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1 Introduction

In many settings of empirical interest, time variation in a selection of model parameters

is important for capturing the dynamic behavior of univariate and multivariate time series

processes. Time series models with time-varying parameters have been categorized by Cox

(1981) into two classes of models: observation driven models and parameter driven models.

In the observation driven approach, time variation of the parameters is introduced by letting

parameters be functions of lagged dependent variables as well as contemporaneous and lagged

exogenous variables. Although the parameters are stochastic, they are perfectly predictable

given the past information. This approach simplifies likelihood evaluation and explains why

observation driven models have become popular in the applied statistics and econometrics

literature. Typical examples of these models are the generalized autoregressive conditional

heteroskedasticity (GARCH) models of Engle (1982), Bollerslev (1986) and Engle and Bollerslev

(1986), the autoregressive conditional duration and intensity (ACD and ACI, respectively)

models of Engle and Russell (1998) and Russell (2001), the dynamic conditional correlation

(DCC) model of Engle (2002a), the Poisson count models discussed by Davis, Dunsmuir, and

Streett (2003), the dynamic copula models of Patton (2006), and the time-varying quantile

model of Engle and Manganelli (2004). In our modeling framework for time-varying parameters,

many of the existing observation driven models are encompassed as mentioned above. In

addition, new models can be formulated and investigated.

In parameter driven models, the parameters are stochastic processes with their own source

of error. Given past and concurrent observations, the parameters are not perfectly predictable.

Typical examples of parameter driven models are the stochastic volatility (SV) model, see

Shephard (2005) for a detailed discussion, and the stochastic intensity models of Bauwens

and Hautsch (2006) and Koopman, Lucas, and Monteiro (2008). Estimation is usually more

involved for these models because the associated likelihood functions are not available in closed-

form. Exceptions include linear Gaussian state space models and discrete-state hidden Markov

models, see Harvey (1989) and Hamilton (1989), respectively. In most other cases, computing

the likelihood function requires the evaluation of a high-dimensional integral based on simula-

tion methods such as importance sampling and Markov chain Monte Carlo; for example, see

Shephard and Pitt (1997).
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The main contribution of this paper is the development of a framework for time-varying

parameters which is based on the score function of the predictive model density at time t. We

will argue that the score function is an effective choice for introducing a driving mechanism for

time-varying parameters. In particular, by scaling the score function appropriately, standard

observation driven models such as the GARCH, ACD, and ACI models can be recovered.

Application of this framework to other non-linear, non-Gaussian, possibly multivariate, models

will lead to the formulation of new observation driven models.

We refer to our observation driven model based on the score function as the generalized auto-

regressive score (GAS) model. The GAS model has the advantages of other observation driven

models. Likelihood evaluation is straightforward. Extensions to asymmetric, long memory, and

other more complicated dynamics can be considered without introducing further complexities.

Since the GAS model is based on the score, it exploits the complete density structure rather

than means and higher moments only. It differentiates the GAS model from other observation

driven models in the literature, such as the generalized autoregressive moving average models

of Shephard (1995) and ?) and the vector multiplicative error models of Cipollini, Engle, and

Gallo (2006).

In our first illustration, we develop new models for time-varying copulas. The copula

function provides an important tool for the econometrics of financial risk measurement. Patton

(2006) introduced the notion of time-varying copulas and provided the main properties of

dynamic copula functions. Other models for time-varying copulas include Giacomini, Härdle,

and Spokoiny (2007) who developed locally constant copula models, and the stochastic copula

model of Hafner and Manner (2011). Another interesting copula-based model is developed by

Lee and Long (2009) where the multivariate GARCH model is extended with copula functions

to capture any remaining dependence in the volatility of the time series. An extended review

of the recent developments of copula functions in time series models is given by Patton (2009).

In our second illustration, we create a new class of multivariate point-process models for

credit risk. Models for counterparty default and rating transition risk are an important element

in the current regulatory system for financial institutions. Many of the new models are based

on marked point-processes with time-varying intensities for different levels of risk. Parameter

estimation relies on computationally demanding methods, see for example, Duffie, Eckner,

Horel, and Saita (2009). One of the main challenges when modeling credit events are the
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sparse number of transitions for each individual company. We show how a multi-state model for

pooled marked point-processes follows naturally within our framework. We analyze an extensive

data set of Moody’s rating histories of more than 8,000 U.S. corporates over a time span of

almost thirty years. We compare the results of the GAS model with those of its parameter

driven counterpart. The parameters in the benchmark model need to be estimated using a

Markov chain Monte Carlo method which is computationally more demanding compared to

our maximum likelihood procedure. Despite the substantial differences in computing time, the

GAS model produces almost identical estimates of time varying defaults and rating transition

probabilities when compared with those of the parameter driven model.

The remainder of the paper is organized as follows. In Section 2 we provide the basic GAS

specification together with a set of motivating examples. Section 3 describes several new copula

models with time-varying parameters. Section 4 presents the model for marked point-processes

with time-varying parameters. Section 5 concludes.

2 Model specification and properties

In this section we formulate a general class of observation driven time-varying parameter models.

The basic specification is introduced and a set of examples is provided for illustrative purposes.

We also discuss maximum likelihood estimation and model specification.

2.1 Basic model specification

Let N × 1 vector yt denote the dependent variable of interest, ft the time-varying parameter

vector, xt a vector of exogenous variables (covariates), all at time t, and θ a vector of static

parameters. Define Y t = {y1, . . . , yt}, F t = {f0, f1, . . . , ft}, and X t = {x1, . . . , xt}. The

available information set at time t consists of {ft , Ft} where

Ft = {Y t−1 , F t−1 , X t}, for t = 1, . . . , n.

We assume that yt is generated by the observation density

yt ∼ p(yt | ft , Ft ; θ). (1)
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Furthermore, we assume that the mechanism for updating the time-varying parameter ft is

given by the familiar autoregressive updating equation

ft+1 = ω +

p∑
i=1

Aist−i+1 +

q∑
j=1

Bjft−j+1, (2)

where ω is a vector of constants, coefficient matrices Ai and Bj have appropriate dimensions

for i = 1, . . . , p and j = 1, . . . , q, while st is an appropriate function of past data, st =

st(yt, ft,Ft; θ). The unknown coefficients in (2) are functions of θ, that is ω = ω(θ), Ai = Ai(θ),

and Bj = Bj(θ) for i = 1, . . . , p and j = 1, . . . , q. The main contribution of this paper is the

particular choice for the driving mechanism st that is applicable over a wide class of observation

densities and non-linear models.

Our approach is based on the observation density (1) for a given parameter ft. When an

observation yt is realized, we update the time-varying ft to the next period t+1 using (2) with

st = St · ∇t, ∇t =
∂ ln p(yt | ft , Ft ; θ)

∂ft
, St = S(t , ft , Ft ; θ), (3)

where S(·) is a matrix function. Given the dependence of the driving mechanism in (2) on the

scaled score vector (3), we let the equations (1) – (3) define the generalized autoregressive score

model with orders p and q. We may abbreviate the resulting model as GAS (p, q).

The use of the score for updating ft is intuitive. It defines a steepest ascent direction for

improving the model’s local fit in terms of the likelihood or density at time t given the current

position of the parameter ft. This provides the natural direction for updating the parameter.

In addition, the score depends on the complete density, and not only on the first or second

order moments of the observations yt. This distinguishes the GAS framework from most of the

other observation driven approaches in the literature. By exploiting the full density structure,

the GAS model introduces new transformations of the data that can be used to update the

time-varying parameter ft.

Via its choice of the scaling matrix St, the GAS model allows for additional flexibility in

how the score is used for updating ft. It is important to note that each different choice for the

scaling matrix St results in a different GAS model. The statistical and empirical properties of

each of these models can be different and warrants separate inspection.
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In many situations, it is natural to consider a form of scaling that depends on the variance

of the score. For example, we can define the scaling matrix as

St = I−1
t|t−1, It|t−1 = Et−1 [∇t∇′

t] , (4)

where Et−1 denotes an expectation with respect to p(yt|ft,Ft; θ). For this choice of St, the

GAS model encompasses the well-known observation driven GARCH model of Engle (1982)

and Bollerslev (1986), the ACD model of Engle and Russell (1998), and the ACI model of

Russell (2001) as well as most of the Poisson count models considered by Davis et al. (2003).

Another possibility that we consider in this paper is the GAS model with scaling matrix

St = Jt|t−1, J ′
t|t−1Jt|t−1 = I−1

t|t−1, (5)

where St is defined as the square root matrix of the (pseudo)-inverse information matrix for (1)

with respect to ft. An advantage of this specific choice for St is that the statistical properties

of the corresponding GAS model become more tractable. This follows from the fact that for

St = Jt|t−1 the GAS step st has constant unit variance.

Another convenient choice is St = I. The GAS model then captures models such as the auto-

regressive conditional multinomial (ACM) model of Russell and Engle (2005) or the GARMA

models of ?). In the context of a fully generic observation density p(yt|ft,Ft; θ), however, the

statistical properties of the GAS model for these alternative choices of St are typically much

more complicated.

We can further generalize the GAS updating equation (2) in various directions. For example,

it may be interesting to include exogenous variables in (2), or to generalize the evolution of

ft by including other non-linear effects such as regime-switching. In addition, it may be more

appropriate in some applications to consider long-memory versions of (2), for example

ft+1 = ω +
∞∑
i=1

(i+ d− 1)!

i!(d− 1)!
st−i+1,

for a scalar ft and a fractional integration parameter d < 1/2. We obtain the fractionally inte-

grated GAS model specification in the same vein as the well-known ARFIMA and FIGARCH
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models, see the contributions of Hosking (1981) and Baillie, Bollerslev, and Mikkelsen (1996),

respectively.

2.2 Special cases of GAS models

In this section we provide a number of simple examples that show how to operationalize the GAS

framework. The examples also reveal that the GAS framework encompasses a large number of

available observation driven models presented in the literature for an appropriate choice of the

scaling matrix St.

Example 1 : GARCH models Consider the basic model yt = σtεt where the Gaussian

disturbance εt has zero mean and unit variance while σt is a time-varying standard deviation.

It is a basic exercise to show that the GAS (1, 1) model with St = I−1
t|t−1 and ft = σ2

t reduces to

ft+1 = ω + A1

(
y2t − ft

)
+B1ft, (6)

which is equivalent to the standard GARCH(1, 1) model as given by

ft+1 = α0 + α1y
2
t + β1ft, ft = σ2

t , (7)

where coefficients α0 = ω, α1 = A1 and β1 = B1−A1 are unknown and require certain conditions

for stationarity, see Bollerslev (1986). However, if we assume that εt follows a Student’s t

distribution with ν degrees of freedom and unit variance, the GAS (1, 1) specification for the

conditional variance leads to the updating equation

ft+1 = ω + A1 ·
(
1 + 3ν−1

)
·
(

(1 + ν−1)

(1− 2ν−1)(1 + ν−1y2t /(1− 2ν−1) ft)
y2t − ft

)
+B1ft. (8)

In case ν−1 = 0, the Student’s t distribution reduces to the Gaussian distribution and update

(8) collapses to (6) as required. The recursion in (8), however, has an important difference

with the standard t-GARCH(1, 1) model of Bollerslev (1987) which has the Student’s t density

in (1) with the updating equation (6). The denominator of the second term in the right-

hand side of (8) causes a more moderate increase in the variance for a large realization of

|yt| as long as ν is finite. The intuition is clear: if the errors are modeled by a fat-tailed
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distribution, a large absolute realization of yt does not necessitate a substantial increase in

the variance. The GAS updating mechanism for the model with Student’s t errors therefore is

substantially different from its familiar GARCH counterpart. In independent work, a similar

variance updating equation as (8) for the univariate Student’s t distribution is proposed by

Harvey and Chakravarty (2008); they also discuss the properties of the model in more detail.

Recently, Creal, Koopman, and Lucas (2011) have extended this model to the fully multivariate

case with further generalizations and compared it to the popular DCC model of Engle (2002a).

The GAS framework also provides a range of alternative time-varying variance equations

for other heavy-tailed distributions. For example, consider the asymmetric Laplace distribution

obtained by yt = wt ·ỹLt +(1−wt)·ỹRt , where wt is a Bernoulli random variable with Pr[wt = 0] =

(1 + ϑ2)−1 for coefficient ϑ > 0 and where −ỹLt and ỹRt are exponentially distributed random

variables with means ϑσ/21/2 and σ/(21/2ϑ), respectively. The random variables wt, ỹ
L
t and ỹRt

are assumed to be independent. The mean and variance of yt are 0 and σ2, respectively. If we

let ft = log(σ2
t ), the GAS step takes the form

st = 2

(
21/2(−yt)

ϑσ
− 1

)
· 1{yt|yt≤0}(yt) + 2

(
21/2ϑyt

σ
− 1

)
· 1{yt|yt>0}(yt), (9)

where 1A(x) is the indicator function for the set A, that is 1A(x) = 1 if x ∈ A, and zero

otherwise. The GAS driving mechanism (9) is composed of linear segments with unequal

absolute slopes. We can rewrite this as

st = ϑ̃1
21/2yt
σ

+ ϑ̃2

(
21/2|yt|

σ
− 2ϑ̃−1

2

)
, (10)

where ϑ̃1 = (ϑ2 − 1)/ϑ and ϑ̃2 = (ϑ2 + 1)/ϑ. Specification (10) is equivalent to the driving

mechanism of the EGARCH model of Nelson (1991), who used the generalized error distribution

(GED) instead of the asymmetric Laplace described here.

Example 2 : MEM, ACD and ACI models Consider the model yt = µtεt where εt has

a gamma distribution with density p(εt;α) = Γ(α)−1εα−1
t αα exp(−αεt), coefficient α and mean

µt as the mean of εt. Using a change of variable, we obtain the model density

p(yt|µt;α) = Γ(α)−1yα−1
t ααµ−α

t exp

(
−α

yt
µt

)
. (11)

8



In case we set ft = µt, the GAS (1, 1) updating equation with St = I−1
t|t−1 becomes

ft+1 = ω + A1 (yt − ft) + B1ft. (12)

This specification is equivalent to the multiplicative error model (MEM) proposed by Engle

(2002b) and extended in Engle and Gallo (2006). The exponential distribution is a special case

of the gamma distribution when α = 1. Hence, ACD and ACI models are special cases of the

MEM class. The ACD model of Engle and Russell (1998) follows directly from (11) for α = 1

and factor recursion (12). In case we specify the exponential density in terms of its intensity

rather than its expected duration, we obtain p(yt|λt) = λt exp(−λtyt) with intensity λt = 1/µt.

Let f̃t = log(λt), the GAS (1, 1) updating equation becomes

f̃t+1 = ω + A1

[
1− yt exp(f̃t)

]
+B1f̃t, (13)

which is equivalent to the standard ACI(1, 1) model of Russell (2001).

Example 3 : Dynamic exponential family models The class of natural exponential family

models for a vector of observations yt can be represented by the density function

p(yt | ft , Ft ; θ) = exp [γ′yt − c(γ) + h(yt)] , (14)

with scalar functions c(·) and h(·) and m× 1 parameter vector γ. We consider replacing γ by

a time-varying parameter vector γt that is specified as

γt = d+ Zft,

with m × 1 constant vector d and m × r factor loading matrix Z. The unknown coefficients

in d and Z are placed in parameter vector θ. Further, we impose a GAS specification on the

time-varying factor ft. The GAS driving mechanism with St = I−1
t|t−1 is given by

st = [Z ′c̈(γt)Z]
−1

Z ′ [yt − ċ(γt)] ,

where ċ(γt) = ∂c(γt) / ∂γt and c̈(γt) = ∂2c(γt) / ∂γt∂γ
′
t. This model is directly encompasses
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some well-known models from the literature if we change the scaling choice. For example, for

a Poisson density in (14) and St = I−1
t|t−1 we recover the observation driven model for Poisson

counts of Davis et al. (2003).

2.3 Maximum likelihood estimation

A convenient property of observation driven models is the relatively simple way of estimating

parameters by maximum likelihood (ML). This feature applies to the GAS model as well. For

an observed time series y1, . . . , yn and by adopting the standard prediction error decomposition,

we can express the maximization problem as

θ̂ = argmax
θ

n∑
t=1

ℓt, (15)

where ℓt = ln p(yt|ft,Ft; θ) for a realization of yt. Evaluating the log-likelihood function of the

GAS model is particularly simple. It only requires the implementation of the GAS updating

equation (2) and the evaluation of ℓt for a particular value θ∗ of θ.

It is possible to formulate recursions for computing the gradient of the likelihood with

respect to the static parameter vector θ. Gradient recursions for the GARCH model have been

developed by Fiorentini, Calzolari, and Panattoni (1996). In case of the GAS (1, 1) specification,

the gradient is computed via the chain rule, that is

∂ℓt
∂θ′

=
∂ ln pt
∂θ′

+
∂ ln pt
∂f ′

t

· ∂ft
∂θ′

, (16)

with pt = p(yt|ft,Ft; θ) and

∂ft
∂θ′

=
∂ω

∂θ′
+ A1

∂st−1

∂θ′
+B1

∂ft−1

∂θ′
+
(
s′t−1 ⊗ I

) ∂A⃗1

∂θ′
+
(
f ′
t−1 ⊗ I

) ∂B⃗1

∂θ′
, (17)

∂st−1

∂θ′
= St−1

∂∇t−1

∂θ′
+
(
∇′

t−1 ⊗ I
) ∂S⃗t−1

∂θ′
, (18)

where A⃗ = vec(A) denotes the vector with the stacked columns of the matrix A, and ⊗ is

the Kronecker matrix product. The derivations for ∂∇t−1 / ∂θ
′ and ∂S⃗t−1 / ∂θ

′ should also

consider the effect of θ through ft as in (16). The log-likelihood derivatives can be computed
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simultaneously with the time-varying parameters ft. The analytic derivatives, particularly for

(18), may be cumbersome to compute in specific cases. We then turn to likelihood maximization

based on numerical derivatives.

We propose to compute standard errors and t-values for the estimated parameters based on

the inverse Hessian of the log-likelihood evaluated at the optimum. In particular, if θ gathers

all static parameters of the model, we conjecture that under suitable regularity conditions such

as those of White (1994) and Wooldridge (1994), the maximum likelihood estimator θ̂ of θ is

consistent and satisfies
√
n(θ̂ − θ)

d→ N(0, H−1),

where H = limn→∞ E [(∂ℓ/∂θ)(∂ℓ/∂θ′)] /n and ℓ =
∑n

t=1 ℓt. A formal proof of these results

for the general class of GAS models is beyond the scope of the present paper. The results

have been established for specific subclasses of GAS models. For example, Davis, Dunsmuir,

and Streett (2005) prove consistency and asymptotic normality of the ML estimator for first-

order Poisson count models. Straumann and Mikosch (2006) provide a set of conditions for

consistency and asymptotic normality for the Gaussian GARCH model and for more general

GARCH specifications. The main challenges for proving the result for the general class of

GAS models lie in verifying the stochastic equicontinuity of the likelihood function and in

establishing a contracting property for the non-linear stochastic recurrence equation (2). A

contracting property is needed to prove the stationarity and ergodicity of the data generating

process.

A nice feature of the model is that under the assumption of a correct model specification,

the series st forms a martingale difference series, Et−1[st] = 0. In particular, if we set the

scaling matrix St = Jt|t−1, st is a martingale difference with unit variance. If we then express

the updating equation for GAS (1, 1) in its infinite order moving average form, we obtain

ft = (I−B1)
−1ω + A1

∞∑
i=0

Bi
1st−i.

Therefore, it is necessary for the covariance stationarity of ft that the roots of B1 lie inside

the unit circle. Such necessary conditions are helpful for establishing the limiting distribution

results mentioned above. For other choices of St, the derivation of such properties is less evident.
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2.4 Parameterizations

The GAS specification adapts naturally to different parameterizations of the observation density

(1). In the GARCH example of Section 2.2, for example, the time-varying parameter is ft = σ2
t .

If it is preferred to enforce the positivity of σ2
t , an obvious alternative is to parameterize the

model in terms of f̃t = log(σ2
t ). The GAS dynamics automatically adapt to the choice of the

parameterization. In general, assume that one prefers a different parameterization f̃t = h(ft)

for some continuous and invertible mapping h(·). Let ḣt = ∂h(ft)/∂f
′
t which is deterministic

given the information set Ft. For well behaved densities, the information matrix equals both

the expected outer product of scores and the expected second derivative of the log density.

Therefore,

J̃ ′
t|t−1J̃t|t−1 =

(
Et−1[(ḣ

−1
t )′∇t∇′

tḣ
−1
t ]
)−1

= ḣtI−1
t|t−1ḣ

′
t = ḣtJ ′

t|t−1Jt|t−1ḣ
′
t, (19)

where tildes denote that derivatives are taken with respect to f̃t rather than ft. Similarly, we

have

∇̃t =
∂ ln p(yt|ft,Ft; θ)

∂f̃t
= (ḣ′

t)
−1∇t. (20)

The GAS updating step for f̃t with square root information scaling is then given by

s̃t = J̃t|t−1∇̃t = J̃t|t−1(ḣ
′
t)

−1J −1
t|t−1st, (21)

since st = Jt|t−1∇t. For the univariate case, it is easy to see that J̃t|t−1(ḣ
′
t)

−1J −1
t|t−1 = 1.

For the multivariate case it follows that the updating step under the reparameterization is an

orthogonal linear transformation of the original step since

(
J̃t|t−1(ḣ

′
t)

−1J −1
t|t−1

)(
J̃t|t−1(ḣ

′
t)

−1J −1
t|t−1

)′
= J̃t|t−1(ḣ

′
t)

−1It|t−1(ḣt)
−1J̃ ′

t|t−1 = I, (22)

where the last equality follows from (19). The choice of parameterization thus only has a minor

effect on the form of the updating step st if we adopt Jt|t−1 as our scaling matrix. In particular,

the new s̃t is also a unit variance martingale difference series. Other forms of scaling have

different implications. For example, if we scale the score by the inverse information matrix

I−1
t|t−1, it is easy to derive that the updating step s̃t for f̃t equals s̃t = ḣtst.
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3 Dynamic copula models

In this section, we introduce several new dynamic copula models. Patton (2006) introduced

the notion of time-varying copulas, see also Dias and Embrechts (2004), van den Goorbergh,

Genest, and Werker (2005), Lee and Long (2009), and Patton (2009) for a review.

3.1 The dynamic Gaussian copula model

Copulas have recently become popular in financial risk management. A copula is a multivariate

distribution function over a hypercube with uniform marginals. It can be used to link marginal

distributions into a multivariate distribution using Sklar’s theorem in Sklar (1959). In this

section, we demonstrate that the GAS framework can provide a new model specification for

the bivariate Gaussian copula.

We consider a simple Gaussian copula where the GAS model suggests an alternative dy-

namic structure compared to earlier suggestions in the literature. The (Gaussian) correlation

parameter ρt is modeled by the transformed parameter ρt = [1− exp(−ft)] / [1 + exp(−ft)]. In

Patton (2006), the driving mechanism for the dynamic bivariate Gaussian copula is given by

ft+1 = ω + A1 ·
m∑
i=1

Φ−1(u1,t−i+1)Φ
−1(u2,t−i+1) +B1ft, (23)

where Φ−1(·) is the inverse of the normal distribution function, u1t and u2t are the probability

integral transforms using the univariate marginals, and m is a positive integer determining the

smoothness of ft. Equation (23) is intuitively appealing and builds on our understanding of

covariances: if the transformed marginals have the same sign, the correlation should increase.

The reverse holds if the transformed marginals are of opposite sign.

By using the density of the Gaussian copula, we can derive the GAS specification for the

time-varying correlation parameter. The score with respect to the correlation parameter is the

same for the Gaussian copula and for the bivariate normal distribution. For m = 1, Patton’s

model (23) reduces to

ft+1 = ω + A1 · yt +B1 · ft, (24)
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where yt = Φ−1(u1t)Φ
−1(u2t). The GAS (1, 1) updating equation for ft is obtained as

ft+1 = ω + A1
2

(1− ρ2t )

[
yt − ρt − ρt

(xt − 2)

(1 + ρ2t )

]
+B1ft, (25)

where xt = Φ−1(u1t)
2+Φ−1(u2t)

2. The similarities and differences between (24) and (25) are as

follows. Both models are driven by yt so that positively clustered transformed marginals lead

to an increase of the correlation parameter. The additional scaling factor 2/(1 − ρ2t ) in (25)

is a consequence of modeling the transformed correlation parameter ft rather than ρt directly.

The most interesting difference between the two model specifications is that the GAS model

includes the term xt, where xt − 2 is a martingale difference. To understand the impact of

this term, consider two possible scenarios we might observe Φ−1(u1t) = 1 and Φ−1(u2t) = 1 or,

alternatively, Φ−1(u1t) = 0.25 and Φ−1(u2t) = 4. In both cases, the cross-product term yt = 1

is the same and the recursion in (24) will cause ft+1 to be the same regardless of which of the

two scenarios we observe. Conversely, the sum of squares term xt in the GAS model provides

information to distinguish between these two cases. The behavior of ft+1 will depend on the

current value of the correlation ρt. If the correlation is positive, the impact on the value of

(xt − 2) is negative. In this case, the (xt − 2) term offsets part of the effect of (yt − ρt) if the

latter has a positive value. If (yt−ρt) has a negative value, however, the (xt−2) term reinforces

the magnitude of the GAS step for negative ρt.

For illustrative purposes, we extend the example from Patton (2006) to investigate the

dependence of the daily exchange rates of the German Mark (later Euro), against the US

dollar, with the Japanese Yen and with the British Pound, also both against the US dollar.

The sample period is January 1986 through August 2008. The log returns of the exchange rate

series are analyzed by the AR-GARCH model: an autoregressive process for the conditional

mean and a GARCH process for the conditional variance. We construct the transformed series

for u1t and u2t and use these as inputs for the Gaussian copula model.

Table 1 reports that the log-likelihood value increases 25 to 125 points when considering

GAS instead of Patton for the same number of parameters. The estimates of the parameter B1

imply that the GAS specification leads to a more persistently time-varying correlation process.

However, the increased sensitivity of the score mechanism to correlation shocks in the GAS

specification allows ft to react more fiercely to exchange rate returns of opposite sign if the
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Table 1: Estimation results for different dynamic copula models
Parameter estimates for the GAS and Patton models in (24)–(25). The data are the marginal AR-GARCH
transforms of log exchange rates for the German Mark-US dollar and Japanese Yen-US dollar (left panel) and
for the German Mark-US dollar and British Pound-US dollar (right panel), January 1986–August 2008. The
asymmetric confidence interval is in parentheses for B1, otherwise the standard error is in parentheses.

103ω A1 ln(B1 / 1−B1) B1 log-lik

German Mark (Euro)–US $, Japanese Yen–US $
GAS 6.11 0.058 5.30 0.995 1218.16

(2.48) (0.009) (0.37) (0.990,0.998)

Patton −1.60 0.036 4.27 0.986 1191.51
(0.85) (0.003) (0.10) (0.983,0.989)

German Mark (Euro)–US $, British Pound–US $
GAS 12.55 0.082 4.97 0.993 2218.82

(3.55) (0.008) (0.26) (0.988,0.996)

Patton −0.97 0.025 4.71 0.991 2090.42
(0.84) (0.002) (0.11) (0.989,0.993)

Parameter estimates for the GAS and Patton models in (24)–(25). The data are the marginal AR-GARCH
transforms of log exchange rates for the German Mark-US dollar and Japanese Yen-US dollar (left panel) and
for the German Mark-US dollar and British Pound-US dollar (right panel), January 1986–August 2008. The
asymmetric confidence interval is in parentheses for B1, otherwise the standard error is in parentheses.

1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008

−0.2

0.0

0.2
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0.6

0.8

German Mark (Euro) and Japanese Yen versus Dollar

GAS Patton 

1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008

0.0

0.2

0.4

0.6

0.8

German Mark (Euro) and British Pound versus Dollar

GAS Patton 

Figure 1: A copula illustration: comparisons of the correlation parameter estimates for the GAS and Patton

models in (24)–(25). The data are the marginal AR-GARCH transforms of log exchange rates for the German

Mark-US dollar and Japanese Yen-US dollar (left panel) and for the German Mark-US dollar and British

Pound-US dollar (right panel). The sample period is January 1986–August 2008.
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current correlation estimate is positive. This can be observed clearly for the Mark-Pound

example, but also the Mark-Yen example shows similar features at the end of 1993 and 2003.

The difference between the dynamics for the different specifications may be highly relevant to

risk managers where changes in correlations and in particular correlation breakdowns are a

major concern.

3.2 Static mixtures of dynamic Copulas

Patton (2006) amends the driving mechanism (23) of the dynamic bivariate Gaussian copula

towards a generally applicable driving mechanism for copula parameters. The general updating

equation of Patton for a bivariate model is given by

ft+1 = ω −m−1A1 ·
m∑
i=1

|u1,t−i+1 − u2,t−i+1|+B1 · ft, (26)

where u1t, u2t and m are defined below (23). The time-varying ft captures the dependence

between the coordinates. Assume that ω > 0, A1 > 0 and 1 > B1 > 0. When concurrent and

recent values of u1t and u2t are close together, ft+1 is likely to increase by a value less than ω.

The increase represents stronger dependence. Similarly, when concurrent and recent values of

u1t and u2t are far apart, it is likely that ft+1 decreases.

Although the driving mechanism in (26) is intuitive and simple, two issues are less clear.

First, the updating mechanism is not influenced by the particular choice of the copula. As

was shown for the Gaussian copula in the previous subsection, particular features of the copula

can be useful for the specification of ft. Second, although (26) provides an updating scheme

for the bivariate case, the extension to the multivariate case is less obvious. In particular,

in case of a copula characterized by a single dependence parameter, different ways exist in

which the differences |uit−ujt| for i ̸= j can be combined to update the dependence parameter.

Equation (26) provides little guidance as to how different and possibly conflicting signals should

be weighed.

To illustrate how the GAS framework can cope with these issues, consider a static mixture
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of r dynamic copulas as given by

C(u1t, . . . , uNt;λt) =
r∑

i=1

w∗
iCi(u1t, . . . , uN,t;λ

(i)
t ), (27)

where w∗
i ≥ 0 and w∗

1 + . . . w∗
r = 1, Ci(·) is the ith copula function with parameter λ

(i)
t , and

λt = (λ
(1)
t , . . . , λ

(r)
t ). Define wi,t = w∗

iC
∗
i,t /

∑r
j=1 w

∗
jC

∗
j,t as the weight of copula i at time t

where C∗
i,t is the density function corresponding to copula Ci(u1t, . . . , uN,t;λ

(i)
t ), for i = 1, . . . , r.

Let ft represents all time-varying coefficients in λ
(i)
t for i = 1, . . . , r. The score function is then

given by
∂ lnC∗

t

∂ft
=

r∑
i=1

wi,t ·
∂ lnC∗

i,t

∂ft
,

where C∗
t is the density function corresponding to C(u1t, . . . , uN,t; ft). The Hessian function is

∂2 lnC∗
t

∂ft∂f ′
t

=
r∑

i=1

wi,t·
(
∂2 lnC∗

i,t

∂ft∂f ′
t

+
∂ lnC∗

i,t

∂ft

∂ lnC∗
i,t

∂f ′
t

)
−

(
r∑

i=1

wi,t ·
∂ lnC∗

i,t

∂ft

)(
r∑

i=1

wi,t ·
∂ lnC∗

i,t

∂ft

)′

.

To obtain the driving mechanism st, we notice that

It|t−1 = −Et−1

(
∂2 lnC∗

t

∂ft∂f ′
t

)
= Et−1

[(
r∑

i=1

wi,t ·
∂ lnC∗

i,t

∂ft

)(
r∑

i=1

wi,t ·
∂ lnC∗

i,t

∂ft

)′]
. (28)

It follows that the scores of the individual copulas can be used directly to build a GAS driving

mechanism for the mixture copula model.

We illustrate the mixture model for r = 2. The Appendix discusses the details of the

simple Clayton copula (r = 1) with a GAS time-varying dependence. The Clayton copula,

however, only accounts for lower tail and not for upper tail dependence. To allow for both

types of dependence at the same time, we mix the standard Clayton with the survival Clayton

as in Patton (2006) to obtain a symmetrized Clayton copula. The first element of the mixture

is the standard Clayton copula characterized by the parameter λt,L that accounts for lower

tail dependence. The second component of the mixture is the survival Clayton copula and is

characterized by the parameter λt,U that accounts for upper tail clustering.

The GAS mechanism for the mixture of copulas has an intuitive interpretation. A given
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Figure 2: Symmetrized Clayton copula illustration: comparisons between the lower tail (λt,L, left panel) and

upper tail (λt,U , right panel) dependence coefficients from the GAS framework and the Patton model based on a

simulated data set.

observation may have a contribution to the evolution of upper tail dependence λt,U or the lower

tail dependence λt,L. The contributions are measured in terms of the likelihood of each mixture

component vis-a-vis the total likelihood. As a result, observations that cluster in the upper tail

automatically contribute to the evolution of λt,U , and similarly in the lower tail for λt,L. By

contrast, the framework of Patton (2006) for the symmetrized copula cannot make automatic

use of such features, as its driving mechanism is given by averages of |uit − ujt| for both upper

and lower tail dependence.

To illustrate the differences between the time-varying dependencies implied by Patton and

GAS , we carry out a simulation experiment. We generate data from the symmetrized Clayton

copula. The lower tail dependence coefficient λt,L follows a time-varying sinusoidal pattern.

The time-varying pattern of λt,U is also sinusoidal but with a period that is half as long. It is
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difficult for a model with a uniform driving mechanism to capture both upper and lower tail

dependence dynamics within a single model. We present the results in Figure 2, where the

scaling matrix in (28) is computed numerically. In case of the updating mechanism of Patton

in (26), the smoothing parameter m has taken the values m = 1 and m = 10.

We find that the Patton driving mechanism based on averages of |uit − ujt| only captures

some of the variation in the dependence coefficients. It has difficulty in capturing the upper and

lower tail dependence dynamics simultaneously, since the same mechanism applies to both types

of dependence. The GAS specification is more successful in tracking both types of dynamics.

The GAS (1, 1) estimate of ft is noisier compared to the one obtained from the Patton model,

but GAS captures the true dependence pattern more closely.

4 Dynamic pooled marked point process models

In this section we present a new model for credit risk and rating transitions. We apply the

GAS framework based on the square root information matrix, that is St = Jt|t−1 as defined in

(5), to create a new multivariate point-process model with time-varying intensities. Empirical

results are presented for a data set based on Moody’s rating histories of all US corporates.

4.1 Point process models

Statistical models with time-varying intensities have received much attention in finance and

econometrics. The principal areas of application in economics include intraday trade data

(market microstructure), defaults of firms, credit rating transitions and (un)employment spells

over time. To illustrate the GAS model in this setting, we consider an application from the

credit risk literature in which pooled marked point-processes play an important role.

A number of different models with stochastically evolving intensities have been proposed,

see, for example, Bauwens and Hautsch (2006), Koopman et al. (2008), Duffie, Eckner, Horel,

and Saita (2009), and Koopman, Lucas, and Schwaab (2011). The econometric treatment

of parameter driven models is intricate while parameter estimation can be computationally

demanding regardless of whether frequentist or Bayesian methods are used. In particular,

likelihood evaluation for these models requires the computation of high-dimensional integrals
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using importance sampling techniques or Markov chain Monte Carlo algorithms. Here we

propose an alternative, observation driven model for time-varying intensities. The formulation

of the model follows naturally within the GAS framework.

4.2 The dynamic marked point process model

Let yk,t = (y1k,t, . . . , yJk,t)
′ be a vector of marks of J competing risk processes for firms k =

1, . . . , N . We have yjk,t = 1 if event type j out of J materializes for firm k at time t, and zero

otherwise, and we assume that the pooled point process is orderly, such that with probability

1 precisely one event occurs at each event time. Let t∗ denote the last event time before time t

and let λk,t = (λ1k,t, . . . , λJk,t)
′ be a J × 1 vector of log-intensities. We model the log intensities

by

λk,t = d+ Zft +Xk,tβ, (29)

where d is a J × 1 vector of baseline intensities, Z is a J × r matrix of factor loadings, and

β is a p × 1 vector of regression parameters for the exogenous covariates Xk,t. The r × 1

vector of dynamic factors ft is specified by the GAS (1, 1) updating equation (2) with ω = 0.

Since ft is not observed directly, we need to impose a sign restriction on Z to obtain economic

interpretations for the time-varying parameters. We assume the model has a factor structure:

the intensities of all firms are driven by the same vector of time-varying systematic parameters

ft. We thus require parameter restrictions for model identification, which we discuss further

below.

Model (29) nests the model of Russell (2001) when we set the dimension of ft equal to the

number of firms, r = N . In a credit risk context, this is not feasible and we typically have

r << N . This is due to the fact that credit rating events are much sparser than trades in a

liquid stock. The former are one up to 12 over a span of thirty years, while the latter may

be already substantial if only counted within a five-minute time span. This difference in the

structure of the data makes the empirical modeling process for credits substantially different

from that for trade intensities.
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The log-likelihood specification using (29) is given by

ℓt =
J∑

j=1

N∑
k=1

yjk,tλjk,t −Rjk,t · (t− t∗) · exp (λjk,t∗) , (30)

where Rk,t = (R1k,t, . . . , RJk,t)
′ and Rjk,t is a zero-one variable indicating whether company k is

potentially subject to risk j at time t. Define P as a J × J diagonal matrix with jth diagonal

element pj,t =
∑

k Rjk,t · exp[λjk,t] /
∑

j,k Rjk,t · exp[λjk,t] = P[
∑

k yjk,t = 1 |
∑

j,k yjk,t = 1], i.e.,

the probability that the next event is of type j given that an event happens for firm k. Based

on the first and second derivative of ℓt and setting St = Jt|t−1, we obtain the score and scaling

matrix

∇t = Z ′

(
N∑
k=1

yk,t −Rk,t · (t− t∗) · exp(λk,t∗)

)
, (31)

St = (Z ′PZ)
− 1

2 . (32)

By combining these basic elements into a GAS specification, we have obtained a new obser-

vation driven model for credit rating transitions. In comparison with its parameter driven

counterparts, parameter estimation for the current model is much easier.

4.3 Application to Moody’s credit rating data

For our illustration, we adopt the marked point-process model (29), (30) and (2) with st = St∇t

given by (31) and (32) for a data set which contains Moody’s rating histories of all US corporates

over the period January 1981 to March 2010. We set ω = 0 to identify the intercept d in

(29). The initial credit ratings for each firm are known at the beginning of the sample and

we observe the transitions from one rating category to another over time. Moody’s ratings

include 21 different categories, some of which are sparsely populated. For the sake of this

illustration, therefore, we pool the ratings into a much smaller set of complementary credit

classes: investment grade (IG, containing Moody’s rating categories Aaa to Baa3), and sub-

investment grade (SIG, containing the remaining Moody’s rating categories). Default is treated

as an absorbing category. This makes for J = 4 possible events, which are the rating transitions

from j = 1, . . . , 4 as IG → SIG, IG → Default, SIG → IG, and SIG → Default, respectively.
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It is often concluded in credit risk studies that default probabilities are countercyclical. We

therefore allow the log-intensities (29) to depend upon the annual growth rate (standardized)

of US industrial production as an exogenous variable. This time series has been downloaded

from the Federal Reserve Bank of St Louis. Finally, during several days (one in April 1982

and two in October 2007), Moody’s redefined several ratings categories. This caused incidental

re-rating and resulted in several outliers in the sample. We eliminate the days with outliers

from the sample.

Parameter estimates for β, d, Z, A1 and B1 are reported in Table 2 for GAS models with

r = 1, 2, 3 factors. In order to identify the parameters in Z, we have to impose a number of

restrictions. For the different models, we set

r = 1 :


∗
∗
∗
1

 , r = 2 :


∗ ∗
∗ ∗
1 0

0 1

 , r = 3 :


1 0 0

∗ 0 ∗
0 1 0

0 0 1

 ,

where ∗ indicates a coefficient that is estimated. These restrictions imply that for r = 1 the

factor is common to all transition types and is identified as the sub-investment grade (SIG) to

default factor. For r = 2, we have a factor for upgrades and another factor for downgrades.

For the model with r = 3, we have an IG downgrade factor, an IG and SIG default factor,

and an SIG upgrade factor. We impose the additional restriction that the upgrade factor

from SIG to IG does not impact the IG to Default transitions. All of the estimated baseline

intensities in d as well as the coefficients in β are significant. The baseline downgrade from IG

to default is the smallest with an estimate of −8.094 for r = 1. The estimated β’s have signs

and magnitudes that are consistent with the notion that default intensities are countercyclical.

The log-likelihood, AIC, BIC for each of the three models are reported at the bottom of Table

2. Although we do not provide a theory for comparing pooled marked point-process factor

models with different numbers of factors, the large difference between the log-likelihood values

for r = 1 versus the models with r = 2 and r = 3 is indicative that more than one factor is

needed to fit the data. The GAS parameter B1 is estimated close to unity for all factors and

all specifications, which implies a persistent dynamic process for ft.
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Table 2: Estimation results for the GAS marked point process models

1 factor 2 factors 3 factors
θ j,k j,k j,k

βj 1 −0.165 (0.045) 1 −0.123 (0.069) 1 −0.137 (0.068)

2 −0.510 (0.239) 2 −0.500 (0.241) 2 −0.509 (0.241)

3 0.273 (0.054) 3 0.221 (0.062) 3 0.254 (0.073)

4 −0.278 (0.067) 4 −0.310 (0.069) 4 −0.314 (0.075)

dj 1 −3.708 (0.170) 1 −3.702 (0.130) 1 −3.728 (0.141)

2 −8.094 (0.389) 2 −8.084 (0.368) 2 −8.176 (0.532)

3 −3.680 (0.049) 3 −3.689 (0.075) 3 −3.693 (0.070)

4 −3.289 (0.343) 4 −3.262 (0.317) 4 −3.728 (0.141)

Zj,k 1,1 0.492 (0.091) 1,1 −1.794 (0.402) 1,1 1
2,1 0.538 (0.618) 2,1 −0.903 (1.457) 2,1 0.576 (0.826)

3,1 −0.075 (0.088) 1,2 0.331 (0.160) 2,3 0.347 (0.665)

4,1 1 2,2 0.496 (0.627) 3,2 1
3,1 1 4,3 1
4,2 1

A1,jj 1 0.023 (0.003) 1 0.021 (0.005) 1 0.017 (0.003)

2 0.021 (0.003) 2 0.009 (0.004)

3 0.021 (0.003)

B1,jj 1 0.996 (0.003) 1 0.990 (0.005) 1 0.993 (0.004)

2 0.996 (0.003) 2 0.983 (0.011)

3 0.997 (0.005)

log-lik −12806.5 −12752.1 −12758.1
AIC 25639.0 25536.2 25547.8
BIC 25711.8 25625.8 25637.4
nr.par 13 16 16

Estimation results for the parameters in the marked point-process model (29) with r = 1, 2, 3, (30) and (2)
with ω = 0. The data are Moody’s rating histories of all US corporates between January 1981 and March 2010.
The estimates are reported with asymptotic standard errors in parentheses next to the estimates. Notation: βj

is the jth element of β, dj is the jth element of d, Zj,k is the (j, k) element of Z, A1,jj is the jth diagonal
element of A1 and B1,jj is the jth diagonal element of B1.

For the one-factor model (r = 1), we perform a full benchmark analysis for the new GAS

model in relation to its parameter driven counterpart. We therefore take the model of Koopman

et al. (2008) as our benchmark, hereafter referred to as KLM08 . The marked point process

KLM08 model has the same observation density (30) as the GAS model. However, the time-
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varying parameter ft follows an Ornstein-Uhlenbeck process driven by an independent stochastic

process. We refer to Koopman et al. (2008) for further details. Parameter estimation for the

KLM08 model is more involved than for the GAS model due to the presence of a dynamic, non-

predictable stochastic component. In this paper we estimate the KLM08 model using Markov

Chain Monte Carlo techniques and compute the one-step ahead predicted estimates of ft by

means of a particle filter; see Creal (2011) for a detailed survey.

Figure 3 compares the estimates of ft obtained from the two model specifications. For each

of the four possible rating transitions, we plot the intensity of the transition (in basis points

on a log scale). These intensities, after dividing them by the number of days in a year, can

approximately be interpreted as the daily transition probabilities for each rating transition type.

We learn from Figure 3 that the estimates of the time-varying probabilities of the GAS model

are almost identical to those of the parameter driven KLM08 model. However, in our current

GAS framework, the results can be obtained without the need of computationally intensive

simulation methods required for parameter driven models. It underlines an attractive feature

of our GAS approach.

5 Conclusions

We have introduced the generalized autoregressive score model as a uniformly applicable

observation driven model specification to capture time variation in parameters. A clear advan-

tage of the GAS model is that it exploits the full likelihood information. By taking a scaled

(local density) score step as a driving mechanism, the time-varying parameter automatically

reduces its one-step ahead prediction error at the current observation with respect to current

parameter values. We have illustrated our framework by empirical studies based on dynamic

copula models and multivariate marked point process models.
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Figure 3: The estimated intensities (in basis points) for each transition type for the one-factor marked point

process model. Moody’s rating histories are for all US corporates between January 1981 and March 2010.

Appendix: GAS specification for Clayton copula

Consider the Clayton copula as a member of the Archimedian family and given by

C(u1t, . . . , uN,t;λ) = ct(λ)
−1/λ, ct(λ) = 1−N +

N∑
i=1

u−λ
it , (33)

where N is the dimension of the observation vector yt = (y1t, . . . , yN,t)
′, ui,t is the probability

integral transform based on the univariate marginal density function of yi,t and parameter λ

determines the dependence in yt. In particular, the tail dependence coefficient λ measures the

probability of joint extreme exceedances. Low values of λ indicate high levels of dependence. A

particular feature of the Clayton copula is that extreme joint crashes receive positive probability
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while joint extreme upward shocks obtain zero probability.

The Clayton copula has logdensity

lnC∗(u1t, . . . , uN,t) = −
(
1

ft
+N

)
ln ct(ft) +

N∑
i=1

ln (1− i · ft)− (ft + 1)
N∑
i=1

lnuit, (34)

with time-varying dependence parameter ft = λt. For the GAS updating equation we require

∇t =
1

f 2
t

ln ct(ft)−
N∑
i=1

[
1

1− i · ft
− ln(uit)

]
+

(
1

ft
+N

)
ct(ft)

−1

N∑
i=1

u−ft
it ln(uit). (35)

The principal difficulty here is to derive a closed-form expression for the information matrix.

This difficulty also arises for even simpler copula models. An alternative method is to compute

the information matrix numerically. In our current example, the information matrix is given

by

It|t−1 = Et−1

[
(∇t)

2
]
≡ h(ft), (36)

with ∇t given by (35) and where h(·) does not depend on time or on any parameter other than

ft. For numerical evaluation of (36), we construct a grid of values f
(0)
t < . . . < f

(n)
t for some

positive integer n and compute the function value h(f
(j)
t ) at each of the grid points j = 0, . . . , n.

Values at intermediate points can be obtained by cubic spline interpolation or non-parametric

kernel smoothing to ensure continuity of first and second derivatives of the likelihood function.

The numerical procedure is then as follows. For a given value of the parameter vector θ = θ∗

and initial value f1, compute h(f1) and use it to scale the score step s1 = ∇1 / h(f1) for a scalar

f1. Obtain the new parameter value f2 from the GAS update equation (2) and compute h(f2)

via interpolation. This process is repeated for each t. Finally, the log-likelihood function can

be computed for θ = θ∗.
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