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Conditional vs. Unconditional Risk Measures

Let +1 denote an asset return between times  and + 1

Definition 1 (Unconditional Modeling) Unconditional modeling of +1 is

based on the unconditional or marginal distribution of +1 That is, risk

measures are computed from the marginal distribution 

+1 ∼  [+1] =  (+1) = 2

Define

+1 =
+1 − 


 +1 ∼  [+1] = 0 (+1) = 1

So that

+1 = +  × +1

Let  denote information known at time  For example,  = { −1    
0} or  = {() (−1−1)     (0 0)}

Definition 2 (Conditional Modeling) Conditional modeling of +1 is based

on the conditional distribution of +1 given  That is, risk measures are

computed from the conditional distribution |

+1 ∼ | [+1|] = +1| (+1|) = 2+1|
Define

+1 =
+1 − +1|

+1|
 +1 ∼  [+1] = 0 (+1) = 1

So that

+1 = +1| + +1| × +1



Conditional Mean, Variance and Volatility

• [+1|] = +1| = conditional mean

• (+1|) = 2
+1| = conditional variance

• +1| = conditional volatility

Intuition: As  changes over time so does +1| and +1|

Remark: For many daily asset returns, it is often safe to assume |−1 =  ≈ 0
but it is not safe to assume +1| = 

Conditional Risk Measures based on Returns

+1| = conditional volatility


+1|
 = conditional quantile

[+1|+1 ≤ 
+1|
 ] = conditional shortfall



Example: Normal Conditional VaR and ES

+1 = +1| + +1| × 

 ∼ (0 1)

Then


+1|
 = +1| + +1| × 

[|+1 ≤ 
−+1|
 ] = +1| + +1| ×

( )

1− 

Question: How to model +1| and +1|?

Empirical Regularities of Asset Returns Related to Volatility

1. Thick tails

(a) Excess kurtosis decreases with aggregation

2. Volatility clustering.

(a) Large changes followed by large changes; small changes followed by

small changes

3. Leverage effects

(a) changes in prices often negatively correlated with changes in volatility



4. Non trading periods

(a) Volatility is smaller over periods when markets are closed than when

they are open

5. Forecastable events

(a) Forecastable releases of information are associated with high ex ante

volatility

6. Volatility and serial correlation

(a) Inverse relationship between volatility and serial correlation of stock

indices

7. Volatility co-movements

(a) Evidence of common factors to explain volatility in multiple series



Engle’s ARCH(p) Model

Intuition: Use an autoregressive model to capture time dependence in condi-

tional volatility in asset returns

The ARCH(p) model for  = ln − ln−1 is

 = −1[] +  |−1 ∼  (0 2 )

2 = 0 + 1
2
−1 + · · ·+ 

2
− 0  0  ≥ 0

= 0 + ()2  () =

X
=1




Recall,

 = −1 2 = −2 etc.

Alternative error specification

 = 

 ∼  (0 1)

2 = 0 + ()2

Remark: The random variable  doesn’t have to be normal. It can have a

fat-tailed distribution; e.g. Student’s-t



Properties of ARCH Errors

Note: Derivations utilize heavily the law of iterated expectations (note:−1[] =
[|−1])

• { −1} is a MDS with conditionally heteroskedastic errors

[|−1] = [|−1] = [|−1] = 0
var(|−1) = [2 |−1] = 2[

2
 |−1] = 2

[ |−1] = 0 for  odd.

Since  ∼ MDS it is an uncorrelated process: [−] = 0 for  =

1 2    

• The error  is stationary with mean zero and constant unconditional vari-
ance

[] = [[|−1]]
= [[|−1]] = 0

var() = [2 ] = [[2 
2
 |−1]]

= [2[
2
 |−1]] = [2 ]



Assuming stationarity

[2 ] = [0 + ()2 ]

= 0 + 1[
2
−1] + · · ·+ [

2
−]

= 0 + 1[
2
 ] + · · ·+ [

2
 ]

which implies that

[2 ] = ̄2 =
0

1− 1 − · · ·− 
=

0

(1)
 (1)  0

•  is leptokurtic

[4 ] = [4[
4
 |−1]] = [4 ] · 3

≥
³
[2 ]

´2 · 3 by Jensen’s inequality
=

³
[2 ]

´2 · 3
⇒ [4 ]³

[2 ]
´2  3

That, is

kurt()  3 = kurt(normal)



• 2 is a serially correlated random variable

2 = 0 + ()2 

[2 ] =
0

1− (1)
= ̄2

Using 0 = (1− (1))̄2, 2 may be expressed as

2 − ̄2 = ()(2 − ̄2)

• 2 has a stationary AR() representation.

2 + 2 = 0 + ()2 + 2

⇒ 2 = 0 + ()2 + (
2
 − 2 )

where (2 − 2 ) =  is a conditionally heteroskedastic MDS.

• 2 exhibits volatility mean reversion.

Example: Consider ARCH(1) with 0    1

2 = 0 + 2−1
[2 ] = [2 ] = ̄2 = 0(1− )⇒

(2 − ̄2) = (2−1 − ̄2) + ⇒
[2+|−1]− ̄2 = (2−1 − ̄2)→ 0 as →∞



Bollerslev’s GARCH Model

Idea: ARCH is like an AR model for volatility. GARCH is like an ARMA model

for volatility.

The GARCH( ) model is

 =   ∼  (0 1)

2 = 0 + ()2 + ()2  0  0

() = 1+ · · ·+ 
  ≥ 0

() = 1+ · · ·+ 
  ≥ 0

Note: for identification of , must have at least one ARCH coefficient   0

Properties of GARCH model

• GARCH( ) is equivalent to ARCH(∞) If 1 − () = 0 has all roots

outside unit circle then

2 =
0

1− (1)
+

()

1− ()
2

= ∗0 + ()2  () =
∞X
=0




•  is a stationary and ergodic MDS with finite variance provided (1) +

(1)  1

[] = 0

var() = [2 ] =
0

1− (1)− (1)

2 ∼ ARMA( )  = max( )



GARCH(1,1)

The most commonly used GARCH(p,q) model is the GARCH(1,1)

2 = 0 + 1
2
−1 + 1

2
−1

Properties:

stationarity condition: 1 + 1  1

ARCH(∞) :  = 1
−1
1

ARMA(1,1): 2 = 0 + (1 + 1)
2
−1 +  − 1−1

 = 2 −−1(2 )
unconditional variance : ̄2 = 0(1− 1 − 1)

Conditional Mean Specification

• −1[] is typically specified as a constant or possibly a low order ARMA
process to capture autocorrelation caused by market microstructure effects

(e.g., bid-ask bounce) or non-trading effects.

• If extreme or unusual market events have happened during sample period,
then dummy variables associated with these events are often added to

the conditional mean specification to remove these effects. The typical

conditional mean specification is of the form

−1[] = +
X

=1

− +
X

=1

− +
X
=0

β0x− + 

where x is a  × 1 vector of exogenous explanatory variables.



Explanatory Variables in the Conditional Variance Equation

• Exogenous explanatory variables may also be added to the conditional
variance formula

2 = 0 +

X
=1


2
− +

X
=1


2
− +

X
=1

δ0z−

where z is a ×1 vector of variables, and δ is a ×1 vector of positive
coefficients.

• Variables that have been shown to help predict volatility are trading vol-
ume, interest rates, macroeconomic news announcements, implied volatil-

ity from option prices and realized volatility, overnight returns, and after

hours realized volatility

GARCH-in-Mean (GARCH-M)

Idea: Modern finance theory suggests that volatility may be related to risk

premia on assets

The GARCH-M model allows time-varying volatility to be realted to expected

returns

 = + () + 

 ∼ GARCH

() =

⎧⎪⎨⎪⎩

2

ln(2 )



Temporal Aggregation

• Volatility clustering and non-Gaussian behavior in financial returns is typi-
cally seen in weekly, daily or intraday data. The persistence of conditional

volatility tends to increase with the sampling frequency.

• For GARCH models there is no simple aggregation principle that links the
parameters of the model at one sampling frequency to the parameters

at another frequency. This occurs because GARCH models imply that

the squared residual process follows an ARMA type process with MDS

innovations which is not closed under temporal aggregation.

• The practical result is that GARCH models tend to be fit to the frequency
at hand. This strategy, however, may not provide the best out-of-sample

volatility forecasts. For example,Martens (2002) showed that a GARCH

model fit to S&P 500 daily returns produces better forecasts of weekly and

monthly volatility than GARCH models fit to weekly or monthly returns,

respectively.



Testing for ARCH Effects

Consider testing the hypotheses

0 : (No ARCH) 1 = 2 = · · · =  = 0

1 : (ARCH) at least one  6= 0
Engle derived a simple LM test

• Step 1: Compute squared residuals  from mean equation regression

• Step 2: Estimate auxiliary regression

̂2 = 0 + 1̂
2
−1 + · · ·+ 2̂

2
− + 

• Step 3. Form the LM test statistic

 =  ·2
where  = sample size from auxiliary regression and 2 is the uncen-

tered R-squared from the auxiliary regression. Under 0 :(No ARCH)




˜2()

Remark:

• Test has power against GARCH( ) alternatives



Estimating GARCH by MLE

Consider estimating the model

 = −1[] +  = x
0
β + 

 =   ∼  (0 1)

2 = 0 + ()2 + ()2

Result: The regression parameters β and GARCH parameters

γ = (0 1      1     )
0 can be estimated separately because the in-

formation matrix for θ = (β0γ0)0 is block diagonal.

• Step 1: Estimate β by OLS ignoring ARCH errors and form residuals

̂ =  − x0β̂

• Step 2: Estimate ARCH process for residuals ̂ by mle.

Warning: Block diagonality of information matrix fails if

• pdf of  is not a symmetric density

• β and γ are not variation free; e.g. GARCH-M model



GARCH Likelihood Function Under Normality

Assume −1[] = 0 Let θ = (0 1      1     )
0 denote the para-

meters to be estimated. Since  = 

(|−1; θ) = ()

¯̄̄̄
¯

¯̄̄̄
¯ = 

Ã




! ¯̄̄̄
¯ 1

¯̄̄̄
¯

= (22 )
−12 exp

(−1
22

2

)
For a sample of size  the prediction error decomposition gives

(  −1     1;θ)

=

⎛⎝ Y
=+1

(|−1;θ)
⎞⎠ · (1     ;θ)

=

⎛⎝ Y
=+1

(22 )
−12 exp

(−1
22

2

)⎞⎠ · (1     ;θ)

Remarks

• 2 = 0 + ()2 + ()2 is evaluated recursively given θ and starting

values for 2 and 
2
 . For example, consider GARCH(1,1)

21 = 0 + 1
2
0 + 1

2
0

Need to specify starting values values 20 and 
2
0 Then all other 

2
 values

can be calculated

• The log-likelihood function is

−( −)

2
ln(2)−

X
=+1

"
1

2
ln(2 ) +

1

2

2

2

#
+ ln((1     ;γ)



Problem: the marginal density for the initial values (1     ;θ) does

not have a closed form expression so exact mle is not possible. In practice,

the initial values 1      are set equal to zero and the marginal density

(1     ;θ) is ignored. This is conditional mle.

Practical issues

• To initialize the log-likelihood starting values for the model parameters
 ( = 0 · · ·  ) and  ( = 1 · · ·  ) need to be chosen and an
initialization of 2 and 

2
 must be supplied.

• Zero values are often given for the conditional variance parameters other
than 0 and 1 and 0 is set equal to the unconditional variance of 

For the initial values of 2  a popular choice is

2 = 2 =
1



X
=+1

2  ≤ 



• Once the log-likelihood is initialized, it can be maximized using numerical
optimization techniques. The most common method is based on a Newton-

Raphson iteration of the form

θ̂+1 = θ̂ − H(θ̂)
−1s(θ̂)

• For GARCH models, the BHHH algorithm is often used. This algorithm

approximates the Hessian matrix using only first derivative information

−H(θ) ≈ B(θ) =
X
=1



θ



θ0


• Under suitable regularity conditions, the ML estimates are consistent and
asymptotically normally distributed and an estimate of the asymptotic co-

variance matrix of the ML estimates is constructed from an estimate of

the final Hessian matrix from the optimization algorithm used.

Numerical Accuracy of GARCH Estimates

• GARCH estimation is widely available in a number of commercial software
packages (e.g. EVIEWS, GAUSS, MATLAB, Ox, RATS, S-PLUS, TSP)

and there are a few free open source implementations (fGarch and rugarch

in R). Can even use Excel!

• Starting values, optimization algorithm choice, and use of analytic or nu-

merical derivatives, and convergence criteria all influence the resulting nu-

merical estimates of the GARCH parameters.



• The GARCH log-likelihood function is not always well behaved, especially
in complicated models with many parameters, and reaching a global max-

imum of the log-likelihood function is not guaranteed using standard op-

timization techniques. Poor choice of starting values can lead to an ill-

behaved log-likelihood and cause convergence problems.

• In many empirical applications of the GARCH(1,1) model, the estimate of
1 is close to zero and the estimate of 1 is close to unity. This situation

is of some concern since the GARCH parameter 1 becomes unidentified

if 1 = 0, and it is well known that the distribution of ML estimates can

become ill-behaved in models with nearly unidentified parameters.

• Ma, Nelson and Startz (2007) studied the accuracy of ML estimates of the
GARCH parameters 0 1 and 1 when 1 is close to zero. They found

that the estimated standard error for 1 is spuriously small and that the

-statistics for testing hypotheses about the true value of 1 are severely

size distorted. They also showed that the concentrated loglikelihood as a

function of 1 exhibits multiple maxima.



• To guard against spurious inference they recommended comparing esti-
mates from pure ARCH() models, which do not suffer from the identi-

fication problem, with estimates from the GARCH(1,1). If the volatility

dynamics from these models are similar then the spurious inference problem

is not likely to be present.

Quasi-Maximum Likelihood Estimation

• The assumption of conditional normality is not always appropriate.

• However, even when normality is inappropriately assumed, maximizing
the Gaussian log-likelihood results in quasi-maximum likelihood estimates

(QMLEs) that are consistent and asymptotically normally distributed pro-

vided the conditional mean and variance functions of the GARCH model

are correctly specified.

• An asymptotic covariance matrix for the QMLEs that is robust to condi-
tional non-normality is estimated using

H(θ̂)
−1B(θ̂)H(θ̂)

−1



where θ̂ denotes the QMLE of θ and is often called the “sandwich”

estimator.

Determining lag length

• Use model selection criteria (AIC or BIC)

• For GARCH( ) models, those with   ≤ 2 are typically selected by

AIC and BIC.

• Low order GARCH(,) models are generally preferred to a high order

ARCH() for reasons of parsimony and better numerical stability of esti-

mation (high order GARCH( ) processes often have many local maxima

and minima).

• For many applications, it is hard to beat the simple GARCH(1,1) model.



Model Diagnostics

Correct model specification implies

̂

̂
∼  (0 1)

• Test for normality - Jarque-Bera, QQ-plot

• Test for serial correlation - Ljung-box, SACF, SPACF

• Test for ARCH effects - serial correlation in squared standardized residuals,
LM test for ARCH

GARCH and Forecasts for the Conditional Mean

• Suppose one is interested in forecasting future values of  in the standard
GARCH model. For simplicity assume that  [+1] =  Then the

minimum mean squared error − step ahead forecast of + is just 

which does not depend on the GARCH parameters, and the corresponding

forecast error is

+ = + − [+]

• The conditional variance of this forecast error is then
var (+) =  [

2
+]

which does depend on the GARCH parameters. Therefore, in order to

produce confidence bands for the −step ahead forecast the −step ahead
volatility forecast  [

2
+] is needed.



Forecasting From GARCH Models

Consider the basic GARCH(1,1) model

2 = 0 + 1
2
−1 + 1

2
−1

from  = 1      The best linear predictor of 2+1 using information at time

 is

[2+1| ] = 0 + 1[
2
 | ] + 1[

2
 | ]

= 0 + 1
2
 + 1

2


Using the chain-rule of forecasting and [2+1| ] = [2+1| ]

[2+2| ] = 0 + 1[
2
+1| ] + 1[

2
+1| ]

= 0 + (1 + 1)[
2
+1| ]

In general, for  ≥ 2
[2+| ] = 0 + (1 + 1)[

2
+−1| ]

= 0

−1X
=0

(1 + 1)
 + (1 + 1)

−1(12 + 1
2
 )

Note: If |1 + 1|  1 then as →∞
[2+| ]→ [2 ] =

0

1− 1 − 1

An alternative representation of the forecasting equation starts with the mean-

adjusted form

2+1 − ̄2 = 1(
2
 − ̄2) + 1(

2
 − ̄2)

where ̄2 = 0(1−1− 1) is the unconditional variance. Then by recursive

substitution

 [
2
+]− ̄2 = (1 + 1)

−1([2+1]− ̄2)



Remarks

• The forecast of volatility is defined as

[+| ] =
³
[2+| ]

´12
6= [+| ] (by Jensen’s inequality)

• Standard errors for [+| ] are not available in closed form but may
be computed using simulation methods. See MFTS for details.

EWMA Forecasts

• The GARCH(1,1) forecasting algorithm is closely related to an exponen-

tially weighted moving average (EWMA) of past values of 2  This type of

forecast was proposed by the RiskMetrics group at J.P. Morgan.

• The EWMA forecast of 2+1 has the form

2+1 = (1− )
∞X
=0

2−

for  ∈ (0 1)

• For daily data, J.P. Morgan found that  = 094 gave sensible short-term
forecasts



• The EWMA formula may be re-expressed as

2+1 = (1−)2 +2 = 2 +(2− 2 )

which is of the form of a GARCH(1,1) model with 0 = 0 1 = 1 − 

and 1 = 

• The EWMA forecast is equivalent to the forecast from a restricted IGARCH
model. It follows that for any   0 2+ = 2 As

a result, unlike the GARCH(1,1) forecast, the EWMA forecast does not

exhibit mean reversion to a long-run unconditional variance.

Forecasting the Volatility of Multiperiod Returns

• Let  = ln()− ln(−1) The GARCH forecasts are for daily volatility
at different horizons .

• For risk management and option pricing with stochastic volatility, volatil-
ity forecasts are needed for multiperiod returns. With continuously com-

pounded returns, the −day return between days  and  +  is simply

the sum of  single day returns

+() =
X

=1

+



• Assuming returns are uncorrelated, the conditional variance of the −period
return is then

var (+()) = 2 () =
X

=1

var (+)

=  [
2
+1] + · · ·+ [

2
+]

• If returns have constant variance ̄2 then 2 () = ̄2 and  () =√
̄ This is known as the “square root of time” rule as the −day volatil-

ity scales with
√
 In this case, the −day variance per day, 2 () is

constant.

• If returns are described by a GARCH model then the square root of time
rule does not necessarily apply. Plugging the GARCH(1,1) model forecasts

for  [
2
+1]      [

2
+] into var (+()) gives

2 () = ̄2 + ([2+1]− ̄2)

"
1− (1 + 1)



1− (1 + 1)

#

• For the GARCH(1,1) process the square root of time rule only holds if
[2+1] = ̄2. Whether 2 () is larger or smaller than ̄

2 depends on

whether [2+1] is larger or smaller than ̄
2

• The term structure of volatility is a plot of 2 () versus 

— If the square root of time rule holds then the term structure of volatility

is flat



VaR Forecasts

Unconditional VaR Forecasts

Let  denote the continuously compounded daily return on an asset/portfolio

and let  denote confidence level (e.g.  = 095). Then the 1-day uncond-

tional value-at-risk,   is usually defined as the negative of the (1− )−quantile
of the unconditional daily return distribution:

  = −1− = −−1 (1− )

 =  of 

Example: Let  ∼  ( 2) Then

 = +  × 1− 1− = Φ−1(1− )

[  = −(̂+ ̂ × 1−)

Example cont’d: Consider the −day return,

+() =  + +1 + · · ·+ +

If  ∼  ( 2) then +() ∼ ( 2) Then the -day uncond-

tional value-at-risk,  
 is

 
 = −() = −(+

√
1−)



Conditional VaR Forecasts

Now assume  follows a GARCH process:

 = + 

2 ∼ ( )

 ∼ (0 1)

Then the 1-day conditional VaR,   is

  = −1− = −(+ 

1−)

Note that   is time varying because  is time varying. The unconditional

VaR,   is constant over time.

The estimated/forecasted VaR is

[  = −(̂+ ̂

1−) ̂ = GARCH forecast volatility

For a GARCH process, the -day conditional value-at-risk,  
 is

 
 = −(+  ()


1−)

where

2 () =  [
2
+1] + · · ·+ [

2
+]

and  [
2
+1]      [

2
+] are the GARCH -step ahead forecasts of con-

ditional variance.

The estimated/forecasted VaR is

[ 


 = −(̂+ ̂ ()

1−)


