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Copulas

8.1 Introduction

Copulas are a popular method for modeling multivariate distributions. A cop-
ula models the dependence—and only the dependence—between the variates
in a multivariate distribution and can be combined with any set of univariate
distributions for the marginal distributions. Consequently, the use of copulas
allows us to take advantage of the wide variety of univariate models that are
available.

A copula is a multivariate CDF whose univariate marginal distributions
are all Uniform(0,1). Suppose that Y = (Y1, . . . , Yd) has a multivariate CDF
FY with continuous marginal univariate CDFs FY1 , . . . , FYd

. Then, by equa-
tion (A.9) in Section A.9.2, each of FY1(Y1), . . . , FYd

(Yd) is Uniform(0,1) dis-
tributed. Therefore, the CDF of {FY1(Y1), . . . , FYd

(Yd)} is a copula. This CDF
is called the copula of Y and denoted by CY . CY contains all information
about dependencies among the components of Y but has no information about
the marginal CDFs of Y .

It is easy to find a formula for CY . To avoid technical issues, in this section
we will assume that all random variables have continuous, strictly increasing
CDFs. More precisely, the CDFs are assumed to be increasing on their sup-
port. For example, the exponential CDF

F (y) =
{

1− e−y, y ≥ 0,
0, y < 0,

has support [0,∞) and is strictly increasing on that set. The assumption that
the CDF is continuous and strictly increasing is avoided in more mathemati-
cally advanced texts; see Section 8.8.

Since CY is the CDF of {FY1(Y1), . . . , FYd
(Yd)}, by the definition of a CDF

we have

CY (u1, . . . , ud) = P {FY1(Y1) ≤ u1, . . . , FYd
(Yd) ≤ ud}
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= P
{
Y1 ≤ F−1

Y1
(u1), . . . , Yd ≤ F−1

Yd
(ud)

}

= FY

{
F−1

Y1
(u1), . . . , F−1

Yd
(ud)

}
. (8.1)

Next, letting uj = FYj (yj), j = 1, . . . , d, in (8.1) we see that

FY (y1, . . . , yd) = CY {FY1(y1), . . . , FYd
(yd)} . (8.2)

Equation (8.2) is part of a famous theorem due to Sklar which states that the
FY can be decomposed into the copula CY , which contains all information
about the dependencies among (Y1, . . . , Yd), and the univariate marginal CDFs
FY1 , . . . , FYd

, which contain all information about the univariate marginal
distributions.

Let

cY (u1, . . . , ud) =
∂d

∂u1 · · · ∂ud
CY (u1, . . . , ud) (8.3)

be the density of CY . By differentiating (8.2), we find that the density of Y
is equal to

fY (y1, . . . , yd) = cY {FY1(y1), . . . , FYd
(yd)}fY1(y1) · · · fYd

(yd). (8.4)

One important property of copulas is that they are invariant to strictly
increasing transformations of the variables. More precisely, suppose that gj is
strictly increasing and Xj = gj(Yj) for j = 1, . . . , d. Then X = (X1, . . . , Xd)
and Y have the same copulas. To see this, first note that the CDF of X is

FX(x1, . . . , xd) = P {g1(Y1) ≤ x1, . . . , gd(Yd) ≤ xd}
= P

{
Y1 ≤ g−1

1 (x1), . . . , Yd ≤ g−1
d (xd)

}

= FY

{
g−1
1 (x1), . . . , g−1

d (xd)
}

(8.5)

and therefore the CDF of Xj is

FXj (xj) = FYj

{
g−1

j (xj)
}

.

Consequently,
F−1

Xj
(u) = gj

{
F−1

Yj
(u)

}
(8.6)

and by (8.1) applied to X, (8.5), (8.6), and then (8.1) applied to Y , the copula
of X is

CX(u1, . . . , ud) = FX

{
F−1

X1
(u1), . . . , F−1

Xd
(ud)

}

= FY

[
g−1
1

{
F−1

X1
(u1)

}
, . . . , g−1

d

{
F−1

Xd
(ud)

}]

= FY

{
F−1

Y1
(u1), . . . , F−1

Yd
(ud)

}

= CY (u1, . . . , ud).

To use copulas to model multivariate dependencies, we need parametric
families of copulas. We turn to that topic next.
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8.2 Special Copulas

There are three copulas of special interest because they represent indepen-
dence and the two extremes of dependence.

The d-dimensional independence copula is the copula of d independent
uniform(0,1) random variables. It equals

C ind(u1, . . . , ud) = u1 · · ·ud, (8.7)

and has a density that is uniform on [0, 1]d, that is, its density is c ind(u1, . . . ,
ud) = 1 on [0, 1]d.

The d-dimensional co-monotonicity copula CM has perfect positive de-
pendence. Let U be Uniform(0,1). Then, the co-monotonicity copula is the
CDF of U = (U, . . . , U); that is, U contains d copies of U so that all of the
components of U are equal. Thus,

CM(u1, . . . , ud) = P (U ≤ u1, . . . , U ≤ ud) = P{Y ≤ min(u1, . . . , ud)}
= min(u1, . . . , ud).

The two-dimensional counter-monotonicity copula CCM copula is the CDF
of (U, 1− U), which has perfect negative dependence. Therefore,

CCM(u1, u2) = P (U ≤ u1 & 1− U ≤ u2)
= P (1− u2 ≤ U ≤ u1) = max(u1 + u2 − 1, 0). (8.8)

It is easy to derive the last equality in (8.8). If 1 − u2 > u1, then the event
{1 − u2 ≤ U ≤ u1} is impossible so the probability is 0. Otherwise, the
probability is the length of the interval (1 − u2, u1), which is u1 + u2 − 1.
It is not possible to have a counter-monotonicity copula with d > 2. If, for
example, U1 is counter-monotonic to U2 and U2 is counter-monotonic to U3,
then U1 and U3 will be co-monotonic, not counter-monotonic.

8.3 Gaussian and t-Copulas

Multivariate normal and t-distributions offer a convenient way to generate
families of copulas. Let Y = (Y1, . . . , Yd) have a multivariate normal distribu-
tion. Since CY depends only on the dependencies within Y , not the univari-
ate marginal distributions, CY depends only on the correlation matrix of Y ,
which will be denoted by Ω. Therefore, there is a one-to-one correspondence
between correlation matrices and Gaussian copulas. The Gaussian copula with
correlation matrix Ω will be denoted C Gauss( · |Ω).

If a random vector Y has a Gaussian copula, then Y is said to have
a meta-Gaussian distribution. This does not, of course, mean that Y has a
multivariate Gaussian distribution, since the univariate marginal distributions
of Y could be any distributions at all. A d-dimensional Gaussian copula whose
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correlation matrix is the identity matrix, so that all correlations are zero, is the
d-dimensional independence copula. A Gaussian copula will converge to the
co-monotonicity copula if all correlations in Ω converge to 1. In the bivariate
case, as the correlation converges to −1, the copula converges to the counter-
monotonicity copula.

Similarly, let C t( · |ν, Ω) be the copula of a multivariate t-distribution
with correlation matrix Ω and degrees of freedom ν.1 The shape parameter
ν affects both the univariate marginal distributions and the copula, so ν is
a parameter of the copula. We will see in Section 8.6 that ν determines the
amount of tail dependence in a t-copula. A distribution with a t-copula is
called a t-meta distribution.

8.4 Archimedean Copulas

An Archimedean copula with a strict generator has the form

C(u1, . . . , ud) = φ−1{φ(u1) + · · ·+ φ(ud)}, (8.9)

where the function φ is the generator of the copula and satisfies

1. φ is a continuous, strictly decreasing, and convex function mapping [0, 1]
onto [0,∞],

2. φ(0) = ∞, and
3. φ(1) = 0.

Figure 8.1 is a plot of a generator and illustrates these properties. It is
possible to relax assumption 2, but then the generator is not called strict
and construction of the copula is more complex. There are many families of
Archimedean copulas, but we will only look at three, the Clayton, Frank, and
Gumbel copulas.

Notice that in (8.9), the value of C(u1, . . . , ud) is unchanged if we permute
u1, . . . , ud. A distribution with this property is called exchangeable. One con-
sequence of exchangeability is that both Kendall’s and Spearman’s rank cor-
relation introduced later in Section 8.5 are the same for all pairs of variables.
Archimedean copulas are most useful in the bivariate case or in applications
where we expect all pairs to have similar dependencies.

8.4.1 Frank Copula

The Frank copula has generator

φFr(u) = − log
{

e−θu − 1
e−θ − 1

}
, −∞ < θ < ∞.

1 There is a minor technical issue here if ν ≤ 2. In this case, the t-distribution does
not have covariance and correlation matrices. However, it still has a scale matrix
and we will assume that the scale matrix is equal to some correlation matrix Ω.



8.4 Archimedean Copulas 179

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

12

u

φ(
u)

Fig. 8.1. Generator of the Frank copula with θ = 1.

The inverse generator is

(φFr)−1(y) = − log
[
e−y{e−θ − 1}+ 1

]

θ
.

Therefore, by (8.9), the bivariate Frank copula is

CFr(u1, u2) = −1
θ

log
{

1 +
(e−θu1 − 1)(e−θu2 − 1)

e−θ − 1

}
. (8.10)

The case θ = 0 requires some care, since plugging this value into (8.10) gives
0/0. Instead, one must evaluate the limit of (8.10) as θ → 0. Using the ap-
proximations ex − 1 ≈ x and log(1 + x) ≈ x as x → 0, one can show that as
θ → 0, CFr(u1, u2) → u1u2, the bivariate independence copula. Therefore, for
θ = 0 we define the Frank copula to be the independence copula.

It is interesting to study the limits of CFr(u1, u2) as θ → ±∞. As θ → −∞,
the bivariate Frank copula converges to the counter-monotonicity copula. To
see this, first note that as θ → −∞,

CFr(u1, u2) ∼ −1
θ

log
{

1 + e−θ(u1+u2−1)
}

. (8.11)

If u1 + u2 − 1 > 0, then as θ → −∞, the exponent −θ(u1 + u2 − 1) in (8.11)
converges to ∞ and
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Fig. 8.2. Random samples from Frank copulas.

log
{

1 + e−θ(u1+u2−1)
}
∼ −θ(u1 + u2 − 1)

so that CFr(u1, u2) → u1+u2−1. If u1+u2−1 < 0, then −θ(u1+u2−1) → −∞
and CFr(u1, u2) → 0. Putting these results together, we see that CFr(u1, u2)
converges to max(0, u1+u2−1), the counter-monotonicity copula, as θ → −∞.

As θ → ∞, CFr(u1, u2) → min(u1, u2), the co-monotonicity copula. Veri-
fication of this is left as an exercise for the reader.

Figure 8.2 contains scatterplots of bivariate samples from nine Frank cop-
ulas, all with a sample size of 200 and with values of θ that give dependencies
ranging from strongly negative to strongly positive. The convergence to the
counter-monotonicity (co-monotonicity) copula as θ →−∞ (+∞) can be seen
in the scatterplots.

8.4.2 Clayton Copula

The Clayton copula, with generator (t−θ − 1)/θ, θ > 0, is
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CCl(u1, . . . , ud) = (u−θ
1 + · · ·+ u−θ

d − d + 1)−1/θ.

We define the Clayton copula for θ = 0 as the limit

lim
θ↓0

CCl(u1, . . . , ud) = u1 · · ·ud

which is the independence copula. There is another way to derive this result.
As θ ↓ 0, l’Hôpital’s rule shows that the generator (t−θ − 1)/θ converges to
φ(t) = − log(t) with inverse φ−1(t) = exp(−t). Therefore,

CCl(u1, . . . , ud) = φ−1{φ(u1) + · · ·+ φ(ud)}
= exp {− (− log u1 − · · · − log ud)} = u1 · · ·ud.

It is possible to extend the range of θ to include −1 ≤ θ < 0, but then the
generator (t−θ − 1)/θ is finite at t = 0 in violation of assumption 2. of strict
generators. Thus, the generator is not strict if θ < 0. As a result, it is necessary
to define CCl(u1, . . . , ud) to equal 0 for small values of ui. To appreciate this,
consider the bivariate case. If −1 ≤ θ < 0, then u−θ

1 + u−θ
2 − 1 < 0 occurs

when u1 and u2 are both small. In these cases, CCl(u1, u2) is set equal to 0.
Therefore, there is no probability in the region u−θ

1 +u−θ
2 −1 < 0. In the limit,

as θ → −1, there is no probability in the region u1 + u2 < 1.
As θ → −1, the bivariate Clayton copula converges to the counter-

monotonicity copula, and as θ → ∞, the Clayton copula converges to the
co-monotonicity copula.

Figure 8.3 contains scatterplots of bivariate samples from Clayton copulas,
all with a sample size of 200 and with values of θ that give dependencies
ranging from counter-monotonicity to co-monotonicity. Comparing Figures
8.2 and 8.3, we see that the Frank and Clayton copulas are rather different
when the amount of dependence is somewhere between these two extremes.
In particular, the Clayton copula’s exclusion of the region u−θ

1 + u−θ
2 − 1 < 0

when θ < 0 is evident, especially in the example with θ = −0.7. In contrast,
the Frank copula has positive probability on the entire unit square. The Frank
copula is symmetric about the diagonal from (0, 1) to (1, 0), but the Clayton
copula does not have this symmetry.

8.4.3 Gumbel Copula

The Gumbel copula has generator {− log(t)}θ, θ ≥ 1, and consequently is
equal to

CGu(u1, . . . , ud) = exp
[
−{

(log u1)θ + · · ·+ (log ud)θ
}1/θ

]
.

The Gumbel copula is the independence copula when θ = 1 and converges to
the co-monotonicity copula as θ → ∞, but the Gumbel copula cannot have
negative dependence.
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Fig. 8.3. Random samples of size 200 from Clayton copulas.

Figure 8.4 contains scatterplots of bivariate samples from Gumbel copulas,
with a sample size of 200 and with values of θ that give dependencies ranging
from near independence to strong positive dependence.

In applications, it is useful that the different copula families have different
properties, since this increases the likelihood of finding a copula that fits the
data.

8.5 Rank Correlation

The Pearson correlation coefficient defined by (4.3) is not convenient for fitting
copulas to data, since it depends on the univariate marginal distributions as
well as the copula. Rank correlation coefficients remedy this problem, since
they depend only on the copula.

For each variable, the ranks of that variable are determined by ordering
the observations from smallest to largest and giving the smallest rank 1, the
next-smallest rank 2, and so forth. In other words, if Y1, . . . , Yn is a sample,
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Fig. 8.4. Random samples from Gumbel copulas.

then the rank of Yi in the sample is equal to 1 if Yi is the smallest observation,
is 2 if Y2 is the second smallest, and so forth. More mathematically, the rank
of Yi can be defined also by the formula

rank(Yi) =
n∑

j=1

I(Yj ≤ Yi), (8.12)

which counts the number of observations (including Yi itself) that are less
than or equal to Yi. A rank statistic is a statistic that depends on the data
only through the ranks. A key property of ranks is that they are unchanged by
strictly monotonic transformations. In particular, the ranks are unchanged by
transforming each variable by its CDF, so the distribution of any rank statistic
depends only on the copula of the data, not on the univariate marginals.

We will be concerned with rank statistics that measure statistical associ-
ation between pairs of variables. These statistics are called rank correlations.
There are two rank correlation coefficients in widespread usage, Kendall’s tau
and Spearman’s rho.

8.5.1 Kendall’s Tau

Let (Y1, Y2) be a bivariate random vector and let (Y ∗
1 , Y ∗

2 ) be an independent
copy of (Y1, Y2). Then (Y1, Y2) and (Y ∗

1 , Y ∗
2 ) are called a concordant pair if
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the ranking of Y1 relative to Y ∗
1 is the same as the ranking of Y2 relative to

Y ∗
2 , that is, either Y1 > Y ∗

1 and Y2 > Y ∗
2 or Y1 < Y ∗

1 and Y2 < Y ∗
2 . In either

case, (Y1 − Y ∗
1 )(Y2 − Y ∗

2 ) > 0. Similarly, (Y1, Y2) and (Y ∗
1 , Y ∗

2 ) are called a
discordant pair if (Y1 − Y ∗

1 )(Y2 − Y ∗
2 ) < 0. Kendall’s tau is the probability

of a concordant pair minus the probability of a discordant pair. Therefore,
Kendall’s tau for (Y1, Y2) is

ρτ (Y1, Y2) = P{(Y1 − Y ∗
1 )(Y2 − Y ∗

2 ) > 0} − P{(Y1 − Y ∗
1 )(Y2 − Y ∗

2 ) < 0}
= E [sign{(Y1 − Y ∗

1 )(Y2 − Y ∗
2 )}] , (8.13)

where the sign function is

sign(x) =

{ 1, x > 0,
−1, x < 0,

0, x = 0.

It is easy to check that if g and h are increasing functions, then

ρτ{g(Y1), h(Y2)} = ρτ (Y1, Y2). (8.14)

Stated differently, Kendall’s tau is invariant to monotonically increasing trans-
formations. If g and h are the marginal CDFs of Y1 and Y2, then the left-hand
side of (8.14) is the value of Kendall’s tau for the copula of (Y1, Y2). This shows
that Kendall’s tau depends only on the copula of a bivariate random vector.
For a random vector Y , we define the Kendall tau correlation matrix to be
the matrix whose (j, k) entry is Kendall’s tau for the jth and kth components
of Y .

If we have a bivariate sample Y i = (Yi,1, Yi,2), i = 1, . . . , n, then the
sample Kendall’s tau is

ρ̂τ (Y1, Y2) =
(

n
2

)−1 ∑

1≤i<j≤n

sign {(Yi,1 − Yj,1)(Yi,2 − Yj,2)} . (8.15)

Note that
(

n
2

)
is the number of summands in (8.15), so ρ̂ is sign{(Yi,1−Yj,1)

(Yi,2−Yj,2)} averaged across all distinct pairs and is a sample version of (8.13).

8.5.2 Spearman’s Correlation Coefficient

For a sample, Spearman’s correlation coefficient is simply the usual Pearson
correlation calculated from the ranks of the data. For a distribution (that is,
an infinite population rather than a finite sample), both variables are trans-
formed by their CDFs and then the Pearson correlation is computed from the
transformed variables. Transforming a random variable by its CDF is analo-
gous to computing the ranks of a variable in a finite sample.
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Stated differently, Spearman’s correlation coefficient, also called Spear-
man’s rho, for a bivariate random vector (Y1, Y2) will be denoted by ρS(Y1, Y2)
and is defined to be the Pearson correlation coefficient of {FY1(Y1), FY2(Y2)}:

ρS(Y1, Y2) = Corr{FY1(Y1), FY2(Y2)}.

Since the distribution of {FY1(Y1), FY2(Y2)} is the copula of (Y1, Y2), Spear-
man’s rho, like Kendall’s tau, depends only on the copula.

The sample version of Spearman’s correlation coefficient can be computed
from the ranks of the data and for a bivariate sample Y i = (Yi,1, Yi,2), i =
1, . . . , n, is

ρ̂S(Y1, Y2) =
12

n(n2 − 1)

n∑

i=1

{
rank(Yi,1)− n + 1

2

}{
rank(Yi,2)− n + 1

2

}
.

(8.16)
The set of ranks for any variable is, of course, the integers 1 to n and (n+1)/2
is the mean of its ranks. It can be shown that ρ̂S(Y1, Y2) is the sample Pearson
correlation between the ranks of Yi,1 and the ranks of Yi,2.2

If Y = (Y1, . . . , Yd) is a random vector, then the Spearman correlation
matrix of Y is the correlation matrix of {FY1(Y1), . . . , FYd

(Yd)} and contains
the Spearman correlation coefficients for all pairs of coordinates of Y . The
sample Spearman correlation matrix is defined analogously.

8.6 Tail Dependence

Tail dependence measures association between the extreme values of two ran-
dom variables and depends only on their copula. We will start with lower tail
dependence, which uses extremes in the lower tail. Suppose that Y = (Y1, Y2)
is a bivariate random vector with copula CY . Then the coefficient of lower
tail dependence is denoted by λl and defined as

λl := lim
q↓0

P
{
Y2 ≤ F−1

Y2
(q) |Y1 ≤ F−1

Y1
(q)

}
(8.17)

= lim
q↓0

P
{
Y2 ≤ F−1

Y2
(q) and Y1 ≤ F−1

Y1
(q)

}

P
{
Y1 ≤ F−1

Y1
(q)

} (8.18)

= lim
q↓0

P {FY2(Y2) ≤ q and FY1(Y1) ≤ q}
P {FY1(Y1) ≤ q} (8.19)

= lim
q↓0

CY (q, q)
q

. (8.20)

2 If there are ties, then ranks are averaged among tied observations. For example,
if there are two observations tied for smallest, then they each get a rank of 1.5.
When there are ties, then these results must be modified.
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It is helpful to look at these equations individually. As elsewhere in this chap-
ter, for simplicity we are assuming that FY1 and FY2 are strictly increasing on
their supports and therefore have inverses.

First, (8.17) defines λl as the limit as q ↓ 0 of the conditional probability
that Y2 is less than or equal to its qth quantile, given that Y1 is less than or
equal to its qth quantile. Since we are taking a limit as q ↓ 0, we are looking
at the extreme left tail. What happens if Y1 and Y2 are independent? Then
P (Y2 ≤ y2 |Y1 ≤ y1) = P (Y2 ≤ y2) for all y1 and y2. Therefore, the conditional
probability in (8.17) equals the unconditional probability P (Y2 ≤ F−1

Y2
(q)) and

this probability converges to 0 as q ↓ 0. Therefore, λl = 0 implies that in the
extreme left tail, Y1 and Y2 behave as if they were independent.

Equation (8.18) is just the definition of conditional probability. Equation
(8.19) is simply (8.18) after applying the probability transformation to both
variables.

The numerator in equation (8.20) is just the definition of a copula and
the denominator is the result of FY1(Y1) being Uniform(0,1) distributed; see
(A.9).

Deriving formulas for λl for Gaussian and t-copulas is a topic best left
for more advanced books. Here we give only the results; see Section 8.8 for
further reading. For any Gaussian copula with ρ 6= 1, λl = 0, that is, Gaussian
copulasdo not have tail dependence except in the extreme case of perfect
positive correlation. For a t-copula with ν degrees of freedom and correlation
ρ,

λl = 2Ft,ν+1

{
−

√
(ν + 1)(1− ρ)

1 + ρ

}
, (8.21)

where Ft,ν+1 is the CDF of the t-distribution with ν + 1 degrees of freedom.
Since Ft,ν+1(−∞) = 0, we see that λl → 0 as ν →∞, which makes sense

since the t-copula converges to a Gaussian copula as ν → ∞. Also, λl → 0
as ρ → −1, which is also not too surprising, since ρ = −1 is perfect negative
dependence and λl measures positive tail dependence.

The coefficient of upper tail dependence, λu, is

λu := lim
q↑1

P
{
Y2 ≥ F−1

Y2
(q) |Y1 ≥ F−1

Y1
(q)

}
(8.22)

= 2 + lim
q↑1

1− CY (q, q)
1− q

. (8.23)

We see that λu is defined analogously to λl; λu is the limit as q ↑ 1 of the
conditional probability that Y2 is greater than or equal to its qth quantile,
given that Y1 is greater than or equal to its qth quantile. Deriving (8.23) is
left as an exercise for the interested reader.

For Gaussian and t-copula, λu = λl, so that λu = 0 for any Gaussian cop-
ula and for a t-copula, λl is given by the right-hand side of (8.21). Coefficients
of tail dependence for t-copulas are plotted in Figure 8.5. One can see λl = λu

depends strongly on both ρ and ν.
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Fig. 8.5. t-copulas coefficients of tail dependence as functions of ρ for ν = 1, 4, 25,
and 250.

For the independence copula, λl and λu are both equal to 0, and for the
co-monotonicity copula both are equal to 1.

Knowing whether or not there is tail dependence is important for risk
management. If there are no tail dependencies among the returns on the assets
in a portfolio, then there is little risk of clusters of very negative returns, and
the risk of an extreme negative return on the portfolio is low. Conversely, if
there are tail dependencies, then the likelihood of extreme negative returns
occurring simultaneously on several assets in the portfolio can be high.

8.7 Calibrating Copulas

Assume that we have an i.i.d. sample Y i = (Yi,1, . . . , Yi,d), i = 1, . . . , n, and
we wish to estimate the copula of Y i and perhaps its marginal distributions
as well.

An important task is choosing a copula model. The various copula models
differ notably from each other. For example, some have tail dependence and
others do not. The Gumbel copula allows only positive dependence or inde-
pendence. The Clayton copula with negative dependence excludes the region
where both u1 and u2 are small. As will be seen in this section, an appropriate
copula model can be selected using graphical techniques as well as with AIC.
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8.7.1 Maximum Likelihood

Suppose we have parametric models FY1(· |θ1), . . . , FYd
(· |θd) for the marginal

CDFs as well as a parametric model cY (·|θC) for the copula density. By taking
logs of (8.4), we find that the log-likelihood is

L(θ1, . . . , θd, θC) =
n∑

i=1

(
log

[
cY

{
FY1(Yi,1|θ1), . . . , FYd

(Yi,d|θd)
∣∣∣θC

}]

+ log
{
fY1(Yi,1|θ1)

}
+ · · ·+ log

{
fYd

(Yi,d|θd)
}
)

. (8.24)

Maximum likelihood estimation finds the maximum of L(θ1, . . . , θd, θC) over
the entire set of parameters (θ1, . . . , θd, θC).

There are two potential problems with maximum likelihood estimation.
First, because of the large number of parameters, especially for large values of
d, maximizing L(θ1, . . . , θd, θC) can be a challenging numerical problem. This
difficulty can be ameliorated by the use of starting values that are close to the
MLEs. The pseudo-maximum likelihood estimates discussed in the next sec-
tion are easier to compute than the MLE and can used either as an alternative
to the MLE or as starting values for the MLE.

Second, maximum likelihood estimation requires parametric models for
both the copula and the marginal distributions. If any of the marginal dis-
tributions are not well fit by a convenient parametric family, this may cause
biases in the estimated parameters of both the marginal distributions and
the copula. The semiparametric approach to pseudo-maximum likelihood es-
timation, where the marginal distributions are estimated nonparametrically,
provides a remedy to this problem.

8.7.2 Pseudo-Maximum Likelihood

Pseudo-maximum likelihood estimation is a two-step process. In the first step,
each of the d marginal distribution functions is estimated, one at a time. Let
F̂Yj be the estimate of the jth marginal CDF, j = 1, . . . , d. In the second step,

n∑

i=1

log
[
cY

{
F̂Y1(Yi,1), . . . , F̂Yd

(Yi,d)
∣∣∣θC

}]
(8.25)

is maximized over θC . Note that (8.25) is obtained from (8.24) by deleting
terms that do not depend on θC and replacing the marginal CDFs by es-
timates. By estimating parameters in the marginal distributions and in the
copula separately, the pseudo-maximum likelihood approach avoids a high-
dimensional optimization.

There are two approaches to step 1, parametric and nonparametric. In
the parametric approach, parametric models FY1(· |θ1), . . . , FYd

(· |θd) for the
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marginal CDFs are assumed as in maximum likelihood estimation. The data
Y1,j , . . . , Yn,j for the jth variate are used to estimate θj , usually by maximum
likelihood as discussed in Chapter 5. Then, F̂Yj (·) = FYj (·|θ̂j). In the non-
parametric approach, F̂Yj is estimated by the empirical CDF of Y1,j , . . . , Yn,j ,
except that the divisor n in (4.1) is replaced by n + 1 so that

F̂Yj (y) =
∑n

i=1 I{Yi,j ≤ y}
n + 1

. (8.26)

With this modified divisor, the maximum value of F̂Yj (Yi,j) is n/(n + 1)
rather than 1. Avoiding a value of 1 is essential when, as is often the case,
cY (u1, . . . , ud|θC) = ∞ if some of u1, . . . , ud are equal to 1.

When both steps are parametric, the estimation method is called paramet-
ric pseudo-maximum likelihood. The combination of a nonparametric step 1
and a parametric step 2 is called semiparametric pseudo-maximum likelihood.

In the second step of pseudo-maximum likelihood, the maximization can
be difficult when θC is high-dimensional. For example, if one uses a Gaussian
or t-copula, then there are d(d − 1)/2 correlation parameters. One way to
solve this problem is to assume some structure to the correlation. An extreme
case of this is the equi-correlation model where all nondiagonal elements of
the correlation matrix have a common value, call it ρ. If one is reluctant to
assume some type of structured correlation matrix, then it is essential to have
good starting values for the correlation matrix when maximizing (8.25). For
Gaussian and t-copulas, starting values can be obtained via rank correlations
as discussed in the next section.

The values F̂Yj (Yi,j), i = 1, . . . , n and j = 1, . . . , d, will be called the
uniform-transformed variables, since they should have approximately Uni-
form(0,1) distributions. The multivariate empirical CDF [see equation (A.38)]
of the uniform-transformed variables is called the empirical copula and is a
nonparametric estimate of the copula. The empirical copula is useful for check-
ing the goodness of fits of parametric copula models; see Example 8.2.

8.7.3 Calibrating Meta-Gaussian and Meta-t-Distributions

Gaussian Copulas

Rank correlation can be useful for estimating the parameters of a copula.
Suppose Y i = (Yi,1, . . . , Yi,d), i = 1, . . . , n, is an i.i.d. sample from a meta-
Gaussian distribution. Then its copula is C Gauss( · |Ω) for some correlation
matrix Ω. To estimate the distribution of Y , we need to estimate the univari-
ate marginal distributions and Ω. The marginal distribution can be estimated
by the methods discussed in Chapter 5. Result (8.28) in the following theorem
shows that Ω can be estimated by the sample Spearman correlation matrix.

Theorem 8.1. Let Y = (Y1, . . . , Yd) have a meta-Gaussian distribution with
continuous marginal distributions and copula C Gauss( · |Ω) and let Ωi,j be the
i, jth entry of Ω. Then
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ρτ (Yi, Yj) =
2
π

arcsin(Ωi,j), and (8.27)

ρS(Yi, Yj) =
6
π

arcsin(Ωi,j/2) ≈ Ωi,j . (8.28)

Suppose, instead, that Y i, i = 1, . . . , n, has a meta t-distribution with
continuous marginal distributions and copula C t( · |ν, Ω). Then (8.27) still
holds, but (8.28) does not hold.

The approximation in (8.28) uses the result that

6
π

arcsin(x/2) ≈ x for |x| ≤ 1. (8.29)

The left- and right-hand sides of (8.29) are equal when x = −1, 0, 1 and their
maximum difference over the range −1 ≤ x ≤ 1 is 0.018. However, the relative
error

{
6
π arcsin(x/2)− x

}
/ 6

π arcsin(x/2) can be larger, as much as 0.047, and
is largest near x = 0.

By (8.28), the sample Spearman rank correlation matrix Y i, i = 1, . . . , n,
can be used as an estimate of the correlation matrix Ω of C Gauss( · |Ω). This
estimate could be the final one or could be used as a starting value for maxi-
mum likelihood or pseudo-maximum likelihood estimation.

t-Copulas

If {Y i = (Yi,1, . . . , Yi,d), i = 1, . . . , n} is a sample from a distribution with a
t-copula, C t( · |ν, Ω), then we can use (8.27) and the sample Kendall’s taus to
estimate Ω. Let ρ̂τ (Yj , Yk) be the sample Kendall’s tau calculated using the
samples {Y1,j , . . . , Yn,j} and {Y1,k, . . . , Yn,k} of the jth and kth variables, and
let Ω̃

∗∗
be the matrix whose j, kth entry is sin{π

2 ρ̂τ (Yj , Yk)}. Then Ω̃
∗∗

will
have two of the three properties of a correlation matrix; it will be symmetric
with all diagonal entries equal to 1. However, it may not be positive definite,
or even semidefinite, because some of its eigenvalues may be negative.

If all its eigenvalues are positive, then we will use Ω̃
∗∗

to estimate Ω.
Otherwise, we alter Ω̃

∗∗
slightly to make it positive definite. By (A.47),

Ω̃
∗∗

= O diag(λi) OT

where O is an orthogonal matrix whose columns are the eigenvectors of Ω̃
∗∗

and λ1, . . . , λd are the eigenvalues. We then define

Ω̃
∗

= O diag{max(ε, λi)}OT,

where ε is some small positive quantity, for example, ε = 0.001. Now, Ω̃
∗

is
symmetric and positive definite, but its diagonal elements, Ω̃∗

i,i, i = 1, . . . , p,
may not be equal to 1. This problem is easily fixed; multiple the ith row and
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the ith column of Ω̃
∗

by
(
Ω̃∗

i,i

)−1/2

, for i = 1, . . . , d. The final result, which

we will call Ω̃, is a bona fide correlation matrix; that is, it is symmetric and
positive definite and it has all diagonal entries equal to 1.

After Ω has been estimated by Ω̃, an estimate of ν is still needed. One can
be obtained by plugging Ω̃ into the log-likelihood (8.25) and then maximizing
over ν.

Example 8.2. Flows in pipelines

In this example, we will continue the analysis of the pipeline flows data
introduced in Example 4.3. Only the flows in the first two pipelines will be
used.
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Fig. 8.6. Pipeline data. Histograms (a) and (b) and a scatterplot (c) of the uniform-
transformed flows. The empirical copula is the empirical CDF of the data in (c).
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In a fully parametric pseudo-likelihood analysis, the univariate skewed t-
model will be used for flows 1 and 2. Let U1,j , . . . , Un,j be the flows in pipeline
j, j = 1, 2, transformed by their estimated skewed-t CDFs. We will call the
Ui,j “uniform-transformed flows.” Define Zi,j = Φ−1(Ui,j), where Φ−1 is the
standard normal quantile function. The Zi,j should be approximately N(0, 1)-
distributed and we will call them “normal-transformed flows.”

Both sets of uniform-transformed flows should be Uniform(0,1). Figure 8.6
shows histograms of both samples of uniform-transformed flows as well as their
scatterplot. The histograms show some deviations from uniform distributions,
which suggests that the skewed t may not provide excellent fits and that a
semiparametric pseudo-maximum likelihood approach might be tried—this
will be done soon. However, the deviations may be due to random variation.

The scatterplot in Figure 8.6 shows some negative correlation as the data
are somewhat concentrated along the diagonal from top left to bottom right.
Thus, we can expect that the Gumbel copula, which cannot have negative
dependence, will not fit well. Also, the Clayton copula may not fit well either,
since the scatterplot shows data in the region where both u1 and u2 have
small values, but this region is excluded by a Clayton copula with negative
dependence. We will soon see that AIC agrees with these conclusions from a
graphical analysis, since both the Clayton and Gumbel have higher (worse)
AIC values compared to the Gaussian, t, and Frank copula models.

Figure 8.7 shows that the normal-transformed flows have approximately
linear normal plots, as is to be expected, and their scatterplot again shows
negative correlation.

We will assume for now that the two flows have a meta-Gaussian distri-
bution. There are three ways to estimate the correlation in their Gaussian
copula. The first, Spearman’s sample rank correlation, is −0.357. The second,
which uses (8.27) is sin(πτ̂/2), where τ̂ is the sample Kendall rank correla-
tion; its value is −0.359. The third way, Pearson’s correlation of the normal-
transformed flows, is −0.335. There is reasonably close agreement among the
three values, especially relative to their uncertainties; for example, the 95%
confidence interval for the Pearson correlation of the normal-transformed flows
is (−0.426,−0.238), and the other two estimate are well within this interval.

Five parametric copulas were fit to the uniform-transformed flows: t,
Gaussian, Gumbel, Frank, and Clayton. Since we used parametric estimates
to transform the flows, we are fitting the copulas by parametric maximum
pseudo-likelihood. The results are in Table 8.1. Looking at the maximized
log-likelihood values, we see that the Gumbel copula fits poorly, which was
to be expected since that copula only allows positive dependence and these
data show negative dependence. The Frank copula fits best since it minimizes
AIC, but the t and Gaussian fit reasonably well. Figure 8.8 plots uniform-
transformed flows and contours of the distribution functions of five copulas:
the empirical copula and four estimated parametric copulas. The t-copula is
similar to the Gaussian since ν̂ is large, specifically 22.3, so the t-copula was
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Fig. 8.7. Pipeline data. Normal plots (a) and (b) and a scatterplot (c) of the normal-
transformed flows.

not included in the figure. The Frank copula fits best in the sense that its con-
tours are closest to those of those of the empirical copula. This is in agreement
with the AIC values.

The analysis in the previous paragraph was repeated with the flows
transformed by their empirical CDFs. Doing this yielded the semiparamet-
ric pseudo-maximum likelihood estimates. Since the results were very similar
to those for parametric pseudo-maximum likelihood estimates, they are not
presented here.

¤

8.8 Bibliographic Notes

For discussion of Archimedean copula with nonstrict generators, see McNeil,
Frey, and Embrechts (2005). These authors discuss a number of other topics in
more detail than is done here. They discuss methods defining nonexchangeable



194 8 Copulas

0.0 0.4 0.8

0.
0

0.
4

0.
8

Data

u1

u 2

Empirical

Flow 1

 0.1 

 0.2 

 0.3 

 0.4 

 0.5 

 0.8 

0.0 0.4 0.8

0.
0

0.
4

0.
8

Normal

 0.1 

 0.2 

 0.3  0.4 

 0.5 

 0.6 
 0.8 

0.0 0.4 0.8

0.
0

0.
4

0.
8

Gumbel

 0.1 

 0.2 

 0.3  0.4 

 0.5 

 0.6 

 0.8 

0.0 0.4 0.8

0.
0

0.
4

0.
8

Frank

 0.1 

 0.2 

 0.3  0.4 

 0.5 

 0.6 
 0.8 

0.0 0.4 0.8

0.
0

0.
4

0.
8

Clayton

 0.1 

 0.2 

 0.3  0.4 

 0.5 

 0.6 
 0.8 

0.0 0.4 0.8

0.
0

0.
4

0.
8

Fig. 8.8. Uniform-transformed flows for pipeline data. Scatterplot, empirical copula,
and fitted copulas using four parametric models.

Table 8.1. Estimates of copula parameters using the uniform-transformed pipeline
flow data.

Copula family Estimates Maximized AIC
log-likelihood

t bρ = −0.34 21.0 −38.0bν = 22.3
Gaussian bρ = −0.331 20.4 −38.8

Gumbel bθ = 0.988 1.06 −0.06

Frank bθ = −2.25 23.1 −44.1

Clayton bθ = −0.167 9.87 −17.7
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Archimedean copulas. The coefficients of tail dependence for Gaussian and t-
copulas are derived in their Section 5.2. The theorem and calibration methods
in Section 8.7.3 are discussed in their Section 5.5.

Cherubini, Luciano, and Vecchiato (2004) treat the application of copulas
to finance. Joe (1997) and Nelsen (2007) are standard references on copulas.

Li (2000) developed a well-known but controversial model for credit risk
using exponentially distributed default times with a Gaussian copula. An arti-
cle in Wired magazine states that Li’s Gaussian copula model was “a quick—
and fatally flawed—way to assess risk” (Salmon, 2009). Duffie and Singleton’s
(2003) Section 10.4 also discusses copula-based methods for modeling depen-
dent default times.
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8.10 Problems

8.11 R Lab

8.11.1 Simulating Copulas

Run the R code that appears on the next page to generate data from a copula.
The first line loads the copula library. The second line defines a copula. At
this point, nothing is done with the copula—it is simply defined. However, the
copula is used in the fourth line to generate a random sample. The remaining
lines create a scatterplot matrix of the sample and print its sample correlation
matrix.
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library(copula)

cop_t_dim3 = tCopula(c(-.6,.75,0), dim = 3, dispstr = "un",

df = 1)

set.seed(5640)

rand_t_cop = rcopula(cop_t_dim3,500)

pairs(rand_t_cop)

cor(rand_t_cop)

You can use R’s help to learn more about the functions tCopula and rCopula.

Problem 1 (a) What type of copula has been sampled? (Give the copula fam-
ily, the correlation matrix, and any other parameters that specify the cop-
ula.)

(b) What is the sample size?

Problem 2 Examine the scatterplot matrix and answer the questions below.
Include the scatterplot matrix with your work.

(a) Var 2 and Var 3 are uncorrelated. Do they seem independent? Why or
why not?

(b) Do you see signs of tail dependence? If so, where?
(c) What are the effects of correlation upon the plots?
(d) The nonzero correlations in the copula do not have the same values as the

corresponding sample correlations. Do you think this is just due to random
variation or is something else going on? If there is another cause besides
random variation, what might that be? To help answer this question, you
can get confidence intervals for correlation: For example,
cor.test(rand_t_cop[,1],rand_t_cop[,2])
will give a confidence interval for the correlation between Var 1 and Var
2. Does this confidence interval include −0.6?

The first line of the following R code defines a normal copula. The sec-
ond line defines a multivariate distribution by specifying its copula and its
marginal distributions—the copula is the one just defined. The fourth line
generates a random sample of size 1000 from this distribution, and the vari-
able are labeled “Var 1,” “Var 2,” and “Var 3.” The remaining lines create a
scatterplot matrix and kernel estimates of the marginal densities.

cop_normal_dim3 = normalCopula(c(-.6,.75,0), dim = 3, dispstr = "un")

mvdc_normal <- mvdc(cop_normal_dim3, c("exp", "exp","exp"),

list(list(rate=2), list(rate = 3), list(rate=4)) )

set.seed(5640)

rand_mvdc = rmvdc(mvdc_normal,1000)

pairs(rand_mvdc)

par(mfrow=c(2,2))

plot(density(rand_mvdc[,1]))
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plot(density(rand_mvdc[,2]))

plot(density(rand_mvdc[,3]))

Run the code above to generate the random sample.

Problem 3 (a) What are the marginal distributions of the three variables in
rand mvdc? What are their expected values?

(b) Are the second and third variables independent? Why or why not?

8.11.2 Fitting Copulas to Returns Data

In this section, you will fit copulas to a bivariate data set of returns on IBM
and the CRSP index.

First, you will fit a model with univariate t-distributions and a t-copula.
The model has three degrees-of-freedom parameters, one each for the two
univariate models and a third for the copula. This means that the univariate
distributions can have different tail weights and that their tail weights are
independent of the tail dependence in the copula.

Run the following R code to load the data and necessary libraries, fit
univariate t-distributions to the two variables, and convert estimated scale
parameters to estimated standard deviations:

library(Ecdat) # need for the data

library(copula) # for copula functions

library(fGarch) # need for standardized t density

library(MASS) # need for fitdistr and kde2d

library(fCopulae) # additional copula functions (pempiricalCopula

# and ellipticalCopulaFit)

data(CRSPday,package="Ecdat")

ibm = CRSPday[,5]

crsp = CRSPday[,7]

est.ibm = as.numeric(fitdistr(ibm,"t")$estimate)

est.crsp = as.numeric(fitdistr(crsp,"t")$estimate)

est.ibm[2] = est.ibm[2]*sqrt(est.ibm[3]/(est.ibm[3]-2))

est.crsp[2] = est.crsp[2]*sqrt(est.crsp[3]/(est.crsp[3]-2))

The univariate estimates will be used as starting values when the meta t-
distribution is fit by maximum likelihood. You also need an estimate of the
correlation coefficient in the t-copula. This can be obtained using Kendall’s
tau. Run the following code and complete the second line so that omega is the
estimate of the correlation based on Kendall’s tau.

cor_tau = cor(ibm,crsp,method="kendall")

omega =

Problem 4 How did you complete the second line of code? What was the
computed value of omega?
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Next, define the t-copula using omega as the correlation parameter and 4 as
the degrees-of-freedom parameter.

cop_t_dim2 = tCopula(omega, dim = 2, dispstr = "un", df = 4)

Now fit copulas to the uniform-transformed data.

n = length(ibm)

data1 = cbind(pstd(ibm,mean=est.ibm[1],sd=est.ibm[2],nu=est.ibm[3]),

pstd(crsp,mean=est.crsp[1],sd=est.crsp[2],nu=est.crsp[3]))

data2 = cbind(rank(ibm)/(n+1), rank(crsp)/(n+1))

ft1 = fitCopula(cop_t_dim2, method="L-BFGS-B", data=data1,

start=c(omega,5),lower=c(0,2.5),upper=c(.5,15) )

ft2 = fitCopula(cop_t_dim2, method="L-BFGS-B", data=data2,

start=c(omega,5),lower=c(0,2.5),upper=c(.5,15) )

Problem 5

(a) Explain the difference between methods used to obtain the two estimates
ft1 and ft2.

(b) Do the two estimates seem significantly different (in a practical sense)?

The next step defines a meta t-distribution by specifying its t-copula and its
univariate marginal distributions. Values for the parameters in the univariate
margins are also specified. The values of the copula parameter were already
defined in the previous step.

mvdc_t_t = mvdc( cop_t_dim2, c("std","std"),

list(list(mean=est.ibm[1],sd=est.ibm[2],nu=est.ibm[3]),

list(mean=est.crsp[1],sd=est.crsp[2],nu=est.crsp[3]) ) )

Now fit the meta t-distribution. Be patient. This takes awhile; for instance,
it took over four minutes on my laptop. The elapsed time in minutes will be
printed.

start=c(est.ibm,est.crsp,ft1@est)

objFn = function(param)

{

-loglikMvdc(param, cbind(ibm,crsp), mvdc_t_t)

}

t1 = proc.time()

fit_cop = optim(start,objFn,method="L-BFGS-B",

lower = c(-.1,.001,2.5, -.1,.001,2.5, .2,2.5),

upper = c(.1,.03,15, .1,.03,15, .8,15)

)

t2 = proc.time()

total_time = t2-t1

total_time[3]/60
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Lower and upper bounds are used to constrain the algorithm to stay inside
a region where the log-likelihood is defined and finite. The function fitMvdc
in the copula package does not allow setting lower and upper bounds and did
not converge on this problem.

Problem 6

(a) What are the estimates of the copula parameters in fit cop?
(b) What are the estimates of the parameters in the univariate marginal dis-

tributions?
(c) Was the estimation method maximum likelihood, parametric pseudo-maximum

likelihood, or semiparametric pseudo-maximum likelihood?
(d) Estimate the coefficient of lower tail dependence for this copula.

Now fit normal, Gumbel, Frank, and Clayton copulas to the data.

fnorm = fitCopula(data=data1,copula=normalCopula(-.3,dim=2),

method="BFGS",start=.5)

fgumbel = fitCopula(data=data1,method="BFGS",

copula=gumbelCopula(3,dim=2),start=1)

ffrank = fitCopula(data=data1,method="BFGS",

copula=frankCopula(3,dim=2),start=1)

fclayton = fitCopula(data=data1,method="BFGS",

copula=claytonCopula(1,dim=2),start=1)

The estimated copulas (CDFs) will be compared with the empirical copula.

u1 = data1[,1]

u2 = data1[,2]

dem = pempiricalCopula(u1,u2)

par(mfrow=c(3,2))

contour(dem$x,dem$y,dem$z,main="Empirical")

contour(tCopula(param=ft2@est[1],df=ft2@est[2]),

pcopula,main="t")

contour(normalCopula(fnorm@est),pcopula,main="Normal")

contour(gumbelCopula(fgumbel@est,dim=2),pcopula,

main="Gumbel")

contour(frankCopula(ffrank@est,dim=2),pcopula,main="Frank")

contour(claytonCopula(fclayton@est,dim=2),pcopula,

main="Clayton")

Problem 7 Do you see any difference between the parametric estimates of
the copula? If so, which seem closest to the empirical copula? Include the plot
with your work.

A two-dimensional KDE of the copula’s density will be compared with the
parametric density estimates.
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par(mfrow=c(3,2))

contour(kde2d(u1,u2),main="KDE")

contour(tCopula(param=ft2@est[1],df=ft2@est[2]),

dcopula,main="t",nlevels=25)

contour(normalCopula(fnorm@est),dcopula,

main="Normal",nlevels=25)

contour(gumbelCopula(fgumbel@est,dim=2),

dcopula,main="Gumbel",nlevels=25)

contour(frankCopula(ffrank@est,dim=2),

dcopula,main="Frank",nlevels=25)

contour(claytonCopula(fclayton@est,dim=2),

dcopula,main="Clayton",nlevels=25)

Problem 8 Do you see any difference between the parametric estimates of
the copula density? If so, which seem closest to the KDE? Include the plot
with your work.

Problem 9 Find AIC for the t, normal, Gumbel, Frank, and Clayton copulas.
Which copula model fits best by AIC? (Hint: The fitCopula function returns
the log-likelihood.)

8.12 Exercises

1. Kendall’s tau rank correlation between X and Y is 0.55. Both X and Y
are positive. What is Kendall’s tau between X and 1/Y ? What is the
Kendall’s tau between 1/X and 1/Y ?

2. Suppose that X is Uniform(0,1) and Y 2. Then the Spearman rank corre-
lation and the Kendall’s tau between X and Y will both equal 1, but the
Pearson correlation between X and Y will be less than 1. Explain why.

3. Show that the generator of a Frank copula

φFr(u) = − log
{

e−θu − 1
e−θ − 1

}
, −∞ < θ < ∞,

satisfies assumptions 1–3 of a strict generator.
4. Show that as θ → ∞, CFr(u1, u2) → min(u1, u2), the co-monotonicity

copula.
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