An Example of NLS in EVIEWS

This note gives an illustration of using EVIEWS to compute NLS estimates of the parameters of a nonlinear learning curve. The TIO2 and NERLOV data from lab 1 and are used in this example. The results given here should be compared to the maximum likelihood results obtained using GAUSS.

Estimation of the generalized learning curve

Start by creating the real unit cost variable


GENR RUCOST = (UCOSTT/DEFL)*100

Before computing NLS estimates of the parameters c1, ac (learning curve elasticity) and r you must specify starting values for these parameters. It is important to give good starting values in the application of nonlinear least squares. Unfortunately, it is often difficult to know what good starting values are.

For the generalized learning curve, convenient starting values are those obtained by OLS from the log-linear formulation from Lab 1. These values are: c1 = exp(6.0425) = 420, ac = -0.35 and r = 1.15. To set these starting values in EVIEWS use the PARAM command:


PARAM C(1) 420 C(2) -0.35 C(3) 1.15

EVIEWS automatically computes NLS estimates when the equation specified in the equation box is nonlinear in the parameters. For example, to estimate the nonlinear learning curve select Quick/Estimate Equation and in the equation box type


RUCOST = C(1)*(CUMT^(C(2)/C(3)))*PRODT^((1-C(3))/C(3))	

EVIEWS produces the following output

LS // Dependent Variable is RUCOST				
Date: 04/21/96   Time: 20:45				
Sample: 1955 1970				
Included observations: 16				
Convergence achieved after 7 iterations				
RUCOST = C(1)*(CUMT^(C(2)/C(3)))*PRODT^((1-C(3))/C(3))				
				
	Coefficient	Std. Error	t-Statistic	Prob.  
				
C(1)	 355.3629	 92.16187	 3.855856	 0.0020
C(2)	-0.299685	 0.071811	-4.173221	 0.0011
C(3)	 1.224989	 0.206624	 5.928589	 0.0000
				
R-squared	 	 0.900289	    Mean dependent var		 21.93174
Adjusted R-squared	 0.884948	    S.D. dependent var		 3.082034
S.E. of regression	 1.045403	    Akaike info criterion	 0.256166
Sum squared resid	 14.20728	    Schwarz criterion		 0.401026
Log likelihood		-21.75234	    F-statistic		 	58.68814
Durbin-Watson stat	 0.632589	    Prob(F-statistic)		 0.000000

You should compare these values and standard errors to the ones you obtained in lab 1.


An example of bad starting values

To illustrate the importance of using "good" starting values consider what happens if the following starting values are used:


PARAM C(1) 0 C(2) 0 C(3) 0.1

EVIEWS then computes the following

LS // Dependent Variable is RUCOST				
Date: 04/21/96   Time: 21:06				
Sample: 1955 1970				
Included observations: 16				
Convergence achieved after 1 iterations				
RUCOST = C(1)*(CUMT^(C(2)/C(3)))*PRODT^((1-C(3))/C(3))				
				
	Coefficient	Std. Error	t-Statistic	Prob.  
				
C(1)	 3.97E-20	 2.43E-18	 0.016345	 0.9872
C(2)	-2.23E-32	 0.752469	-2.97E-32	 1.0000
C(3)	 0.100000	 0.211334	 0.473185	 0.6439
				
R-squared		-36.467188	    Mean dependent var		 21.93174
Adjusted R-squared	-42.231370	    S.D. dependent var		 3.082034
S.E. of regression	 20.26455	    Akaike info criterion	 6.185106
Sum squared resid	 5338.475	    Schwarz criterion		 6.329967
Log likelihood		-69.18387	    Durbin-Watson stat		 0.067611

which does not make a whole lot of sense.


Testing hypotheses

To test hypotheses with NLS, you can use an F-statistic based on the differences in the SSR from the restricted and unrestricted regressions (just as in linear regression).


Estimation of the Cobb-Douglas cost function by NLS

Now consider estimating the parameters of the Cobb-Doublas cost function, using the Nerlove data, by NLS. First we estimate the cost function without any homogeneity constraints.


LS // Dependent Variable is LNC				
Date: 04/21/96   Time: 21:17				
Sample: 1 145				
Included observations: 145				
				
Variable	Coefficient	Std. Error	t-Statistic	Prob.  
				
C		-3.526503	 1.774367	-1.987471	 0.0488
LNY	 	0.720394	 0.017466	 41.24448	 0.0000
LNPK		-0.219888	 0.339429	-0.647819	 0.5182
LNPL	 	0.436341	 0.291048	 1.499209	 0.1361
LNPF	 	0.426517	 0.100369	 4.249483	 0.0000
				
R-squared	 	 0.925955	    Mean dependent var	 	1.724663
Adjusted R-squared	 0.923840	    S.D. dependent var	 	1.421723
S.E. of regression	 0.392356	    Akaike info criterion	-1.837299
Sum squared resid	 21.55201	    Schwarz criterion		-1.734653
Log likelihood		-67.54189	    F-statistic		 	437.6863
Durbin-Watson stat	 1.013062	    Prob(F-statistic)		 0.000000

This regression will give us starting values for NLS estimation. In particular k = exp(-3.52) = 0.30; r = 1/0.72 = 1.38; a1 = 1.38*(-0.22) = -0.30; a2 = 1.38*(0.43) = 0.60; a3 = 1.38*(0.43) = 0.60. Set these values using the PARAM command


PARAM C(1) 0.03 C(2) 1.38 C(3) -0.30 C(4)  0.6 C(5) 0.6 

Now estimate the cost function by NLS. Select Quick/Estimate Equation and type the following equation in the equation box COSTS = C(1)*(KWH^(1/C(2)))*(PK^(C(3)/C(2)))*(PL^(C(4)/C(2)))*(PF^(C(5)/ C(2)))

EVIEWS computes the following results (after 96 iterations!)


LS // Dependent Variable is COSTS				
Date: 04/21/96   Time: 21:34				
Sample: 1 145				
Included observations: 145				
Convergence achieved after 96 iterations				
COSTS = C(1)*(KWH^(1/C(2)))*(PK^(C(3)/C(2)))*(PL^(C(4)/C(2)))*(PF^(C(5)/				
        C(2)))				
				
	Coefficient	Std. Error	t-Statistic	Prob.  
				
C(1)	 5.40E-05	 3.26E-05	 1.653102	 0.1006
C(2)	 0.932777	 0.022693	 41.10413	 0.0000
C(3)	 0.376578	 0.122812	 3.066284	 0.0026
C(4)	 0.998964	 0.170813	 5.848288	 0.0000
C(5)	 0.350542	 0.086877	 4.034930	 0.0001
				
R-squared	 	 0.963708	    Mean dependent var		 12.97610
Adjusted R-squared	 0.962671	    S.D. dependent var		 19.79458
S.E. of regression	 3.824441	    Akaike info criterion	 2.716699
Sum squared resid	 2047.689	    Schwarz criterion		 2.819345
Log likelihood		-397.7068	    F-statistic			 929.4039
Durbin-Watson stat	 1.559691	    Prob(F-statistic)		 0.000000

Notice that the elasticities for capital, labor and fuel are all positive and that returns to scale appear to be about 1. However, the residuals do seem to indicate the returns to scale do vary with output (but not as much as the log- linear model indicates).

Next we estimate the cost function imposing the homogeneity constraint. Create the transformed variables


GENR C3 = COSTS/PF
GENR P13 = PK/PF
GENR P23 = PL/PF

Set the starting values


PARAM C(1) 5.40E-05 C(2) 0.93 C(3) 0.37 C(4) 0.99

and estimate the equation

C3 = C(1)*(KWH^(1/C(2)))*(P13^(C(3)/C(2)))*(P23^(C(4)/C(2)))

EVIEWS gives the output


LS // Dependent Variable is C3				
Date: 04/21/96   Time: 21:47				
Sample: 1 145				
Included observations: 145				
Convergence achieved after 8 iterations				
C3 = C(1)*(KWH^(1/C(2)))*(P13^(C(3)/C(2)))*(P23^(C(4)/C(2)))				
				
	Coefficient	Std. Error	t-Statistic	Prob.  
				
C(1)	 0.000701	 0.000376	 1.864379	 0.0643
C(2)	 0.933315	 0.022219	 42.00581	 0.0000
C(3)	-0.048998	 0.090111	-0.543760	 0.5875
C(4)	 0.597773	 0.097889	 6.106614	 0.0000
				
R-squared	 	0.958224	    Mean dependent var		 0.532489
Adjusted R-squared	 0.957335	    S.D. dependent var		 0.736401
S.E. of regression	 0.152107	    Akaike info criterion	-3.739148
Sum squared resid	 3.262239	    Schwarz criterion		-3.657031
Log likelihood	 	69.34212	    F-statistic		 	1078.053
Durbin-Watson stat	 1.565581	    Prob(F-statistic)		 0.000000

It is now trivial to compute an F-statistic to test the hypothesis of homogeneity of degree one in inpute prices.