measurement 

and forecastability of daily volatility. The majority of these studies used intra-day data observed 

during normal trading hours. We add to this literature by considering intra-day data observed 

during after-hours periods. 

Although several studies have documented the importance of after-hours information (e.g. 

Oldfield and Rogalski, 1980; Greene and Watts, 1996; Cao et al., 2000; Masulis and Shivakumar, 

2002; Taylor, 2007; and Tsiakas, 2008) for volatility modeling, only a few actually employed 
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high-frequency data in the analysis. One such paper is Taylor (2007), which used high-frequency 

overnight S&P 500 futures volatility information to predict S&P 500 stocks volatility. In this 

paper, we utilize the availability of after-hours trading opportunities to the public and the 

recording of high frequency after-hours transaction data of the NASDAQ stocks to examine how 

this extended information set could be effectively used to improve the modeling and the 

forecasting of next day conditional volatility.  

We use two volatility forecasting models in our analysis: (1) generalized autoregressive 

conditional heteroskedasticity (GARCH) models for daily returns with after-hours realized 

variance as an exogenous variable included in the conditional variance equation; (2) flexible trend 

semiparametric fractionally integrated autoregressive (SEMIFAR) models for realized variance. 

The high frequency data used in the paper are the historical quotes and trade prices of selected 

stocks listed on the NASDAQ that have active overnight trading. 

We use realized variance measures as proxies for unobserved volatility in our forecasting 

evaluation. Our results show that the inclusion of realized volatility for the whole night in the 

information set does not provide better forecasting of next day volatility from either the GARCH 

or the SEMIFAR models. When breaking up the whole after-hours period into three sub periods, 

we find that only the inclusion of the preopen period realized variance significantly improves the 

forecastability of future daily volatility. 

Our study contributes to the existing literature in the following ways. First, we use high-

frequency intranightly transaction data that has not yet been systematically exploited for the 

modeling and forecasting of daily volatility. Second, we completely use the after-hours 

information by segmenting the whole after-hours period into sub periods based on their different 

information densities. Third, past research has often focused on in-sample forecasting evaluation 

while we also evaluate our models’ predictive ability out-of-sample. Finally, we employ two 

different types of volatility models: a parametric model (GARCH) for squared returns and a 
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semiparametric long memory model (SEMIFAR) for realized variance. The employment of 

models under different forms and assumptions serves as a robustness check for our  results.  

The rest of the paper proceeds as follows. Section 2 reviews the volatility literature using 

after hours information. Section 3 explains our data and realized volatility construction. The 

results of modeling and forecasting  conditional volatility based on the GARCH and the 

SEMIFAR models are provided in Sections 4 and 5. Section 6 contains our concluding remarks. 

 

2. Literature Review 

Conditional return volatility models such as GARCH demonstrate that past return shocks and 

volatilities contain information about the evolution of future volatilities, and therefore can be used 

for forecasting purposes. One explanation for this result is the Mixture of Distribution Hypothesis 

(MDH), suggested by Clark (1973), Tauchen and Pitts (1983), and Kalev, Liu, Pham, and 

Jarnecic (2004). They attributed dependence in volatilities to the serial correlation of the news 

arrival rate, and the highly autocorrelated nature of volatility comes from the persistence in 

information arrival rates.  

Lamoureux and Lastrapes (1990) used the MDH proposed by Clark (1973) to explain the 

persistent nature of daily conditional volatility in the GARCH model4. They assumed that a 

stochastic model can be derived by considering the daily return in day t, εt, as a sum of i.i.d. (0, σ2) 

intraday price increments, δit,  

1

tn

t it
i

ε δ
=

=∑ ,         (1) 

where i denotes the ith intraday price movement, and the random variable nt is a mixing variable 

that denotes the arrival rate of information in day t. Clark (1973) assumed that εt is drawn from a 

mixture of distributions, of which the variances depend on nt,  

                                                 
4 For purpose of this study, we define day as the regular trading hours, i.e. from 9:30am to 4:00pm EST. 
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When the arrival rate of information is serially correlated, nt can be expressed as 

 1( )t t tn a b L n u−= + + ,        (3) 

where a is a constant and ut is a white noise. The conditional variance becomes  

 tttttt uLbannE 2
1

222 )(]|[ σσσε +Ω+===Ω −     (4) 

Which demonstrates the persistence in the conditional variance captured in the GARCH model. 

To examine this hypothesis, Lamoureux and Lastrapes (1990), Sharma, Mougoue, and 

Kamath (1996), and Brooks (1998) used trading volume as a proxy for the information arrival 

rate and included it as an exogenous variable in the GARCH (1,1) specification for daily volatility. 

They showed that the inclusion of volume greatly reduced the persistence parameter of the 

estimated GARCH model. Moreover, Brooks (1998) showed that including trading volume in a 

GARCH model does not improve volatility forecasts because no new information is provided  

which is not already captured by past conditional volatility.  

The after hours time period is from the previous market closing time through the next 

market opening time5. If the after-hours volatility provides additional information rather than 

substitutes for information already incorporated in past conditional volatility or volume, it could 

be used to improve forecasts of next day volatility. It is well known in the microstructure 

literature that information and announcements frequently occur during after normal trading hours, 

regardless of the existence of trading opportunities during that time. This occurrence and 

accumulation of information during the close-to-open period should contribute to the upcoming 

day (open-to-close) volatility. When after-hours trading is not available, the information will be 

realized at the opening hours. The occurrence of larger-than-normal after-hours news implies 

higher-than-usual volatility during the following regular trading hours.  

                                                 
5 We use after hours, close-to-open, and whole night period interchangeably in this study. 
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Even when trading is available for all or part of the night, we can still expect information to 

have an impact in the following regular trading hours for two reasons. The first reason is the 

spillover effect. If the market is not fully efficient, it would take some time for the information to 

be incorporated into prices. This could be due to the highly illiquid nature of the after-hours 

trading environment. Since it takes trades to facilitate price discovery (Barclay and Hendershott, 

2003), the information might not be fully incorporated into the price until the regular trading hour, 

when the trading volume is much higher. The second reason is the informed nature of trades in 

after hours. Barclay and Hendershott (2004) indicated that the traders in after hours are mainly 

professional and institutional. Many of them trade for short-lived private information. It is likely 

that they trade for private or scheduled news that has yet to be announced. Therefore, it is rational 

to expect that a highly volatile night trading would lead to a highly volatile day trading in the next 

day. 

Gallo and Pacini (1998) studied the impact of close-to-open returns, which are measured as 

the difference of the previous daily closing price and current daily opening price, on the following 

day (open-to-close) volatility for the six major market indices using a GARCH (1,1) model with 

the close-to-open returns as an exogenous variable. Martens (2002) studied whether GARCH (1,1) 

models that include different functional forms of the after-hours volatility can improve the 

forecasts of the following day volatility for the S&P 500 index futures transactions. Gallo and 

Pacini (1998) found that the inclusion of close-to-open returns improves forecastability of 

conditional volatility for some stock indices, while Martens (2002) found that the inclusion of the 

close-to-open squared returns cannot improve forecastability. This mixed evidence could come 

from the poor exploitation of after-hours information. We utilize more information in the after 

hours period than was used in previous studies. In particular, we segment the after-hours period 

based on information density.  This segmentation of information was proposed by Barclay and 

Hendershott (2003, 2004) and we are the first to apply to forecasting volatility.   
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The precise measurement of volatility is important for evaluating volatility forecasts. Past 

studies, such as Cumby, Figlewski and Hasbrouck (1993), Figlewski (1997), and Jorion (1995), 

have shown that standard volatility models such as GARCH perform poorly in terms of out-of-

sample forecasting when squared returns are used to proxy volatility. Andersen and Bollerslev 

(1998) pointed out that while the squared return is an unbiased estimate for unobserved volatility, 

it is a very noisy estimate and this can explain why volatility models appear to produce poor 

forecasts. They showed that realized volatility, which is defined as the sum of squared returns 

sampled at high intradaily frequency, provides a much more reliable ex post volatility measure 

than squared returns and that GARCH forecasts evaluated against realized volatility can be very 

accurate. Furthermore, Andersen, Bollerslev, and Lange (1999) showed that the forecasting 

performance of standard volatility models can be greatly improved by utilizing high frequency 

data. Indeed, Andersen, Bollerslev, Diebold, and Laybs (2003) used daily realized volatility as 

data and constructed an autoregressive fractional integrated moving average (ARFIMA) model to 

forecast future daily realized volatility. They found this model to be superior to many other 

volatility models in terms of out-of-sample forecasting performance. In our analysis, we expand 

on the previous literature by employing  realized volatility measures that utilize intradaily and 

intranightly data.  

 

3. Data and Volatility Measurement 

In this section we describe our data set, how we segment information in the after hours period, 

and how we construct our volatility measures.  Unlike Taylor (2007) and Tsiaks (2008), we study 

individual stocks instead of market indices. As mentioned in Campbell et al. (2001), there are 

several motives for studying the volatilities of individual stocks. For instance, many investors 

have large holdings of individual stocks, which have not been diversified and therefore are 

subject to idiosyncratic volatility.  
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3.1. Data 

Our high frequency data is taken from the Trade and Quote (TAQ) database, which 

provides data on tick-level transaction prices and quotes from 8 am until 6:30 pm EST, when the 

NASDAQ Trade Dissemination Service (NTDS) is on. Since trading volume is relatively low for 

stocks in after hours, we have chosen stocks that show the highest liquidity during the after-hours 

period. The stocks we consider are Microsoft (MSFT), Amgen (AMGN), Cisco (CSCO), and 

Yahoo (YHOO) listed on the NASDAQ. We use MSFT as our benchmark stock and focus most 

of our analysis and discussion on results pertaining to MSFT. We mainly use the other three 

stocks for a robustness check. The sampling period is from January 2001 to December 2004, 

during which time the after-hours trading information is available to the public and recorded. We 

choose the first three and a half years as the in-sample period for modeling volatility, and the later 

half a year as the out-of-sample period to evaluate forecasting performance. 

The TAQ data typically contain a lot of recording errors. We remove any recorded trades 

that have a change of positive or negative 25% from their immediately prior trades in a day6 . We 

also remove dates in which either the preopen, postclose, or day transaction data is missing as 

well as the occurrence of stock splits.  

3.1. After-Hours Subperiods 

Barclay and Hendershott (2003, 2004) broke the entire after-hours period into three 

subperiods: the postclose period (4:00 to 6:00 pm EST), the overnight period (6:00 pm to 8:00 am 

EST), and the preopen period (8:00 to 9:30 am EST). They investigated the information structure 

of the postclose and preopen and found that the probability of an informed trade is much higher in 

the latter period than the former period. They found that about 80 percent of all trading volume in 

postclose occurs at the closing price or within the closing quotes at 4:00 pm EST.7 This implies 

                                                 
6 The daily volume weighted price for MSFT is $39.44 for the sample period, and 25% of which would be about $10. 
7 Note, however, that this trading at close activity only represents 15 percent of trades in postclose. 
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that traders tend to trade for liquidity demands right after the regular trading hour is closed. 

Furthermore, they used the probability of informed trade measure developed by Easley, Kiefer, 

and O’Hara (1997) to show that trading is highly informed during the preopen, which implies that 

traders are more likely to trade for information reasons in this period. Even though traders can 

still trade through an electronic communication network (ECN) or a market maker during the 

overnight period, there is no formal analysis on the information structure for this period. The 

overnight data is usually not available from the reporting service provided by NTDS. Barclay and 

Hendershott (2003) used their proprietary dataset and found that only 1% of total after-hours 

trades occur during that period. 

The uneven information in each after-hours subperiod leads us to hypothesize that the 

volatility in each subperiod should have different effects on the following day volatility. We 

expect that the postclose volatility contains little to no information, while the volatility in the 

preopen contains new and additional information about the following day volatility. This means 

that the inclusion of the preopen volatility in the information set may improve the forecastability 

of a volatility model. The impact of volatility in the overnight period on conditional day volatility, 

however, is less obvious. If the preopen trades have realized most or all of the information that 

occurred in the overnight period, or if the overnight squared return measure is very noisy, we 

would expect little or no effect on the day volatility. 

 

3.3. Volatility Measurement 

Realized variance is a more accurate measure of conditional variance than the squared 

return. We use it to measure trading day variance and variance during the after-hours periods. We 

use it to evaluate our volatility predictions and we use it as a historical volatility series from 

which we build a direct volatility forecasting model.  Following Bollerslev and Wright (2001), 

Andersen et al. (2001), and Andersen et al. (2003) we construct realized variance by summing up 

intra-period high frequency squared returns: 
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       (6)  

where p denotes the logarithmic stock price;  i is denotes either the regular hour, the preopen, or 

the postclose period; r is the intraday return; 1/Δ is the number of observations for each of the 

periods (Δ is 5 minutes in regular hours and is 15 minutes in after-hours); and σi,t
2 is the estimated 

realized variance for period i in day t. Realized volatility is computed as the square root of 

realized variance. Since there is no data for trades in the overnight period, we measure the 

variance based on the first trade of preopen and the last trade of previous day’s postclose: 

2 2
, Pr , , 1( )Overnight t First Trade of eopen t Last Trade of Postclose tp pσ −= −    (7) 

Andersen et al. (2001) showed that as sampling frequency increases, realized variance 

accurately measures integrated variance, which is the actual realized return variation over a given 

horizon for a continuous time diffusion process and is an unbiased estimate of conditional 

variance.  

Although theory demonstrates that the measurement error associated with the estimation of 

the realized variance becomes very small as the sampling frequency increases, market 

microstructure frictions (e.g. bid-ask bounce, price discreteness, and infrequent trading) create 

large biases.  To avoid this problem, Andersen et al. (2001) proposed sampling the intradaily 

observations at 5 minute intervals8. Since the trading environment after hours is known to have 

much larger microstructure frictions than during regular hours, we sample observations at a 5-

minute frequency for regular-hours and at a 15-minute frequency for after-hours. Therefore the 

number of inter-period observation for the regular hours, the preopen, and the postclose is 78, 6, 

and 8, respectively.  

                                                 
8 This rule of thumb is often close to the optimal sampling frequency advocated by Bandi and Russell 
(2008). 
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Figure 1 shows the regular hours, the preopen, and the postclose realized volatility, and the 

overnight absolute return for MSFT from January 2001 to December 2004. Table 1 lists some 

descriptive statistics of realized volatility measures for MSFT. These measures represent the total 

amount of volatility per day in each period. Similar to the distribution of returns, the distributions 

of volatilities are all skewed to the right and have fat tails. The autocorrelation plots in the four 

periods are shown in Figure 2. The daily, preopen and postclose realized volatility series all 

exhibit the commonly known characteristic of long memory or persistence. In contrast, we do not 

observe this feature in the overnight absolute return. 

Barclay and Hendershott (2003) found that price changes are larger in the preopen than the 

postclose. This indicates that there is more private information and less noise in the preopen 

period. Table 2 provides volatilities per hour and per trade for the preopen and the postclose 

periods. The average volatilities per hour for the preopen and postclose are 0.39% and 0.29%, 

respectively, and the average volatilities per trade are 0.0102% and 0.00592%, respectively. The 

numbers show that volatility in the preopen is higher than in the postclose, which is consistent 

with the result of Barclay and Hendershott (2003). Both the median volatilities per hour and per 

trade provide the same qualitative results.  

 

4. GARCH Modeling and Forecasting 

The GARCH framework is the most common approach to modeling and forecasting volatility. 

We use the GARCH(p,q) model9 

2 2 2

1 1

t t

t t t

p q

t i t i j t j
i j

r
z h

h h

μ ε
ε

ω α ε β− −
= =

= +
=

= + +∑ ∑

 ,      (8) 

                                                 
9 Including leverage effects (e.g. EGARCH, GJR GARCH, or TGARCH) might improve the 

volatility forecasting. However, our main focus is on the after-hours information. Therefore for the purpose 
of the model simplicity, we do not consider this asymmetric effect.  
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where μ and ω are constants in the conditional mean equation and the conditional variance 

equation, respectively; εt is a serially uncorrelated residual term (news shock) with mean zero; zt 

is an i.i.d. random variable with mean zero and unit variance ; and ht
2 is the conditional variance 

at time t. While there are many variations of the GARCH(p,q) model, a GARCH (1,1) model is 

usually sufficient for most financial time series applications (Andersen and Bollerslev, 1998; 

Hansen and Lunde, 2004).  

Table 3 shows the Akaike information criterion, Bayesian information criterion, and log-

likelihood for all GARCH (p,q) models with p≤2 and q≤2  for the daily MSFT return series in the 

in-sample period, which is from January 2001 to June 2004. The GARCH (1,1) with Student’s t 

error distribution for zt appears to be the most appropriate model. The first column of Table 4 (A) 

reports the coefficients for the daily GARCH(1,1) model in regular hours. The sum of the 

estimates of α and β is 0.997, which shows that the conditional volatility is quite persistent. This 

result is very similar to 0.9986 reported by Martens (2002) for S&P 500 futures.  The ARCH and 

Ljung-Box tests on the squared residuals are employed to check for the adequacy of the fitted 

model. We find that the GARCH (1,1) specification fits the in-sample return series of the MSFT 

well. The results of the GARCH(1,1) model fit to the daily returns of AMGN, CSCO, and YHOO 

are reported in Table 4 (B), (C), and (D), respectively.  These results are similar to those for 

MSFT. 

 

4.1. GARCH Model for Day Returns with Night Variance 

The GARCH model offers flexibility in that additional exogenous variables that are thought to 

have impacts on conditional volatility can be included in the conditional variance equation. The 

modified GARCH (1,1) is: 

 
2 2 2

1 1 1

t t

t t t

t t t t

r
z h

h h x

μ ε
ε

ω αε β ρ− − −

= +

=

= + + +

       (9) 
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where xt represents an additional exogenous variable in the conditional variance equation. Both 

Gallo and Pacini (1998) and Martens (2002) used this approach by including the close-to-open 

squared return as the additional exogenous variable in the conditional variance equation. Martens 

(2002) found the coefficient on the additional variable to be statistically insignificant. In contrast, 

Gallo and Pacini (1998) found the coefficient to be statistically significant for most of the major 

market indices but the sign of the coefficient was positive for some indices and negative for 

others. We expect the sign of the coefficient for the after-hours volatility to be significant and 

positive. If the impact of after-hours information on the volatility of regular hours is caused by 

the possibility of the informed traders trading private information before the news is publicly 

announced during the regular hours, a higher after-hours volatility should lead to a higher 

following day volatility. 

To investigate the impact of after hours information in the GARCH(1,1) model (9), we use 

the following four exogenous variables: 

All three subperiods together: 2 2 2
, , ,

1 1

1.5 2 14
17.5 17.5 17.5

PO PC

PO PC ON

PO PC

N N

t t n t n t n
n n

x r r r
= =

= + +∑ ∑   (10)  

The preopen period only: 2
,

1

PO

PO

PO

N

t t n
n

x r
=

= ∑       (11) 

The postclose period only: 2
,

1

PC

PC

PC

N

t t n
n

x r
=

= ∑       (12) 

The overnight period only: 2
, ONt t nx r=       (13) 

where PO, PC, and ON denote the preopen, the postclose, and the overnight period, respectively. 

The variable xt defined in (10) is a time-weighted average realized variance of the close-to-open 

(whole night) period.  

The second through fifth columns of Table 4 (A) show the estimation results of the modified 

GARCH(1,1) model (9) using the exogenous variables defined in (10) – (13) for MSFT.  First, we 

find that the estimated coefficient (standard error) for the whole night period realized variance (10) 
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is 0.065 (0.064), which is positive but statistically insignificant. This result agrees with Martens 

(2002) in that the close-to-open variance does provide explanatory power for the next day 

conditional variance. Second, we find that the coefficient for the postclose variance (12) is 

negative and statistically insignificant as well. This result is consistent with the hypothesis that 

traders primarily trade in the postclose for non-information reasons, and therefore there is no 

information to be carried over into the next day volatility. Another possibility is that if there was 

any information in the postclose period, it could be spilled over to and removed during the 

following overnight period and the preopen period. Third, the only explanatory variable that we 

find to be statistically significant is the preopen realized variance (11), which has an estimated 

coefficient (standard error) of 0.221 (0.090). Hence, a 1% increase in the preopen realized 

variance would lead to a 0.221% increase in the following regular hour conditional variance. This 

result is consistent with our hypothesis that the coefficient should be positive and significant. 

Finally, we find that the estimated persistence parameters are 0.997 and 0.971 for the GARCH 

(1,1) model (8) and the modified GARCH (1,1) model (9) with the preopen variance, respectively. 

This slightl decrease in the persistence parameter shows that the preopen variance appears to 

provide independent information from that contained in the past day returns. Along with the 

coefficient being statistically significant, this result enhances our hypothesis that the addition of 

the preopen variance into the model would improve forecasts of the next day conditional day 

volatility. 

Tables 4 (B), (C), and (D) give the estimation results of the modified GARCH(1,1) model (9) 

for three other stocks. The results show significant and positive coefficients on the preopen 

variance (11) for all three stocks. The coefficients for the postclose variance, on the other hand, 

are all insignificant. The overnight squared return provides some explanatory power to day 

conditional volatility for CSCO, but not the other two stocks. Like MSFT, we also do not observe 

much reduction in the persistence parameter for the day GARCH (1,1) model after the preopen 

variance is included as the additional explanatory variable. 
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4.2. Forecast Evaluation 

Figure 3 shows the out-of-sample ex post realized volatility series and the forecasted 1-step 

ahead conditional volatility series of various fitted GARCH (1,1) models for MSFT. The 

forecasts with the pre-open variance as an exogenous variable in the conditional variance 

equation appear to track the realized volatility series the best.  

We formally evaluate the forecasting performance of the different models using the 

following metrics: 

Mincer-Zarnowitz Regression: ( ) ( )1 2 1 22 2
0 1 |t k t k t t ka a h uσ + + += + +    (14) 

RMSE: ( )
1 2
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−∑         (16) 
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−∑        (18) 
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1
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T
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T
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=

⎡ ⎤
⎣ ⎦∑        (19) 

where 2
kt+σ denotes realized variance in day t+k, and 2

|tkth + denotes the conditional variance 

forecast for day t+k based on information available in day t. In the Mincer-Zarnowitz regression, 

proposed by Mincer and Zarnowitz (1969), if the conditional volatility model is correctly 

specified, we should have a0 and a1 equal to zero and one, respectively, with high statistical 

significance. However, Andersen and Bollerslev (1998) pointed out that the coefficients suffer 

from a standard errors-in-variables problem which makes interpretation difficult. Nonetheless, 

they argue that the R2 of the regression can be used to evaluate the variability of the ex post 
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volatility that is explained by the forecasted conditional volatility. The root mean square error 

(RMSE) and the mean absolute error (MAE) are two commonly used criteria. To check whether 

the results are reliable in the nonlinear and heteroskedastic environment, we follow Andersen, 

Bollerslev, and Lange (1999) and use the heteroskedasticity adjusted RMSE (HRMSE), MAE 

(HMAE), and the logarithmic loss function (LL). 

As stressed by Andersen and Bollerslev (1998) and Hansen and Lunde (2006), it is crucial 

to choose the right ex post volatility measure to serve as the benchmark for the forecast 

evaluation, since volatility is not directly observed. Several past studies, such as Figlewski (1997) 

and Jorion (1995, 1996), have used daily squared returns as the proxy for the ex post volatility 

measure, and concluded that standard volatility models explain little of the variability in the ex 

post volatility. Andersen and Bollerslev (1998) and Hansen and Lunde (2006) used realized 

volatility and demonstrated that it provides a more reliable and accurate measure of the true 

volatility and its use in forecast evaluation statistics leads to more accurate inferences regarding 

forecasting accuracy.  

To perform the forecast evaluations, we first estimate the parameters of the GARCH(1,1) 

models (9) and (10) from the in-sample data, and then compute 1-step-ahead predictions for 

conditional volatility over a rolling window. Table 5(A) lists the 1-step ahead forecast evaluation 

results for the different GARCH models. When using the Mincer-Zarnowitz regression (14), we 

see that the GARCH (1,1) with the preopen realized variance provides the best forecasting 

performance both in terms of accuracy and explaining the variability in the ex post measures. The 

estimated coefficient on a1 is 0.976 when forecasts are computed from a GARCH (1,1) model 

with preopen realized variance, compared to 0.899 for forecasts computed from the day GARCH 

(1,1) model. The GARCH (1,1) with the preopen realized variance has a substantially higher R2 =  

0.157 than the R2 =  0.091 from the day GARCH (1,1). Based on the forecast evaluation statistics 

(15)-(18), the forecasts provided by the GARCH (1,1) with the preopen realized variance are 

always superior to those from the day GARCH (1,1). We also see that the forecasts from the 
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GARCH (1,1) with the close-to-open period realized variance always perform relatively poorly 

compared to those from the day GARCH (1,1). Because the coefficient for the realized variance 

during the close-to-open period is not statistically significant in the GARCH(1,1) model, it is not 

surprising to see that the forecast shows relatively poor performance and no improvement in 

terms of R2. We conclude that the after-hours volatility does not have any ability to improve the 

forecastability of conditional day volatility if one only compares day GARCH (1,1) to GARCH 

(1,1) with the close-to-open realized variance as the additional explanatory variable. Because the 

coefficients of the postclose and the overnight realized variances in the GARCH (1,1) are not 

statistically significant, we do not perform the forecasting evaluation for these two models. Table 

5 (B) provides forecast evaluation results of 5-step-ahead predictions, and the outcomes are 

qualitatively identical. 

Table 6 shows the forecast evaluation results for the other three stocks. It is interesting to 

see that the R2 of YHOO is much higher than those of the other two stocks. The R2 values of the 

day GARCH(1,1) with the preopen realized variance is always higher than the usual day GARCH 

(1,1) model for each of the three stocks. The results of the five forecast measures also support our 

hypothesis that the information contained in the preopen realized variance improves the 

forecastability of the conditional day volatility. 

In addition to the Mincer-Zarnowitz regression, we follow Andersen et al. (2003) and 

perform an encompassing regression to evaluate the importance of including the after hours 

realized variance measures as explanatory variables in the GARCH(1,1) model. The 

encompassing regression takes the form 

( ) ( ) ( )1 21 2 1 22 2 2
, 0 1 | , 2 | , it h d t h t d t h t d n t ha a h a h uσ + + + + += + + + ,    (20) 

where the first explanatory variable on the right-hand-side of (20) is the k-step ahead forecast 

based on the day GARCH (1,1) model, and the second explanatory variable is the k-step ahead 

forecast based on the day GARCH (1,1) model with an after hours realized variance measure as 
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an explanatory variable. We should observe a statistically insignificant coefficient and a 

significant coefficient on the first and second explanatory variables in (20), respectively, if the 

latter can explain better the variation in dependent variable. In that case, the adjusted R2 from the 

regression should also be higher than that of the regression with only the first explanatory 

variable.  Table 7 shows the estimation results of (20) with conditional forecasts using (11) and 

(13) as the second explanatory variable, respectively.  Including the forecast of day GARCH (1,1) 

with the preopen variance increases the R2 from 0.098 to 0.171, whereas including the forecast 

based on day GARCH (1,1) with the overnight variance does not change the R2. The lack of 

predictive power of the overnight squared return, as explained by Martens (2002), can be 

attributed to the fact that the close-to-open squared return, like the day squared return, is a very 

noisy measure of overnight conditional variance. 

 

5. SEMIFAR Modeling and Forecasting 

In this section, we evaluate the use of after hours information for predicting next day volatility by 

modeling and forecasting the observed series of realized volatility directly. Motivated by the 

results in Andersen et al. (2001), we model log realized volatility as a long memory process. In 

particular, we use the SEMIFAR model proposed by Beran and Oker (1999, 2001) and Beran and 

Feng (2002). The SEMIFAR model allows for a smooth deterministic trend, a stochastic trend, 

long memory and short memory components. From Figures 1 and 2, the SEMIFAR model 

appears to be a good candidate for modeling realized volatility as the time series exhibits features 

of long memory as well as a displaying a slightly downward historical trend. 

5.1. The SEMIFAR Modeling 

The SEMIFAR(p,d) model for a time series yt is given by: 

TtigyLLL ttt
md ,,1 ,)]()1[()1)(( K==−−− εφ      (21) 
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where  –½  < d < ½ is the fractional difference parameter, m is an integer giving the number of 

times that yt must be differenced to achieve stationaryity,  φ(L) is a stationary autoregressive 

polynomial of order p, g(it) is a smooth deterministic trend function on [0,1] with it = t/T, and εt is 

an i.i.d. normal error term. In (21), the trend function g(it) is estimated using a nonparametric 

kernel estimate.  

 To construct the realized volatility time series yt to be fit by the SEMIFAR model, we treat 

each daily realized variance estimate as an observation.  We first construct individual realized 

variance time series for the day, the preopen, the postclose, and the night periods, respectively, as 

described in sub-section 4.1.  Because the magnitudes of realized variance during the day and the 

night are different due to differing sampling frequency and fundamentally their differing 

environment, we normalize each time series using the transformation: 

  
( )

2 2
, ,2

, 2
,

~ (0,1)i t i t
i t

i t

N
SE
υ υ

ϕ
υ
−

=        (22) 

where νi,t
2 is the logarithm of realized variance during period i at time t, giving the following four 

time series10: 

(i) A time series consisting of the day realized variance observations. 

(ii) A time series consisting of alternating the day and the night (close-to-open) realized 

variance observations. 

(iii) A time series consisting of alternating the day and the preopen realized variance 

observations. 

(iv) A time series consisting of alternating the day and the postclose realized variance 

observations. 

We then follow Hansen and Lunde (2005) and linearly combine the normalized realized variance 

series for both the regular and after-hours periods to create a full day realized variance measure. 

Because the logarithm of realized variance is approximately normal (Andersen et al., 2001), the 

ratio in (22) should be approximately standard normal which makes it appropriate for use in the 

SEMIFAR model. The moment statistics for the unconditional distributions of the time series 
                                                 
10 We did not include a time series of the day realized variance with the overnight squared return for two 
reasons. The first is that since some values of overnight squared return are zero, taking the logarithm 
transformation of the series is impossible. The second is that the weighted average night time series that 
combine all three time series of the subperiods closely match that of the overnight squared return, since the 
weight during that period is much higher. 
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constructed using (22), shown in Table 8, indicate that the transformed realized variance series 

are all very close to the standard normal distribution.  

 Table 9 summarizes the estimation results for the SEMIFAR model for MSFT. We see that 

the values of d for the models are all between 0 and 0.5, which indicate that there is long-range 

dependence in each of the series. The estimated d values based on the GPH estimator all tend to 

be higher, while those based on the local Whittle estimator all tend to be lower, than the estimates 

from the SEMIFAR model. For all series, there are also significant short-memory AR 

components. The Ljung-Box test statistics all show that the residuals are all serially uncorrelated. 

 

5.2. Forecast Evaluation 

Tables 10 (A) and (B) show the 1-step and 5-step-ahead predictions from the SEMIFAR models. 

The R2 of the model with day and night variance is almost the same as that of the model with only 

day variance, which indicates that the information contained in the overnight squared return does 

not help to improve the forecastability of the day volatility process. The SEMIFAR model with 

the day and the preopen variance provides the highest R2 and the lowest statistics of the 

forecasting evaluation criteria. This is consistent with the result from the GARCH models. Figure 

4 also plots both the out-of-sample ex post realized volatility and 1-step-ahead forecast volatility. 

Table 11 lists the results for the encompassing regressions. The R2 increases from 0.146 to 

0.192 when the preopen variance is included in the SEMIFAR model. The coefficient of the 

SEMIFAR forecast with the day variance is insignificant and that of the SEMIFAR forecast with 

both the day and the preopen variance is significant, which indicates that the latter contains more 

information that the former. We also see that the SEMIFAR forecast with the postclose variance 

does not contribute to any improvement in forecasting of the conditional day series. 
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6. Conclusion 

Most of the volatility forecast literature has focused on comparing the forecast performance 

of different volatility models. In this study, we concentrate on whether an expanded information 

set can increase the forecastability of a day conditional volatility model. The usual information is 

the daily return and/or variance measures while the additional information we include is a 

measure of after-hours variance. We augment GARCH and SEMIFAR models for daily volatility 

by including various measures of after-hours information: the combined whole night, the preopen, 

the postclose variance, and the overnight squared return. By examining four NASDAQ stocks, 

MSFT, AMGN, CSCO, and YHOO, we find that the inclusion of the preopen variance can 

substantially improve the out-of-sample forecastability of the conditional day volatility. The 

postclose variance and the overnight squared return, on the other hand, do not exhibit any 

predictive power for future conditional volatility. The evidence supports the results of prior 

studies that traders trade for non-information reasons in the postclose period, while they trade for 

information reasons in the preopen period. 

We propose two reasons for why the preopen variance can be used to improve the 

predictability of the model. The first is the spillover effect, and the second is the possibility of the 

informed traders trading private information that is yet to be released during the following regular 

hours. One extension of our analysis is to examine how the preopen variance affects the 

volatilities in different intraday periods. If the predictive power of the preopen variance comes 

from the spillover information from the peropen period to the regular hours, we can expect the 

highest impact to occur in the opening hours. If the time of day affected appears to be random, it 

is more likely due to the second conjecture. 
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Table 1. Summary Statistics of Daily Realized Return and Volatility for MSFT 
 Min. Mean Median Max. St. dev. Skew. Kurt. 

Return         
 -0.0771 0.0001 -0.0007 0.1058 0.0190 0.4731 5.3961 
Volatility         
Reg. Hour 0.4183 1.7717 1.5852 6.4343 0.8706 1.4916 6.3789 

Preopen 0.0367 0.5818 0.4700 5.7256 0.4269 3.2429 26.8472 
Postclose 0.0330 0.5888 0.3473 12.5415 0.8427 5.9118 58.0698 

Overnight 0.0000 0.0053 0.0008 0.2190 0.0155 7.4075 77.7413 
The realized volatilities are all in percentage terms. 
 
 
 
 
 
Table 2. Average Volume and Volatility for MSFT 

 Volume 
(daily) 

Volume 
 (hourly) 

Volatility (hourly) Volatility (per trade) 

Reg. Hour 978959 150609 0.273 0.000181 
Preopen 5701 3801 0.388 0.0102 
Postclose 9925 4963 0.294 0.00592 

All reported volumes are in terms of trades, and all reported volatilities are in percentage term. 
 
 
 
 
 
Table 3. GARCH Model Selection 

 Normal Error Distribution 
 GARCH(1,1) GARCH(1,2) GARCH(2,1) GARCH(2,2) 

AIC -4459 -4457 -4458 -4453 
BIC -4440 -4433 -4434 -4424 

Likelihood 2233 2234 2234 2232 
 Student’s t Error Distribution 
 GARCH(1,1) GARCH(1,2) GARCH(2,1) GARCH(2,2) 

AIC -4463 -4461 -4461 -4442 
BIC -4439 -4433 -4433 -4409 

Likelihood 2237 2237 2237 2228 
The GARCH selection is based on the Akaike information criterion (AIC), Bayesian information criterion 
(BIC), and log-likelihood of the model. 
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    Table 4A. Day GARCH (1, 1) Parameter Estimates of MSFT 

 GARCH (1,1) 
GARCH (1,1)  

with 
Close-to-Open 

GARCH (1,1) 
with Preopen 

GARCH (1,1) 
with Postclose 

GARCH (1,1) 
with Overnight 

μ -6.37e-4 
(5.16e-4) 

-5.85e-4 
(5.18e-4) 

-4.52e-4 
(5.29e-4) 

-6.24e-4 
(5.21e-4) -6.02e-4 (5.15e-4) 

ω 1.32e-6 
(1.25e-6) 8.85e-7 (1.56e-6) -1.06e-6 

(2.02e-6) 
1.47e-6 

(1.32e-6) 1.05e-6 (1.48e-6) 

α 0.065*** 
(0.017) 

0.066*** 
(0.018) 

0.068*** 
(0.019) 

0.066*** 
(0.017) 

0.066*** 
(1.75e-2) 

β 0.932*** 
(0.017) 

0.922*** 
(0.020) 

0.903*** 
(0.022) 

0.932*** 
(0.017) 

0.923*** 
(0.020) 

ρ  0.065 
(0.064) 

0.221*** 
(0.090) 

-0.007 
(0.015) 

0.057 
(0.057) 

Degree of 
Freedom 19.23 28.85 28.84 21.28 19.50 

Likelihood 2237 2245 2240 2239 2238 
ARCH test 
(P-value) 0.121 0.228 0.154 0.143 0.222 

Ljung-Box 
Test 

(P-value) 
0.638 0.660 0.535 0.645 0.657 

The reported coefficients are based on quasi-maximum likelihood estimation of a Student’s t 
GARCH(1,1) model estimated from in-sample period: 

 
2 2 2

1 1 1

t t

t t t

t t t t

r
z h

h h x

μ ε
ε

ω αε β ρ− − −

= +
=

= + + +  
The standard error is in the parenthesis. ARCH test and Ljung-Box Test are performed to check for the 
ARCH effect and autocorrelation of the residuals. *** denotes significance at 1% level, ** denotes 
significance at 5% level, and * denotes significance at 10% level. 

 
 
 
 
 
Table 4B. Day GARCH (1, 1) Parameter Estimates of AMGN 

 GARCH (1,1) 
GARCH (1,1) 

with  
Close-to-Open 

GARCH (1,1) 
with Preopen 

GARCH (1,1) 
with Postclose 

GARCH (1,1) 
with Overnight 

μ -7.82e-4 
(6.13e-4) 

-7.07e-4 
(6.186e-4) 

-7.00e-5 
(6.51e-4) 

-6.71e-4 
(6.13e-4) 

-6.80e-4 
(6.18e-4) 

ω 3.46e-6  
(2.46e-6) 

3.83e-6 
 (2.72e-6) 

4.28e-6  
(3.12e-6) 

3.91e-6 
(2.52e-6) 

4.04e-6 
(2.75e-6) 

α 0.062*** 
(0.016) 

0.062*** 
(0.017) 

0.061*** 
(0.019) 

0.065*** 
(0.016) 

0.062*** 
(0.017) 

β 0.929*** 
(0.017) 

0.921*** 
(0.020) 

0.907*** 
(0.023) 

0.929*** 
(0.017) 

0.920*** 
(0.019) 

ρ  0.048 
(0.046) 

0.14* 
(0.081) 

-0.014 
(0.015) 

0.050 
(0.042) 
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Table 4C. Day GARCH (1, 1) Parameter Estimates of CSCO 

 GARCH (1,1) 
GARCH (1,1)  

with 
Close-to-Open 

GARCH (1,1) 
with Preopen 

GARCH (1,1) 
with Postclose 

GARCH (1,1) 
with Overnight 

μ -8.64e-4 
(7.87e-4) 

-9.51e-4 
(7.95e-4) 

-8.45e-4 
(7.98e-4) 

-8.70e-4 
(8.95e-4) 

-9.08e-4 (7.92e-
4) 

ω 2.89e-6 (2.53e-
6) 

5.39e-6 (3.64e-
6) 

3.23e-6 (3.92e-
6) 

2.21e-6 
(3.89e-6) 

5.94e-6 
(3.64e-6) 

α 0.038*** 
(0.012) 

0.024 
(0.014) 

0.041*** 
(0.015) 

0.037** 
(0.015) 

0.030 
(0.014) 

β 0.958*** 
(0.013) 

0.934*** 
(0.020) 

0.929*** 
(0.021) 

0.949*** 
(0.016) 

0.937*** 
(0.020) 

ρ  0.202** 
(0.079) 

0.155** 
(0.073) 

0.063 
(0.046) 

0.144** 
(0.060) 

 
 
 
 
 
Table 4D. Day GARCH (1, 1) Parameter Estimates of YHOO 

 GARCH (1,1) 
GARCH (1,1)  

with 
Close-to-Open 

GARCH (1,1) 
with Preopen 

GARCH (1,1) 
with Postclose 

GARCH (1,1) 
with Overnight 

μ 1.53e-3 
(9.94e-4) 

1.62e-3 
(9.87e-4) 

1.47e-3 
(9.94e-4) 

1.64e-3 
(9.92e-4) 

1.62e-3 
(9.87e-4) 

ω 5.028e-6 
(4.20e-6) 

5.57e-6 
(4.44e-6) 

7.26e-6 
(5.98e-6) 

1.75e-6 
(3.75e-6) 

5.57e-6 
(4.43e-6) 

α 0.048*** 
(0.013) 

0.049*** 
(0.013) 

0.046*** 
(0.016) 

0.036*** 
(0.011) 

0.049*** 
(0.013) 

β 0.948*** 
(0.013) 

0.946*** 
(0.014) 

0.920*** 
(0.022) 

0.957*** 
(0.011) 

0.946*** 
(0.014) 

ρ  -4.31e-4 
(7.79e-4) 

0.163** 
(0.083) 

0.037 
(0.026) 

-3.49e-4 
(6.21e-4) 
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Table 5A. Forecasting Evaluation Methods for 1-Step Ahead Prediction  
by GARCH Models for MSFT 

 Day GARCH (1,1) Day GARCH (1,1) with 
Close-to-Open 

Day GARCH (1,1) with 
Preopen 

MZ Regression    

a0 
0.097 

(0.122) 
0.166 

(0.124) 
0.033 

(0.141) 

a1 
0.899 

(0.130) 
0.759** 
(0.134) 

0.976 
(0.175) 

Adj. R2 0.091 0.091 0.157 

RMSE 0.440 0.452 0.424 

MAE 0.206 0.244 0.202 

HRMSE 0.442 0.399 0.391 

HRMAE 0.208 0.223 0.204 

LL -0.049 -0.133 -0.029 

 
 
 
 

 
Table 5B. Forecasting Evaluation Methods for 5-Step Ahead Prediction  

by GARCH Models for MSFT 
 Day GARCH (1,1) Day GARCH (1,1) with 

Close-to-Open 
Day GARCH (1,1) with 

Preopen 
MZ 

Regression 
   

a0 
0.210 

(0.201) 
0.293 

(0.183) 
0.088 

(0.048) 

a1 
0.703 

(0.180) 
0.586*** 
(0.166) 

0.850*** 
(0.056) 

Adj. R2 0.031 0.029 0.073 

RMSE 0.476 0.502 0.456 

MAE 0.275 0.320 0.250 

HRMSE 0.437 0.420 0.401 

HRMAE 0.251 0.271 0.234 

LL -0.164 -0.230 -0.118 

Values for RMSE, MAE, HRMSE, and HRMAE are in percentage term. *** denotes significance  
at 1% level and ** denotes significance at 5% level. H0: a0 = 0, a1 = 1. 
Reported in parenthesis are the White’s heteroskedasticity-consistent standard deviation. 
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   Table 6. Forecast Evaluation Statistics for 1-Step Ahead Prediction  
By GARCH (1,1) for Amgen, Cisco, and Yahoo 

 AMGN CSCO YHOO 
 Day 

GARCH 
(1,1) 

Day 
GARCH 
(1,1) with 
Preopen 

Day 
GARCH 

(1,1) 

Day 
GARCH 
(1,1) with 
Preopen 

Day 
GARCH 

(1,1) 

Day 
GARCH 
(1,1) with 
Preopen 

MZ 
Regression       

a0 0.676*** 
(0.076) 

0.343 
(0.335) 

-0.403 
(0.796) 

-0.499 
(0.335) 

0.148 
(0.107) 

-0.219 
(0.069) 

a1 0.512*** 
(0.049) 

0.741 
(0.245) 

1.149 
(0.461) 

1.217 
(0.245) 

0.782*** 
(0.020) 

0.940*** 
(0.013) 

Adj. R2 0.017 0.061 0.039 0.054 0.209 0.373 

RMSE 0.456 0.442 0.673 0.664 0.597 0.551 

MAE 0.303 0.288 0.376 0.409 0.487 0.450 

HRMSE 0.336 0.318 0.391 0.338 0.251 0.234 

HRMAE 0.229 0.212 0.219 0.231 0.207 0.193 

LL -0.015 -0.043 -0.137 -0.126 -0.196 -0.193 

    *** denotes significance at 1% level, while * denotes significance at 5% level. H0: a0 = 0, a1 = 1. 
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Table 7. Encompassing Regression of GARCH(1,1) Models for MSFT 

 Day GARCH(1,1) Day Garch(1,1) with 
Close-to-Open 

Day Garch(1,1) with 
Preopen 

a0 
0.097 

(0.122) 
0.122 

(0.138) 
0.170 

(0.121) 

a1 
0.899*** 
(0.130) 

0.411 
(1.070) 

-0.511 
(0.617) 

a2  0.424 
(0.945) 

1.353*** 
(0.599) 

R2 0.098 0.099 0.171 

Adj. R2 0.091 0.085 0.158 

The regression is of the form 

 ( ) ( ) ( )1 21 2 1 22 2 2
, 0 1 | , 2 | , it k d t k t d t k t d n t ka a h a h uσ + + + + += + + +  

where d denotes day period, ni denotes for the whole night or the preoen period. All values are in 
percentage term. *** denotes significance at 1% level and ** denotes significance at 5% level. 
In parenthesis are the White’s heteroskedasticity-consistent standard deviation. 
 
 
Table 8. The Moment Statistics for the Unconditional Log Adjusted Realized Variance, νit

2, 
for MSFT 

 
 Min. Mean Median Max. St. dev. Skew. Kurt. 
Log Variance 
(daily)        

Day only 
 -3.1030 -0.4308 -0.4385 2.3633 0.9217 0.1074 2.7532 

Day with 
Close-to-
Open 

-6.0777 -0.8632 -0.7941 3.5127 1.3651 -0.2513 3.2557 

Day with 
Preopen -5.9591 -0.6337 -0.6238 4.1427 1.1273 -0.1430 3.6035 

Day with 
Postclose -6.8792 -1.2015 -1.0862 5.0035 1.5591 -0.1953 3.1762 
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Table 9. SEMIFAR Parameter Estimates for MSFT In-Sample Period 

 SEMIFAR with 
Day only 

SEMIFAR with 
Day and Close-to-

Open 

SEMIFAR with 
Day and Preopen 

SEMIFAR with 
Day and Postclose 

d 0.468*** 
(0.040) 

0.349*** 
(0.044) 

0.412*** 
(0.044) 

0.290*** 
(0.053) 

AR(1) -0.107** 
(0.050) 

-0.340*** 
(0.048) 

-0.335*** 
(0.049) 

-0.320*** 
(0.057) 

AR(2)  -0.031 
(0.044) 

-0.098** 
(0.044) 

0.018 
(0.049) 

AR(3)  -0.152*** 
(0.032) 

-0.172*** 
(0.034) 

-0.144*** 
(0.034) 

AR(4)  0.029 
(0.033) 

0.008 
(0.034) 

0.109*** 
(0.036) 

AR(5)  -0.139*** 
(0.025) 

-0.111*** 
(0.026) 

-0.102*** 
(0.027) 

AR(6)    0.022 
(0.030) 

AR(7)    -0.114*** 
(0.025) 

BIC 1118 5290 4415 5604 
GPH 

estimator 0.678 0.684 0.688 0.563 

Whittle 
estimator 0.419 0.184 0.249 0.109 

ADF Test  
(P-value) 0.010 6.36e-16 3.93e-12 1.11e-18 

LB Test  
(P-value) 0.722 0.137 0.681 0.176 

*** denotes significance at 1% level and ** denotes significance at 5% level.   
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Table 10A. Forecasting Evaluation Methods for 5-Step Ahead Prediction of SEMIFAR  
Models for MSFT 

Values for RMSE, MAE, HRMSE, and HRMAE are in percentage term. *** denotes significance at  
1% level and ** denotes significance at 5% level. H0: a0 = 0, a1 = 1. 
Reported in parenthesis are the White’s heteroskedasticity-consistent standard deviation. 
 
 
 
 
 
Table 10B. Forecasting Evaluation Methods for 5-Step Ahead Prediction of SEMIFAR 

Models for MSFT 

 SEMIFAR with Day 
only 

SEMIFAR with Day 
and Day and  Close-

to-Open 

SEMIFAR with Day 
and Preopen 

SEMIFAR with Day 
and Postclose 

a0 -0.067 
(0.227) 

0.036 
(0.210) 

-0.006 
(0.239) 

2.086*** 
(1.017) 

a1 1.082 
(0.263) 

0.902 
(0.199) 

1.054 
(0.287) 

-1.356** 
(1.207) 

Adj. R2 0.092 0.035 0.095 0.018 
RMSE 0.439 0.450 0.422 0.499 
MAE 0.211 0.219 0.207 0.246 

HRMSE 0.296 0.292 0.260 0.283 
HMAE 0.214 0.215 0.199 0.217 

LL -0.038 -0.007 -0.004 0.114 

 SEMIFAR with Day 
only 

SEMIFAR with Day 
and  Close-to-Open 

SEMIFAR with Day 
and Preopen 

SEMIFAR with Day 
and Postclose 

a0 -0.067 
(0.227) 

0.036 
(0.210) 

-0.006 
(0.239) 

2.086*** 
(1.017) 

a1 1.082 
(0.263) 

0.902 
(0.199) 

1.054 
(0.287) 

-1.356** 
(1.207) 

Adj. R2 0.092 0.035 0.095 0.018 
RMSE 0.439 0.450 0.422 0.499 
MAE 0.211 0.219 0.207 0.246 

HRMSE 0.296 0.292 0.260 0.283 
HMAE 0.214 0.215 0.199 0.217 

LL -0.038 -0.007 -0.004 0.114 
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Table 11. Encompassing Regression for Different SEMIFAR Models 

 Day only Day with Close-
to-Open Day with Preopen Day with Postclose 

a0 
0.098 

(0.282) 
-0.060 
(0.229) 

-0.259 
(0.231) 

0.124 
(0.244) 

a1 
0.919** 
(0.324) 

0.554 
(0.348) 

-0.061 
(0.415) 

0.954** 
(0.284) 

a2  0.541 
(0.424) 

1.321** 
(0.496) 

-0.062 
(0.364) 

R2 0.146 0.157 0.192 0.147 

Adj. R2 0.139 0.144 0.179 0.133 

The regression is of the form 

 ( ) ( ) ( )1 21 2 1 22 2 2
, 0 1 | , 2 | , it k d t k t d t k t d n t ka a h a h uσ + + + + += + + +  

where d denotes day period, ni denotes for the whole night or the preoen period. All values are in 
percentage term. ** denotes significance at 1% level, while * denotes significance at 5% level. 
In parenthesis are the White’s heteroskedasticity-consistent standard deviation. 
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Figure 1. Time Series of the MSFT Volatilities for Different Time Periods 
These are realized volatilities for regular Hours, preopen, and postclose, and square root of overnight 
returns. The volatilities are in percentages. 
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Figure 2. Autocorrelations of the MSFT Volatilities for Different Time Periods 
These are the autocorrelations of realized volatilities for regular Hours, preopen, and postclose, and square 
root of overnight returns. 
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Figure 3. MSFT One-Step Ahead Volatility Forecasting for Day GARCH(1,1)  

by Different Models 
The solid line represents the ex post realized volatility series, and the break line represents the forecast 
conditional volatility. 
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Figure 4. MSFT One-Step Ahead Forecasting for Different SEMIFAR Models 
The solid line represents the ex post realized volatility series, and the break line represents the forecast 
conditional volatility. 
 


