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Abstract

This paper is an extension of “Why are the Beveridge-Nelson and Unobserved-

Components Decompositions of GDP so Different?” (Morley, Nelson, and Zivot,

2003) to Clark’s double-drift unobserved components model. We show that the

reduced-form of the double-drift model is an ARIMA(2,2,3) model, and we dis-

cuss various restrictions for identifying the parameters of the double-drift model

with correlated components. When shocks to the smooth trend and cycle are

allowed to be correlated but forced to be uncorrelated with shocks to the drift,

the Kalman filter estimates of the trend and cycle are identical to the estimates

from the Beveridge-Nelson decomposition from the ARIMA(2,2,3) model and

are similar to the estimates from Morley, Nelson and Zivot. We also find that

alternative identification schemes are not supported by the data.

1 Introduction

When the real GDP is assumed to follow an unit root process, the Beveridge-Nelson

(BN) decomposition (Beveridge and Nelson, 1981) and the Kalman filter signal extrac-
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tion from an unobserved component (UC) model have been widely used to decompose

the real GDP into random walk trend and stationary cycle components. Trend and

cycle extraction from a UC model is more flexible than the BN decomposition because

it explicitly takes the structure of the trend and various sources of shocks into consider-

ation, whereas the BN decomposition relies on a reduced form parameterization of an

autoregressive integrated moving average (ARIMA(p,1,q)) process. A drawback of UC

models is that the trend and cycle components are often not identified without restric-

tions placed on the parameters of the models. Even though some authors insist that

economic theory may give adequate restrictions to identify the UC model parameters,

the identification problem is not easily resolved as the characteristics of the extracted

trend and cycle components are often sensitive to the form of restrictions imposed. The

usual restriction to identify the trend and cycle components of the UC model applied

to the real GDP is to assume that the unobserved shocks to the trend and cycle are

independent (see Watson 1986, Clark 1987, Harvey and Jaeger 1992). This identifica-

tion scheme produces a smooth trend, similar to a linear trend, and a pronounced cycle

with typical business cycle features. The implication of the UC model decomposition

for business cycle analysis is that shocks to the transitory cycle are more important for

explaining the business cycle than shocks to the trend. In contrast, the BN decomposi-

tion derived from an unrestricted reduced form ARIMA model gives a highly variable

trend and a mitigated cycle which implies that shocks to the trend are more important

for explaining the business cycle than shocks to the cycle. Recently, Morley, Nelson,

and Zivot (2003) (hereafter MNZ) showed that for certain UC models the correlation

between the trend and cycle shocks is an identified parameter which implies that the

assumption of uncorrelated trend and cycle components is an overidentifying assump-

tion. In addition, they showed that when the trend and cycle components are allowed

to be correlated, the extracted trend and cycle components from the Kalman filter are
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identical to those derived from the BN decomposition. Finally, for U.S. real GDP, they

found that the overidentifying restriction of uncorrelated components is rejected by the

data.

The UC model for the level of log real GDP analyzed by MNZ was a simplified

version of the UC model used by Clark (1987) in which the trend followed a pure

random walk with constant drift, the cycle was a stationary AR(2) process, and the

shocks to the trend were allowed to be correlated with the shocks to the cycle. They

chose this model because it implies a reduced form ARIMA(2,1,2) model for the growth

rate of real GDP, and there is a simple mapping from the reduced form ARIMA(2,1,2)

parameters to the UC model parameters. While this model is convenient for analytic

purposes, it is not the model used by Clark and others in empirical applications. Clark

allowed the drift to the random walk component to also follow a pure random walk to

capture smooth changes in trend. This “double-drift” trend specification is the most

common trend specification for empirical analysis with UC models (see Harvey 1985,

Harvey and Jaeger 1993, Stock and Watson 1998, and Mills 2003). In this paper, we

extend the analysis of MNZ to Clark’s double-drift UC model. This extension poses

the following technical problems:

1. Clark’s double-drift UC model has three sources of shocks (two shocks to trend,

and one shock to cycle), whereas MNZ’s UC model only has two sources of

shocks (one trend and one cycle). As a result, with correlated trend and cycle

components the parameters of Clark’s double-drift UC model are not identified

without further restrictions.

2. Clark’s double-drift UC model implies an ARIMA(2,2,3) reduced form model. As

a result, real GDP follows a second order integrated, I(2), process. To compare

the trend and cycle components extracted from the UC model with those from the
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BN decomposition, the BN decomposition from an I(2) process must be derived.

After addressing the above technical problems, we find that the logic of MNZ can be

applied to Clark’s double-drift UC model with some modifications. In particular, we

show that Clark’s double-drift UC model with uncorrelated components is overiden-

tified. We show that the overidentifying restriction has weak support from the data,

and that the filtered and smoothed estimates of the cycle and trend in real GDP are

sensitive to values of the correlations between the cycle and trend shocks. In the

double-drift UC model in which shocks to the smooth trend and cycle are allowed to

be correlated and shocks to the drift are uncorrelated with the other shocks, we show

that the extracted trend and cycle components are very close to those obtained by

MNZ. We further show that alternative specifications in which shocks to the drift are

allowed to be correlated with shocks to the smooth trend, or shocks to the cycle, are

not supported by the data.

Our estimation results of the double-drift UC model with correlated components

on U.S. real GDP support the view of Perron and Wada (2005) that there have been

important changes to the drift function. Perron and Wada favor a single trend break

in which the trend decreases about the time of the Oil Crisis of 1973. Our results

suggest a more complex change in trend in which the decrease in trend starts in 1965,

flattens in the early 1980s, and changes direction in the early 1990s. Contrary to Perron

and Wada, however, our results for U.S. real GDP allowing for changes in trend and

correlated components are not qualitatively different from those of MNZ.

The paper continues as follows. In Section 2, we present Clark’s double-drift model,

show that it has an ARIMA(2,2,3) reduced form representation, and discuss iden-

tification conditions when the shocks to the unobserved components are allowed to

be correlated. In Section 3, we derive the BN decomposition from a reduced form

ARIMA(2,2,3) model, and show by simulation the equivalence between the Kalman fil-

4



ter estimates of the trend and cycle components from a double-drift UC model and the

BN decomposition estimates. In Section 4, we estimate an unrestricted ARIMA(2,2,3)

model and various double-drift UC models using the postwar US real GDP data from

MNZ. We give concluding remarks and suggestions for future research in Section 5.

Our techincal results are provided in the Appendices.

2 Clark’s Double-Drift UC model

In this section, we describe Clark’s double-drift UC model with correlated components

and discuss identification conditions for the parameters of the model.

2.1 Structural Representation

Clark’s double-drift UC model is slightly different from the UC model of MNZ. In

particular, Clark distinguished between “smooth trend” and “irregular trend.” His

model has the form

yt = τt + ct(1)

τt = τt−1 + dt−1 + wt, wt ∼ iid N(0, σ2
w)(2)

dt = dt−1 + ut, ut ∼ iid N(0, σ2
u)(3)

φ(L)ct = vt, vt ∼ iid N(0, σ2
v)(4)

where yt denotes the log of real GDP, τt denotes the unobserved overall (smooth) trend,

dt denotes the unobserved random walk (irregular) drift, and ct denotes the unobserved

AR(2) stationary cycle with φ(L) = (1−φ1L−φ2L
2). The UC model (1) - (4) is often

called the “double-drift” model since the drift dt to the random walk trend τt also

follows a random walk. As a result, the double-drift model implies that yt ∼ I(2).
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The double-drift model with correlated components has the additional parameters

cov(wt, ut) = σwu, cov(wt, vt) = σwv, and cov(ut, vt) = σuv. To achieve identification,

Clark assumed that the error terms vt, wt and ut are mutually uncorrelated. In what

follows, the UC model (1) - (4) with uncorrelated components will be referred to as

the “double-drift UC0 model”.

The model used by MNZ is a restricted version of (1) - (4) with σ2
u = 0 so that

dt = d. In addition, they allowed cov(wt, vt) = σwv 6= 0 and showed that the resulting

model is exactly identified. Following MNZ, we will refer to this model as the “UCUR

model”, and we will refer to this model with the restriction σwv = 0 as the “UC0

model”.

Using the same data as in MNZ1, the maximum likelihood (ML) estimates for

the parameters of the UC0 and double-drift UC0 models are given in Table 1. Our

parameter estimates for the UC0 model match those of MNZ, and our estimates of

the double-drift UC0 model parameters2 are very similar to the UC0 model estimates.

Even though the estimate of σ̂u is small, its value is not exactly zero and avoids the

so-called “pile-up” problem (see Stock and Watson 1998, and DeJong and Whiteman

1991) associated with moving average models with roots near the unit circle.

Since σ̂u 6= 0, the estimate of the drift dt from the double-drift UC0 model is time

varying. The filtered and smoothed estimates of the drift component (d̂t|t and d̂t|T )

are depicted in Figure 1. Both estimates indicate a generally decreasing trend function

until the mid 1990s, with the filtered estimates being more volatile than the smoothed

1The quarterly real GDP data covers the period 1947:I to 1998:II. The UC models in the paper

were estimated using S-PLUS 7.0 with S+FinMetrics 2.0 as described in Zivot, Wang, and Koopman

(2004), and Zivot and Wang (2005). For comparison purposes, all the log likelihood values presented

in the paper are computed by summing up the same number (204) of values from the prediction error

decomposition of the log-likelihood.
2Clark(1987) reported 1.53, -0.59, 0.64, 0.01, and 0.74 as parameter estimates.
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estimates, particularly at the beginning of the sample. The smoothed estimates show

a slight decline through the late 1950s, level out and increase slightly until 1964, then

drop steadily until the early 1990s at which they level off and begin to increase. Figure

2 contrasts the filtered and smoothed cycle estimates (ĉt|t and ĉt|T ) from the UC0

and double-drift UC0 models. The estimates from the two models have the same

general shape. However, the filtered cycle estimates from the UC0 model lie above

the double-drift UC0 estimates prior to 1980 and lie below afterwards. Moreover, the

UC0 estimates are below trend throughout the 1990s whereas the double-drift UC0

estimates are above trend after 1996. The smoothed estimates from the two models

agree much more closely than the filtered estimates. The main difference is that the

UC0 estimates stay below trend through the 1990s whereas the double-drift estimates

rise above trend after 1996.

Stock and Watson (1998) emphasized that when σ̂u is close to zero, the usual

asymptotic results for the ML estimator may not be reliable. In particular, σ̂u can be

biased toward zero and its distribution can be non-normal. For more reliable estimation

and inference when σu is small, they proposed an alternative asymptotic theory based

on the local-to-zero assumption

(5) σu = λ/T

and developed asymptotically median unbiased estimates for λ and asymptotically

valid confidence intervals for λ. The double-drift UC0 model (1)-(4) may be put in

Stock and Watson’s local-to-zero framework by rewriting it as follows:

∆yt = dt−1 + ζt, ζt = wt +
∆vt

φ(L)
(6)

∆dt = (λ/T )ηt, (λ/T )ηt = ut

where ζt is an ARMA(2,2) process. Under the assumption of uncorrelated shocks, the

model satisfies the assumptions of Stock and Watson (1998). Using Nyblom’s L statis-
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tic for testing the null hypothesis that λ = 0 (see Nyblom 1989), the median unbiased

estimate of σu is 0.036, which is almost twice as large as the ML estimate reported in

table 1, and the 90 percent confidence interval for σu is [0, 0.1662]. Figure 3 and 4

show the re-estimated trends and cycles from the double-drift UC0 model imposing the

restriction that σu equals the median unbiased estimate (σu = 0.036). These estimates

are very similar to the unrestricted ML estimates. The main difference is that the

smoothed drift estimates show slightly larger variation.

2.2 Reduced Form ARIMA(2,2,3) Model and Identification of

Structural UC Model

By rearranging equations (1)-(4), we get the following reduced form representation for

the double-drift UC model:

(7) φ(L)(1− L)2yt = (1− L)2vt + φ(L)(1− L)wt + φ(L)ut

Since the MA terms on the right hand side of (7) indicate a maximum lag-length of

3, from the results on the aggregation of ARMA processes (see Hamilton 1994, pp 102

- 108), the model (7) can be equivalently described by the following ARIMA(2,2,3)

process:

(8) φ(L)(1− L)2yt = εt + θ1εt−1 + θ2εt−2 + θ3εt−3

We note that the structural UC model (1)-(4) may impose complicated restrictions on

the parameters of (8), and that the autocorrelation structure of (8) with unrestricted

parameters may not be compatable with the structural UC model.

With the AR polynomials on the left hand side of equations (7) and (8) being the

same, we can derive a relationship between the parameters of the structural UC model
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and the reduced form ARIMA(2,2,3) model as follows. From the right-hand side of (7),

the autocovariances of φ(L)(1−L)2yt in terms of the structural UC model parameters

are

γ0 = 6σ2
v + 2(1 + φ1 + φ2

1 − φ1φ2 + φ2
2)σ

2
w + (1 + φ2

1 + φ2
2)σ

2
u(9)

+ 2(3 + 3φ1 − φ2)σwv + 2(1 + 2φ1 − φ2)σuv

+ 2(1 + φ1 + φ2
1 − φ1φ2 + φ2

2)σwu

γ1 = −4σ2
v + (−1− 2φ1 + φ2 + 2φ1φ2 − φ2

1 − φ2
2)σ

2
w + (−φ1 + φ1φ2)σ

2
u

+ (−4− 4φ1 + 3φ2)σwv + 2(−1− φ1 + φ2)σuv

+ (−1− 2φ1 + φ2 + 2φ1φ2 − φ2
1 − φ2

2)σwu

γ2 = σ2
v + (φ1 − 2φ2 − φ1φ2)σ

2
w − φ2σ

2
u + (1 + φ1 − 3φ2)σwv

+ (1− φ2)σuv + (φ1 − 2φ2 − φ1φ2)σwu

γ3 = φ2(σ
2
w + σwv + σwu)

γj = 0, j ≥ 4

Similarly, from the right-hand side of (8), the autocovariances of φ(L)(1 − L)2yt in

terms of the reduced form ARIMA(2,2,3) parameters are

γ0 = σ2
ε (1 + θ2

1 + θ2
2 + θ2

3)(10)

γ1 = σ2
ε (θ1 + θ1θ2 + θ2θ3)

γ2 = σ2
ε (θ2 + θ1θ3)

γ3 = σ2
ε θ3

γj = 0, j ≥ 4

From (9) and (10), there are only four non-zero autocovariance equations to determine

the six unknown structural UC model parameters (σ2
w, σ2

u, σ
2
v , σwu, σwv, σuv). To satisfy

the order condition for identification, at least two additional restriction are needed.
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This result implies that the double-drift UC0 model, which imposes three restrictions

(σwv = σwu = σuv = 0), is overidentified. Consequently, as in MNZ, a specification test

of the double-drift UC0 model may be constructed by testing the overidentification

restriction.

To solve the identification problem, we consider two options:

(i) Increase the number of autocovariance equations by increasing the lag order of

the AR cycle.

(ii) Restrict two parameters of the structural UC model.

To satisfy the order condition for identification using option (i), we must extend the

AR lag order for the transitory cycle to at least 4. The reduced form representation

for the UC model then becomes an ARIMA(4,2,5):

φ(L)(1− L)2yt = εt + θ1εt−1 + θ2εt−2 + θ3εt−3 + θ4εt−4 + θ5εt−5(11)

where φ(L) = (1− φ1L− φ2L
2 − φ3L

3 − φ4L
4)

The unrestricted ARIMA(4,2,5) model for real GDP, however, is likely to be an overpa-

rameterized model that is difficult to estimate precisely due to the presence of canceling

or near canceling roots of the AR and MA polynomials. For example, Table 2 gives

the ML estimates of the parameters in (11) for log real GDP. None of the parameters

are estimated precisely, and one of the estimated MA roots lies on the unit circle.

In what follows, we will follow option (ii) and consider solving the identification

problem by restricting some parameters of the double-drift UC model. We empha-

size that the restrictions are completely arbitrary from the viewpoint of identification.

However, from an economic viewpoint, we may prefer certain kinds of restrictions over

others. For example, one may argue that it is economically sensible to restrict the

correlation between the drift shock ut and cycle shock vt to be zero because the former
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is permanent and the latter is transitory. This type of restriction is commonly used in

the UC model literature as well as the structural vector autoregression literature (see

Watson, 1994). Given that there are three sources of shocks, we consider identification

under the following sets of restrictions:

Case I: σwu = σuv = 0 (σwv 6= 0)

Case II: σwu = σwv = 0 (σuv 6= 0)

Case III: σwv = σuv = 0 (σwu 6= 0)

In case I, the shocks to the drift, ut, are uncorrelated with the shocks to the smooth

trend, wt, and shocks to the cycle, vt. Since we allow for correlation between shocks to

τt and Ct, the model is similar to the correlated components model of MNZ. Imposing

the case I restrictions in (9) gives the system of equations

(12) γ = Φ1σ1

where γ = (γ0, γ1, γ2, γ3)
′ is the vector of reduced form autocovariances from (10),

σ1 = (σ2
v , σ

2
w, σ2

u, σwv)
′, and

Φ1 =




−6 2(1 + φ1 + φ2
1 − φ1φ2 + φ2

2) 1 + φ2
1 + φ2

2 2(3 + 3φ1 − φ2)

−4 −1− 2φ1 + φ2 + 2φ1φ2 − φ2
1 − φ2

2 −φ1 + φ1φ2 −4− 4φ1 + 3φ2

1 φ1 − 2φ2 − φ1φ2 −φ2 1 + φ1 − 3φ2

0 φ2 0 φ2




Provided Φ1 has full rank, the UC model parameters may be recovered from the reduced

form autocovariances from the relation σ1 = Φ−1
1 γ. This mapping, however, does not

by itself guarantee that the resulting structural error covariance matrix is positive

definite. That is, the autocovariance structure from the unrestricted reduced form
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ARIMA(2,2,3) model may not be compatable with the autocorrelation structure from

the identified structural UC model.

In case II, we assume that shocks to the smooth trend, wt, are uncorrelated with

the remaining shocks but we allow for correlation between the shocks to dt and Ct.

Imposing these restrictions on (9) gives the system of equations

(13) γ = Φ2σ2

where σ2 = (σ2
v , σ

2
w, σ2

u, σuv)
′ and

Φ2 =




−6 2(1 + φ1 + φ2
1 − φ1φ2 + φ2

2) 1 + φ2
1 + φ2

2 2(1 + 2φ1 − φ2)

−4 −1− 2φ1 + φ2 + 2φ1φ2 − φ2
1 − φ2

2 −φ1 + φ1φ2 2(−1− φ1 + φ2)

1 φ1 − 2φ2 − φ1φ2 −φ2 1− φ2

0 φ2 0 0




Provided Φ2 has full rank, the UC model parameters may be recovered from the reduced

form autocovariances from the relation σ2 = Φ−1
2 γ. However, as in case I, the value of

σ2 may not imply a positive definite structural covariance matrix.

In case III, the shocks to the cycle are uncorrelated with the shocks to the trends,

and the shocks to trends are allowed to be correlated, which produces the system of

equations

γ = Φ3σ3

where σ3 = (σ2
v , σ

2
w, σ2

u, σwu)
′ and

Φ3 =




−6 2(1 + φ1 + φ2
1 − φ1φ2 + φ2

2) 1 + φ2
1 + φ2

2 2(1 + φ1 + φ2
1 − φ1φ2 + φ2

2)

−4 −1− 2φ1 + φ2 + 2φ1φ2 − φ2
1 − φ2

2 −φ1 + φ1φ2 −1− 2φ1 + φ2 + 2φ1φ2 − φ2
1 − φ2

2

1 φ1 − 2φ2 − φ1φ2 −φ2 φ1 − 2φ2 − φ1φ2

0 φ2 0 φ2
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The matrix Φ3, however, is singular since the second column is identical to the fourth

column. Since the rank condition for identification is not satisfied, the parameters of

the double-drift UC model in case III are not identified.

3 BN Decomposition from ARIMA(2,2,3) Model

To compare the estimated overall trend and cycle from the double-drift UC model with

those from the BN decomposition, we need to derive the BN decomposition algorithm

for an ARIMA(2,2,3) model. Our derivation of the BN decomposition is an application

of Newbold and Vougas (1996) and Morley (2002) to an ARIMA(2,2,3) process. By

definition, the BN trend is the long-run forecast of the level of the series minus any

deterministic portion of the forecast. The BN cycle is then the gap between the current

level of the series and the BN trend (see Figure 5). Formally, we have

BNt = lim
J→∞

Et[yt+J −DTJ ](14)

= yt + lim
J→∞

Et[J∆yt + J∆2yt+1 + (J − 1)∆2yt+2 + · · ·+ ∆2yt+J −DTJ ]

where BNt is the BN trend, DTJ is the deterministic trend, and Et[·] denotes expecta-

tion conditional on information available at time t. The second line of (14) makes use

of the fact that yt is an I(2) process. As shown in Newbold and Vougas, the BN decom-

position of an I(2) process produces not only estimates of trends and cycles but also

irregular trends. Using the arguments of MNZ, these BN decomposition estimates will

correspond to the Kalman filter estimates from a double-drift UC model that produces

the same autocorrelation structure as the underlying ARIMA(2,2,3) model. Explicit

representations for BNt, DTBN
t , and CBN

t that are valid for an ARIMA(2,2,3) model

are derived in Appendix I. There we show that each component has the form:

(15) BNt = yt − ZT2(I4 −T)−2αt|t
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(16) DTBN
t = ∆yt + ZT(I4 −T)−1αt|t

(17) CBN
t = ZT2(I4 −T)−2αt|t

where Z =
(

1 0 0 0
)
, and

αt =




∆2yt

φ2∆
2yt−1 + θ1εt + θ2εt−1 + θ3εt−2

θ2εt + θ3εt−1

θ3εt




, T =




φ1 1 0 0

φ2 0 1 0

0 0 0 1

0 0 0 0




To illustrate the equivalence between the estimated BN trend and cycle from an

unrestricted ARIMA(2,2,3) model and the Kalman filtered estimates of trend and cycle

from double-drift UC models under the case I and case II restrictions, we performed

the following simulation experiment. First, we chose the following parameters for the

ARIMA(2,2,3) model: φ1 = 1.44, φ2 = −0.62, θ1 = −2.10, θ2 = 1.42, θ3 = −0.30 and

σε = 0.98.3 Next, we calculated the corresponding parameters of the double-drift UC

models under the case I and case II restrictions using (12) and (13), respectively. These

values are given in Table 3. The parameters of these double-drift UC models satisfy

the positive definite covariance condition. Then, we simulated 300 observations from

the case I double-drift UC model. Finally, we computed the BN trend, drift, and cycle

estimates from the fixed ARIMA(2,2,3) parameters using (15) - (17), and the Kalman

filter trend, drift, and cycle estimates from the double-drift UC model parameters in

Table 3.

Figure 6 shows that the estimated BN cycle using (17) is equivalent to the Kalman

filter estimates of ct from the double-drift UC models models under the case I and

3Under the given parameters, AR roots are 1.1613±0.51411i and MA roots are 2.3824 and 1.1755±
0.13206i. The modulus of the roots are 1.27, 2.38, and 1.1829, respectively.
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II restrictions. Although not shown, the estimated overall trend and irregular drift

from the BN decomposition using (15) and (16) are also identical to the Kalman filter

estimates of τt and dt, respectively. This simulation example illustrates a case in which

the BN decomposition of an unrestricted ARIMA(2,2,3) model produces the same esti-

mated cycles and trends as two exactly identified double-drift UC model under different

identifying restrictions. However, we stress that the BN decomposition from an un-

restricted ARIMA(2,2,3) model may not be compatible with a given double-drift UC

model under the case I or case II restrictions because the mapping between the reduced

form model parameters and the UC model parameters may not produce a structural

error covariance matrix that is positive definite. Indeed, in the next section, we show

that this is the case with U.S. real GDP.

4 Empirical Results for U.S. Real GDP

In this section, we report maximum likelihood (ML) estimates of the reduced form

ARIMA(2,2,3) model as well as double-drift UC models under the case I and case II

restrictions using the same postwar U.S. log real GDP data as MNZ.

4.1 ML Estimation of Reduced Form ARIMA(2,2,3) Model

Table 4 reports the exact ML estimates of the parameters in the ARIMA(2,2,3) model

(8).4 All the estimates are significant at the 5 percent level. However, one of the

4When the parameters are estimated, additional restrictions are necessary. In maximizing the

log-likelihood function, we imposed stationarity constraints on the AR parameters and invertibility

constraints on MA parameters. For specific transformation equations and the procedure, see Appendix

II.
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estimated MA roots is very close to the unit circle which suggests a potential pile-up

problem. The period of the cycle implied by the estimated AR roots is about 2.43

years, which is much shorter than the cycle period, 7.62 years, estimated from Clark’s

double-drift UC0 model.

Figure 7 shows the estimated trends and cycle computed from the BN decom-

position of the estimated ARIMA(2,2,3) model. The cycle displays a much smaller

amplitude and shorter period than the filtered cycle estimate from Clark’s double-drift

UC0 model, and is very similar to the BN cycle reported in MNZ based on an estimated

ARIMA(2,1,2) model.5 Interestingly, the estimate of the BN drift (Figure 8) is almost

identical to the filtered estimate of dt from the double-drift UC0 model (Figure 1).

If we assume that the ARIMA(2,2,3) model has a unit MA root, then the model

collapses to an ARIMA (2,1,2) model. Suppose the data is generated by the following

ARIMA(2,1,2) model with an intercept term:

(18) φ(L)(1− L)yt = µ∗ + εt + θ∗1εt−1 + θ∗2εt−2

Multiplying both sides of (18) by (1−L) and rearranging gives the following ARIMA(2,2,3)

model with a unit MA root:

(19) φ(L)(1− L)2yt = εt + (θ∗1 − 1)εt−1 + (θ∗2 − θ∗1)εt−2 − θ∗2εt−3

Table 5 reports the exact ML estimates of the ARIMA(2,1,2) model, and the implied

parameter values of the ARIMA(2,2,3) model with a unit MA root. The ARIMA(2,2,3)

model parameters implied by the estimated ARIMA(2,1,2) model parameters are very

close to the direct ML estimates of the ARIMA(2,2,3) parameters given in Table 4.6

5The average difference between cycles from both models is just 0.0288, which is 5.5 percentage of

standard deviation of the estimated cycle. If we take the different number of observations and initial

stage of Kalman filter into consideration, the difference is negligible.
6To investigate whether the result depends on the data set, we also used real GDP data up to
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If the ARIMA(2,2,3) reduced form model has a unit moving average root, then the

double-drift UC model collapses to a UC model with a constant drift random walk

trend. The near unit root in the estimated ARIMA(2,2,3) model indicates that the

variance to the drift shock in the double-drift UC model is close to zero.

4.2 ML Estimates of the Double-Drift UC Models

In this subsection, we estimate by ML the double-drift UC models for the log of real

GDP under the case I and case II restrictions. To do this, we put the models in state

space form and compute the prediction error decomposition of the log-likelihood using

the Kalman filter.7 The measurement and transition equations for the UC models have

the form

yt = Z αt

αt = T αt−1 + R ηt, ηt ∼ iid N(0,Q)

where Z =
(

1 0 1 0
)

, αt =
(

τt dt Ct Ct

)′
, ηt =

(
wt ut vt

)′
, and

T =




1 1 0 0

0 1 0 0

0 0 φ1 φ2

0 0 1 0




, R =




1 0 0

0 1 0

0 0 1

0 0 0




, Q =




σ2
w σwu σwv

σwu σ2
u σuv

σwv σuv σ2
v




2005:II from the Federal Reserve Bank of St Louis. Even though we cannot get convergence in the

maximization, the result seems to show stronger evidence for having unit MA root in ARIMA(2,2,3)

model.
7In the estimation, stationarity conditions on the autoregressive parameters and a positive defi-

niteness condition on the innovation covariance matrix are imposed. The details of these restrictions

are given in the Appendix II.
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For the specification of the initial state vector, we utilize the exact initialization scheme

of Koopman (1997) and described in Koopman, Shephard and Doornik (2001).

4.2.1 ML Estimation of Double-Drift Model under Case I

Table 6 gives the ML estimates of the UC model parameters under the case I restrictions

σwu = σuv = 0 (σwv 6= 0). All estimates, except σ̂u, are statistically different from

zero at the 5 percent level. The estimated correlation between the smooth trend and

the cycle is ρ̂wv = −0.908, which is very close to the corresponding estimate reported

by MNZ. Table 6 also reports estimates of the UC model parameters implied by the

estimated ARIMA(2,2,3) parameters using (12). The two sets of estimates are the same

to the fourth decimal place, and the log-likelihood for the UC model is the same as the

log-likelihood from the ARIMA(2,2,3) model. Using the log-likelihood from the double-

drift UC0 model in Table 1 together with the case I log-likelihood from Table 6, we

may compute a likelihood ratio (LR) test statistic for the overidentification restriction

σwv = 0. This statistic is 2.0484, with a χ2(1) p-value of 0.1523, which shows moderate

evidence against the restriction σwv = 0.

Figures 8 and 9 show the filtered and smoothed estimates of the overall trend, ir-

regular drift, and cycle from the double-drift model with σwu = σuv = 0. The filtered

estimates of the cycle and trend components are almost identical to the BN decomposi-

tion estimates computed from the ARIMA(2,2,3) model. The filtered estimates of the

irregular drift are very similar those from from Clark’s double-drift UC0 model, even

though the filtered cycle estimates are very different. This result occurs because both

models assume that the drift shock is independent of the other shocks. The smoothed

drift estimates have the same general shape as those from Clark’s double-drift UC0

model but show less variation. As noted by Proietti (2003), the smoothed cycle esti-

mates are much more variable than the filtered estimates and have subtantially different
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characteristics.

To investigate the robustness of the estimation, we re-estimated the model impos-

ing the restriction σu = 0.036, which is the median unbiased estimate of σu from the

double-drift UC0 model.8 The resulting parameter estimates (Table 7), and trend,

drift, and cycle estimates (Figure 10 and 11) show only minor differences.

4.2.2 ML Estimation of Double-Drift Model under Case II

Table 8 reports ML estimates for the double-drift model, and the implied estimates

from the reduced form ARIMA(2,2,3) model using (13), under the case II restrictions

σwu = σwv = 0 (σuv 6= 0). The ML estimates and log-likelihood value are similar

to those from Clark’s double-drift UC0 model reported in Table 1. In particular, the

estimate of σuv is close to zero and has a moderately large estimated standard error

which suggests that ut and vt are uncorrelated. However, this is misleading since the

estimate of σu is close to zero. In fact, the implied estimate of ρuv is exactly −1.

Moreover, the ML estimates are not the same as those implied by the ARIMA(2,2,3)

model and the implied estimates lead to a structural error covariance matrix that is

not positive definite. To see this, the estimate of ρuv implied by the ARIMA(2,2,3)

estimates is -31.12.9 These results indicate that double-drift UC model under the case

II restrictions are not compatible with the data.

Figures 12 and 13 show the filtered and smoothed estimates of overall trend, irreg-

ular drift, and cycle from the double-drift model with σwu = σwv = 0. The estimated

cycle is very close to the estimated cycle from Clark’s double-drift UC0 model. The

8The medium unbiased estimate does not depend on the assumption of the correlation between

trend and cycle shocks. In the equation (6), the contemporaneous correlation between the shock (vt)

to the smooth trend and the shock (wt) to cycle does not change the dynamics of the error term (ζt).
9ρuv = −0.1566/(0.0116× 0.4338) = −31.12.
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estimated drift, however, is similar in shape to estimated drift from Clark’s model but

shows much more variation due to the perfect negative correlation between the drift

and cycle shocks.

5 Conclusion

This paper extends the results of MNZ to Clark’s double-drift UC model that allows the

growth rate of real GDP to follow a random walk. We show that the double-drift model

with correlated components has an ARIMA(2,2,3) reduced form, and requires at least

two restrictions for identification. Using the same postwar real GDP data as MNZ,

we find that the double-drift model with uncorrelated shocks to the smooth trend and

cycle produces results that are equivalent to those from an unrestricted ARIMA(2,2,3)

model, and are similar to the results of MNZ. As in MNZ, we find evidence against the

overidentification restriction implied by Clark’s model with uncorrelated components.

We further show that the double-drift model with uncorrelated shocks to the irregular

drift and cycle is not supported by the data.

The primary purpose of our paper was to show that the logic and conclusions of

MNZ hold in a univariate UC model with a flexible trend specification. Recently,

several authors (e.g., Sinclair 2005 and Basistha 2005) have extended the framework

of MNZ to multivariate models. In future research we plan to investigate the impact

of the trend specification in multivariate UC models with correlated components.
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Appendix I: Beveridge-Nelson Decomposition for

ARIMA(2,2,3) Process

The ARIMA(2,2,3) model (8) may be put in state space form with measurement

equation

∆2yt = Z αt

and transition equation

αt = T αt−1 + R εt, εt ∼ iid N(0, σ2
ε )

where Z =
(

1 0 0 0
)

and

αt =




∆2yt

φ2∆
2yt−1 + θ1εt + θ2εt−1 + θ3εt−2

θ2εt + θ3εt−1

θ3εt




, T =




φ1 1 0 0

φ2 0 1 0

0 0 0 1

0 0 0 0




, R =




1

θ1

θ2

θ3




By definition, the BN trend, BNt, is the long-run forecast of yt minus any deter-

ministic components, DTt:

BNt = lim
J→∞

Et[yt+J − J DTt](1)

= lim
J→∞

Et[yt + ∆yt+1 + ∆yt+2 + ∆yt+3 + · · ·+ ∆yt+J − J DTt]

= lim
J→∞

Et[yt + ∆yt + ∆2yt+1

+ ∆yt + ∆2yt+1 + ∆2yt+2

+ ∆yt + ∆2yt+1 + ∆2yt+2 + ∆2yt+3

+ · · ·

+ ∆yt + ∆2yt+1 + ∆2yt+2 + · · ·+ ∆2yt+J − J DTt]

= yt + lim
J→∞

Et[J∆yt + J∆2yt+1 + (J − 1)∆2yt+2 + · · ·+ ∆2yt+J − J DTt]
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Because the transition equation of the state space representation is a difference equa-

tion, Et[∆
2yt+i] may be expressed in terms of T and αt, where the eigenvalues of T

are less than one in modulus, as follows:

(2) Et[∆
2yt+i] = Et[Zαt+i] = ZTiαt|t

where αt|t = Et(αt) is the filtered estimator of αt from the Kalman filter. By substi-

tuting (2) into (1), BNt may be reexpressed as

BNt = yt + lim
J→∞

J(∆yt −DTt)(3)

+ lim
J→∞

{JZTαt|t + (J − 1)ZT2αt|t

+ · · ·+ ZTJαt|t}

= yt + lim
J→∞

J(∆yt −DTt) + lim
J→∞

SJ αt|t

where SJ = JZT+ (J − 1)ZT2 + · · ·+ZTJ . The expression for SJ may be simplified

as follows. First multiply SJ by T and then subtract SJ giving

SJ(T− I4) = ZT2 + ZT3 + · · ·+ ZTJ+1 − JZT

= Z (T2 + T3 + · · ·+ TJ+1)− JZT

= Z T2(I4 −TJ)(I4 −T)−1 − JZT

Then, multiply by −(I4 −T)−1 to solve for SJ giving

(4) SJ = −Z T2(I4 −TJ)(I4 −T)−2 + JZT(I4 −T)−1

Substituting (4) for SJ in (3) then gives

BNt = yt + lim
J→∞

J(∆yt −DTt)(5)

+ lim
J→∞

{−ZT2(I4 −TJ)(I4 −T)−2 + JZT(I4 −T)−1}αt|t

= yt + lim
J→∞

J{∆yt + ZT(I4 −T)−1αt|t −DTt} − ZT2(I4 −T)−2αt|t
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For BNt to be finite, define the deterministic drift as

DTt = ∆yt + ZT(I4 −T)−1αt|t

Adopting DTt defined above produces

BNt = yt − ZT2(I4 −T)−2αt|t

The BN cycle may then be defined as the difference between yt and BNt:

CBN
t = yt −BNt

= ZT2(I4 −T)−2αt|t
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Appendix II: Numerical Optimization

1. Optimization Procedure

Many of the estimation results in the paper depend on the initial values for the

optimizer. To avoid getting stuck at potential local maxima, we used a genetic

algorithm (Matlab program gagordy.m) to find adequate initial values. Genetic

algorithms (GAs) are based on a biological metaphor. Likelihood values (“fit-

ness” in GA terminology) of candidates contribute to choose the next generation

of candidates without considering the curvature of the likelihood function. An

attractive feature of GAs is that they can handle local optimum because they

searches various regions of the parameter space by generating some candidates

randomly, which are set by a “mutation ratio.” However, since GAs take a long

time to converge with predefined criteria, we only used them to find an adequate

initial value by setting a loose criteria.

2. Parameter Restriction

Here we extend the parameter constraints used in Kim and Nelson (1999, Section

2.3.1) to force the AR(2) cycle component to be stationary. In their derivation,

they imposed the restriction that the roots of the AR(2) polynomial are real.

Here, we remove this restriction and allow the roots to be complex.

• Parameter Restriction for Stationarity of AR(2)

For the AR(2) polynomial to have complex number roots, it is written as

follows:

(z − (a + bi))(z − (a− bi)) = z2 − 2az + (a2 + b2)
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where a2 + b2 < 1 for the modulus of roots to be within unit circle. The

parameters of the AR(2) are given as

φ1 = 2a, φ2 = −(a2 + b2)

Let z1 =
xuc
1

1+|xuc
1 | , z2 =

|xuc
2 |

1+|xuc
2 | where xuc

i is an unrestricted real number. To

satisfy the constraint of a2 + b2 < 1, we write a = z1, b2 = z2(1− z2
1). The

relations for the AR(2) parameters are then

φ1 = 2z1

φ2 = −(z2
1 + z2(1− z2

1))

• Parameter Restriction for Invertibility of MA(3)

For the MA(3) polynomial to have complex number roots, it is written as

follows:

(z−(a+bi))(z−(a−bi))(z−c) = z3−(2a+c)z2+(a2+b2+2ac)z−c(a2+b2)

where a2 + b2 < 1 and |c| < 1 for the modulus of roots to be within unit

circle. The parameters of the MA(3) are given as

θ1 = −(2a + c), θ2 = (a2 + b2 + 2ac), θ3 = −c(a2 + b2)

Let z1 =
xuc
1

1+|xuc
1 | , z2 =

|xuc
2 |

1+|xuc
2 | , z3 =

xuc
3

1+|xuc
3 | where xuc

i is an unrestricted

real number. To satisfy the constraint of a2 + b2 < 1 and |c| < 1, we write

a = z1, b2 = z2(1 − z2
1), c = z3. The relations for the MA(3) parameters

are then

θ1 = −(2z1 + z3)

θ2 = +(z2
1 + z2(1− z2

1) + 2z1z3)

θ3 = −z3(z
2
1 + z2(1− z2

1))
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Table 1: Maximum Likelihood Estimates for UC0 Model

MNZ UC0 model1 Clark UC0 model1

estimate standard error estimate standard error

d 0.8119 (0.0501) - -

φ1 1.5303 (0.1019) 1.5007 (0.1177)

φ2 -0.6097 (0.1150) -0.5877 (0.1284)

σw 0.6893 (0.1039) 0.6423 (0.1324)

σu - - 0.0199 (0.0127)

σv 0.6199 (0.1320) 0.6567 (0.1514)

Log likelihood -285.3815 -287.1492

AR roots 1.2550± 0.2555i 1.2769± 0.2670i

1. Estimation sample: 1947:I - 1998:II (# 206), log likelihood sample: 1947:III -

1998:II (# 204)
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Table 2: Maximum Likelihood Estimates for ARIMA(4,2,5)

φ1 φ2 φ3 φ4 σ2
ε

-0.3398 -0.1382 -0.2503 -0.0668 0.0101

(0.5552) (0.4626) (0.3655) (0.2687)

θ1 θ2 θ3 θ4 θ5

-0.2789 -0.1928 -0.0236 -0.2725 -0.2239

(0.5491) (0.6255) (0.5125) (0.4056) (0.1876)

Inverted AR Roots : 0.25± 0.58i, − 0.32, − 0.52

Inverted MA Roots : 1, 0.20± 0.74i, − 0.56± 0.27i

* Standard errors are in parentheses. Estimation was performed

using Eviews 5.1.

Table 3: UC model parameters implied by ARIMA(2,2,3) model

Case I UC Model Case II UC Model

φ1 1.4400 1.4400

φ2 -0.6200 -0.620

σw 0.5394 0.6871

σu 0.1089 0.1089

σv 0.4181 0.5252

σwu 0 0

σwv 0.1737 0

σuv 0 0.0156
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Table 4: Maximum Likelihood Estimates for ARIMA(2,2,3)

Estimate Standard Error

φ1 1.3368 (0.1502)

φ2 -0.7006 (0.1521)

θ1 -2.0379 (0.1844)

θ2 1.5518 (0.3487)

θ3 -0.5095 (0.1902)

σε 0.9748 (0.0485)

Log likelihood -286.125

AR roots 0.9540± 0.7191i

MA roots 1.0093 + 2.6883e− 24i, 1.0181± 9.5286e− 1i

* Estimation sample: 1947:III - 1998:II (# 204); log likelihood sample:

1947:III - 1998:II (# 204)
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Table 5: Maximum Likelihood Estimates for ARIMA(2,1,2)

ARIMA(2,1,2) ARIMA(2,2,3)

Estimate Standard Error Implied by ARIMA(2,1,2)

µ 0.8137 (0.0867) -

φ1 1.3418 (0.1450) 1.3418

φ2 -0.7057 (0.1492) -0.7057

θ1 -1.0541 (0.1803) -2.0541

θ2 0.5183 (0.1931) 1.5725

θ3 - - -0.5183

σε 0.9694 (0.0479) 0.9694

Log likelihood -283.43

AR roots 0.9507691± 0.7163495i

MA roots 1.016857± 0.9461868i

* Estimation sample: 1947:II - 1998:II (# 205); log likelihood sample: 1947:III -

1998:II (# 204)
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Table 6: Double-Drift UC Model with σwu = σuv = 0

UC model implied by UC model3 (direct estimation)

ARIMA(2,2,3)1 ARIMA(2,1,2)2 estimate (standard error)

φ1 1.3368 1.3418 1.3368 (0.1484)

φ2 -0.7006 -0.7057 -0.7007 (0.1470)

σw 1.2458 1.2562 1.2458 (0.1704)

σu 0.0116 0.0000 0.0116 (0.0228)

σv 0.7613 0.7609 0.7613 (0.2895)

σwv -0.8610 -0.8660 -0.8610 (0.4269)

Log likelihood -286.125 -283.43 -286.125

1. Estimation sample: 1947:III - 1998:II (# 204), log likelihood sample: 1947:III - 1998:II (# 204)

2. Estimation sample: 1947:II - 1998:II (# 205), log likelihood sample: 1947:III - 1998:II (# 204)

3. Estimation sample: 1947:I - 1998:II (# 206), log likelihood sample: 1947:III - 1998:II (# 204)
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Table 7: ML Estimates for Double-Drift UC Model

with σwu = σuv = 0 and σu = 0.0036

Estimate Standard Error

φ1 1.3383 (0.1549)

φ2 -0.7024 (0.1690)

σw 1.2385 (0.1715)

σv 0.7540 (0.3059)

σwv -0.8450 (0.4191)

Log likelihood -286.6655

AR roots 0.9525829± 0.7184735i

* Estimation sample: 1947:I - 1998:II (# 206); log

likelihood sample: 1947:III - 1998:II (# 204)
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Table 8: Double-Drift UC Model with σwu = σwv = 0

UC model implied by UC model3 (direct estimation)

ARIMA(2,2,3)1 ARIMA(2,1,2)2 (estimate) (standard error)

φ1 1.3368 1.3418 1.4968 (0.1142)

φ2 -0.7006 -0.7057 -0.6103 (0.1283)

σw 0.8313 0.8438 0.6576 (0.1241)

σu 0.0116 0.0000 0.0200 (0.0145)

σv 0.4338 0.4365 0.6200 (0.1501)

σuv -0.1566 -0.1575 -0.0124 (0.0089)

Log likelihood -286.125 -284.6498 -288.9136

1. Estimation sample: 1947:III - 1998:II (# 204), log likelihood sample: 1947:III - 1998:II (# 204)

2. Estimation sample: 1947:II - 1998:II (# 205), log likelihood sample: 1947:III - 1998:II (# 204)

3. Estimation sample: 1947:I - 1998:II (# 206), log likelihood sample: 1947:III - 1998:II (# 204)
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Figure 1: Clark UC0 Double-Drift Model: Filtered and Smoothed Drift
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Figure 2: MNZ UC0 and Clark UC0 (Filtered and Smoothed Cycles)
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Figure 3: Clark model : Filtered Trend, Irregular Trend, and Cycle

Using Median-Unbiased Estimate of σu = 0.036
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Figure 4: Clark model : Smoothed Trend, Irregular Trend, and Cycle

Using Median-Unbiased Estimate of σu = 0.036
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Figure 5: Beveridge-Nelson Decomposition
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Figure 6: Cycles of Beveridge-Nelson Decomposition and UC-UR(2) for ARIMA(2,2,3)
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Figure 7: Beveridge-Nelson Decomposition for ARIMA(2,2,3)

(Trend, Irregular Trend, and Cycle)
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Figure 8: UC-UR(2) with Restrictions of σwu = σuv = 0

(Filtered Trend, Irregular Trend, and Cycle)
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Figure 9: UC-UR(2) with Restrictions of σwu = σuv = 0

(Smoothed Trend, Irregular Trend, and Cycle)
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Figure 10: Double-Drift UC model with with Restrictions of σwu = σuv = 0, and

σu = 0.036

Filtered Trend, Irregular Trend, and Cycle
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Figure 11: Double-Drift UC model with with Restrictions of σwu = σuv = 0, and

σu = 0.036

Smoothed Trend, Irregular Trend, and Cycle
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Figure 12: UC-UR(2) with Restrictions of σwu = σwv = 0

(Filtered Trend, Irregular Trend, and Cycle)
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Figure 13: UC-UR(2) with Restrictions of σwu = σwv = 0

(Smoothed Trend, Irregular Trend, and Cycle)
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