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On the Relation between the Expected 
Value and the Volatility of the 

Nominal Excess Return on Stocks 

LAWRENCE R. GLOSTEN, RAVI JAGANNATHAN, 
and DAVID E. RUNKLE* 

ABSTRACT 

We find support for a negative relation between conditional expected monthly 
return and conditional variance of monthly return, using a GARCH-M model 
modified by allowing (1) seasonal patterns in volatility, (2) positive and negative 
innovations to returns having different impacts on conditional volatility, and (3) 
nominal interest rates to predict conditional variance. Using the modified GARCH-M 
model, we also show that monthly conditional volatility may not be as persistent as 
was thought. Positive unanticipated returns appear to result in a downward revi- 
sion of the conditional volatility whereas negative unanticipated returns result in 
an upward revision of conditional volatility. 

THE TRADEOFF BETWEEN RISK and return has long been an important topic in 
asset valuation research. Most of this research has examined the tradeoff 
between risk and return among different securities within a given time 
period. The intertemporal relation between risk and return has been exam- 
ined by several authors-Fama and Schwert (1977), French, Schwert, and 
Stambaugh (1987), Harvey (1989), Campbell and Hentschel (1992), Nelson 
(1991), and Chan, Karolyi, and Stulz (1992), to name a few. This paper 
extends that research. 

There is general agreement that investors, within a given time period, 
require a larger expected return from a security that is riskier. However, 
there is no such agreement about the relation between risk and return across 
time. Whether or not investors require a larger risk premium on average for 
investing in a security during times when the security is more risky remains 
an open question. At first blush, it may appear that rational risk-averse 

* Glosten is from Columbia University, Jagannathan is from the University of Minnesota and 
the Federal Reserve Bank of Minneapolis, and Runkle is from the Federal Reserve Bank of 
Minneapolis and the University of Minnesota. We benefitted from discussions with Tim Boller- 
slev, William Breen, Lars Hansen, Patrick Hess, David Hsieh, Ruth Judson, Narayana Kocher- 
lakota, Robert McDonald, Dan Nelson, and Dan Siegel, and from comments from David Backus 
and Ren6 Stulz. Ruth Judson and Joe Piepgras did many of the computations. We are especially 
grateful for the insightful and detailed comments of the referee. The usual disclaimer regarding 
errors applies. Part of this research was performed while Glosten was a Visiting Economist at 
the New York Stock Exchange. The views expressed herein are those of the authors and not 
necessarily those of the Federal Reserve Bank of Minneapolis, the Federal Reserve System, or 
the New York Stock Exchange and its members. 
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investors would require a relatively larger risk premium during times when 
the payoff from the security is more risky. A larger risk premium may not be 
required, however, because time periods which are relatively more risky 
could coincide with time periods when investors are better able to bear 
particular types of risk. Further, a larger risk premium may not be required 
because investors may want to save relatively more during periods when the 
future is more risky. If all the productive assets available for transferring 
income to the future carry risk and no risk-free investment opportunities are 
available, then the price of the risky asset may be bid up considerably, 
thereby reducing the risk premium.' Hence a positive as well as a negative 
sign for the covariance between the conditional mean and the conditional 
variance of the excess return on stocks would be consistent with theory. Since 
there are conflicting predictions about this aspect of the tradeoff between risk 
and return, it is important to empirically characterize the nature of the 
relation between the conditional mean and the conditional variance of the 
excess return on stocks as a group. 

The empirical literature on this topic has attempted to characterize the 
nature of the linear relation between the conditional mean and the condi- 
tional variance of the excess return on stocks. However, the reported findings 
are conflicting. For example, Campbell and Hentschel (1992) and French, 
Schwert, and Stambaugh (1987) conclude that the data are consistent with a 
positive relation between conditional expected excess return and conditional 
variance, whereas Fama and Schwert (1977), Campbell (1987), Pagan and 
Hong (1991), Breen, Glosten, and Jagannathan (1989), Turner, Startz, and 
Nelson (1989), and Nelson (1991) find a negative relation. Chan, Karolyi, and 
Stulz (1992) find no significant variance effect for the United States, but 
implicitly find one of the world market portfolio. Harvey (1989) provides 
empirical evidence suggesting that there may be some time variation in the 
relation between risk and return. 

Most of the support for a zero or positive relation has come from studies 
that use the standard GARCH-M model of stochastic volatility.2 Other stud- 
ies, using alternative techniques, have documented a negative relation be- 
tween expected return and conditional variance. In order to resolve this 
conflict we examine the possibility that the standard GARCH-M model may 
not be rich enough to capture the time series properties of the monthly excess 
return on stocks. We consider a more general specification of the GARCH-M 
model. In particular, (1) we incorporate dummy variables in the GARCH-M 
model to capture seasonal effects using the procedure first suggested by 
Glosten, Jagannathan, and Runkle (1988), (2) we allow for asymmetries in 
the conditional variance equation, following the suggestions of Glosten, 

'Abel (1988), Backus and Gregory (1992), Gennotte and Marsh (1993), and Glosten and 
Jagannathan (1987) have shown that the risk premium on the market portfolio of all assets 
could, in equilibrium, be lower during relatively riskier times. 

2 See Bollerslev, Chou, and Kroner (1992) for an extensive survey of GARCH and GARCH-M 
models in finance. 
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Jagannathan, and Runkle (1988), (3) we include the nominal interest rate in 
the conditional variance equation, and (4) we consider the EGARCH-M 
specification suggested by Nelson (1991) with the modifications mentioned in 
(1) through (3) above. These models suggest a weak but statistically signifi- 
cant negative relation between conditional variance and expected return. 

Two of our findings are somewhat at odds with the existing literature. 
First, our data provide little evidence to support the belief that the condi- 
tional volatility of the monthly excess return on stocks is highly persistent, 
while Nelson (1991) finds high persistence in the volatility of daily returns. 
There are no theoretical reasons for the properties of the monthly and daily 
returns to be the same. In particular, Nelson (1991) argues that as the 
frequency at which data are sampled becomes very high, persistence should 
become larger. Second, both unexpected positive and negative excess returns 
on stocks change the next period's conditional volatility of the excess return 
on stocks. Unexpected positive returns result in a downward revision while 
unexpected negative returns result in an upward revision. In contrast, Nelson 
(1991) and Engle and Ng (1993), using daily data on stock index returns, find 
that large positive as well as negative unanticipated returns lead to an 
upward revision in the conditional volatility, although negative shocks of 
similar magnitude lead to larger revisions. Hence the time series properties 
of monthly excess returns are somewhat different from those of daily returns 
reported in Nelson (1991) and Engle and Ng (1993), and our results for 
monthly data along with the results for daily data reported by others provide 
a more complete characterization of the time series properties of stock index 
returns. 

The remainder of the paper proceeds as follows. Section I describes the 
model that forms the basis for our empirical analysis. Section II discusses the 
econometric issues involved and our estimation methods. Section III contains 
the empirical results. Section IV concludes. 

I. The Relation between the Conditional Mean and the 
Conditional Variance of the Excess Return on Stocks 

Consider the relation between conditional variance and conditional mean 
given by 

t[ Xt+]= /3 ' (1) 

When xt+ 1 is the excess return on the aggregate wealth portfolio, and o-t2, its 
variance assessed at time t, captures most of the economic uncertainty that 
agents care about, the model in (1) is the approximation to the true risk-return 
relation derived by Merton (1980). 

In our empirical work, we assume that (1) holds even for nominal returns. 
We consider the following general model for estimation: 

E[xt+, I Ft] = a +P Var(xt,1 I Ft), (2) 
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where F, denotes the information set of agents. Campbell (1993) provides 
sufficient conditions for the relation given in (2) to hold approximately in 
equilibrium, where xt is the excess return on the market index portfolio. 
However, p is not in general a measure of the risk aversion coefficient of the 
representative agent and a is not in general equal to zero. The relation in (2) 
forms the basis for our empirical work. 

II. Estimating the Model 

A. Econometric Issues 

The parameter p in the model given by (2) cannot be estimated without 
specifying how variances change over time, since Var(xt + 1? Ft) is not directly 
observed by the econometrician. To appreciate the difficulties involved, pro- 
ject both sides of (2) on Gt, the econometrician's information set, which is a 
strict subset of the agents' information set Ft. With vt-1 = Var(x tFt 1), we 
get 

E [x t I Gt1 - 1 a + 8E [vt -1 I Gt - 1 (3) 

Hence, we can write 

xt= a + pE[vt_l I Gt-] + qt 

where 

'lt = ut-1 + Et, ut-i = (vt-1 - E[vt- 1 Gt- 1D 

and 

Et = xt- E[xt I Ft-1]. 

Since, by definition 

,E[E2 IF= Et st I t_ 1] =Vt_ 1 

ut-= p[E[ I Ft_1] -E[Et IG1]] . 

Note that 

E[-qt I Gt-l] E[ut-1 I Gt-l] E[ ut- ,Et I Gt- 1] = ?. 

Therefore, 

E[7 1G21] = E[u 2_1 I Gt_1] + E[Et ti Gt- 1]. (4) 

The term on the left in equation (4) is the variance of the error in forecasting 
xt based on the econometrician's information set. The first term on the right 
is the variance of the measurement error, (vt1 - E[ vt 1lGt_ -]), and the 
second term is the expected value of the conditional variance vt- 1 based on 
the econometrician's information set Gt 1. Unless the variance of the mea- 
surement error is a constant, we cannot obtain a consistent estimate of P3. 
This problem was first pointed out by Pagan and Ullah (1988). Also notice 
that the intercept term a in equation (2) is not identifiable based on the 
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smaller information set available to the econometrician, since E[vt_1IGt_ ] 
may involve a constant term. 

To see this estimation problem more clearly, consider now the special case 

E[vt- 1I Gt_ ] = bo + blzt-1 

for some z E G where b1 is a row vector and z t1 is a column vector. Then 

E[It2 I zt-1] = p2 Var(vt- 1 i Gt- 1) + (bo + blzt- 1). 

The left side is the variance of the excess return, conditional on observing the 
instrument z alone. The first term on the right side is the variance of the 
measurement error 8 (vt 1 - E[ vt- 1Gt -]), and the second term is the vari- 
ance of et given zt-1 

There have been several approaches to the estimation of the general 
econometric model in (3) through (4). One approach was suggested by Camp- 
bell (1987) and assumes that Var(vt1llGt- ) is an arbitrary constant, while 
Zt- is a vector of observable variables. If Var(vt 1IGt -) is a constant, then 
we can test whether /8 is positive. We can estimate the regression equations 

x t =Co + clZt-l + qt(5) 

and 

=qt2 do + d1zt_l + Vt. (6) 

Since the estimated slope coefficient cl is a consistent estimate of /3 bl, and 
d1 provides a consistent estimate of b1, the ratio of any two corresponding 
elements of cl and d1 provides a consistent estimate of /8. If zt-, is not a 
scalar, then we may impose the constraint that the slope coefficients in (5) 
and the slope coefficients in (6) differ only by the scale factor, /3. Such a 
restriction also provides a natural test for the validity of the model specifica- 
tion. We call this approach Campbell's Instrumental Variable Model. Another 
approach, the GARCH-M model, assumes that Var(vtllGt_-) is identically 
zero, and that zt-1 consists of innovations and variances that, while unob- 
servable, can be estimated by the econometrician. A generalization of the 
GARCH-M approach maintains the assumption that Var(vtllGt- ) is zero 
but allows zt- 1 to consist both of observable instruments and lagged values 
of estimated variances and innovations. We refer to this approach as the 
Modified GARCH-M Model. Since the specification of the information set is 
crucial for the Modified GARCH-M Model, we will first describe the informa- 
tion set used in this study and then proceed to describe the GARCH-M 
models we examine. 

B. Specification of the Econometrician's Information Set 

Estimating any model of the intertemporal relation between risk and 
return requires taking a stand on the variables that make up the instrument 
vector, zt. In our investigations we focus attention on the volatility informa- 
tion in the following variables: (a) the nominal interest rate, (b) October and 
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January seasonal dummies, and (c) the unanticipated part of the excess 
return on stocks. In what follows we provide some justification as to why we 
focus our attention on these variables. 

The use of nominal interest rates in conditional variance models has some 
intuitive appeal. It has been well known since Fischer (1981) that the 
variance of inflation increases with its level. To the extent that short-term 
nominal interest rates embody expectations about inflation, they could be a 
good predictor of future volatility in excess returns. Using the information 
contained in nominal interest rates, Fama and Schwert (1977), Campbell 
(1987), and Breen, Glosten, and Jagannathan (1989) have demonstrated that 
it is possible to forecast time periods when the excess return on stocks is 
relatively large and significantly less volatile. Giovannini and Jorion (1989) 
and Singleton (1989) also examine the ability of nominal interest rates to 
predict changes in the volatility of, respectively, foreign exchange and stock 
returns. 

Including deterministic seasonal dummies is motivated by the seasonal 
patterns reported in Lakonishok and Smidt (1988) and Keim (1985). Table I 
presents the summary statistics for the monthly excess returns on the Center 
for Research in Security Prices (CRSP) value-weighted stock index portfolio 
during the post-Treasury Accord period for the months of October, January, 
and other calendar months.3 An apparent increase in October and January 
volatility is suggested by results presented in Panels A and C. 

During the period 1951:4 to 1989:12, monthly excess continuously com- 
pounded returns on the CRSP value-weighted index of stocks (Panel C), 
during months other than October and January, had a mean of 0.48 percent 
and a standard deviation of 3.83 percent. The standard deviation of January 
excess returns is 5.19 percent (i.e., 1.35 times that in other months) and the 
standard deviation of October excess returns is 6.17 percent (1.61 times that 
in other months). While October and January are both months of relatively 
larger volatility, October, unlike January, has relatively lower excess returns 
on average than other months. 

There are several potential contributing explanations for the excess volatil- 
ity of January excess stock returns. Relatively more news arrives in January 
since most firms (almost two-thirds) use the calendar year as their fiscal 
year. Such firms close their books on December 31. The annual reports are 
typically, more informative since they are done more carefully and are au- 
dited. Information from such reports starts leaking in during the month of 
January. Further, consumer sales exhibit pronounced quarterly seasonal 
patterns. This pattern arises because the fourth quarter is the important 

3A careful examination of the data in Lakonishok and Smidt (1988) suggests that the monthly 
seasonal patterns in volatility are unlikely to be captured adequately by treating months other 
than October and January as being similar. However, our objective in this paper is limited to 
showing how to model seasonals in a way different than what has been done in the literature. 
Characterizing the nature of the monthly patterns in volatility is left as an exercise for the 
future. 
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Table I 

Summary Statistics for Monthly Data Recorded in the 
Period 1951:4 to 1989:12 

Number of Observations 

Other 
Oct. Jan. Months 

39 38 388 

Panel A. Continuously Compounded Monthly Return on the CRSP Value-weighted Index 
of Status on the NYSE 

Mean (xlOO) 0.25 1.77 0.91 
Standard Deviation (xlOO) 6.16 5.18 3.80 
Skewness -1.35 0.21 -0.44 
Kurtosis 6.59 -0.41 0.64 

Panel B. Continuously Compounded Monthly Return on Treasury Bills from 
Ibbotson & Associates 

Mean (xlOO) 0.46 0.43 0.43 
Standard Deviation (xlOO) 0.26 0.22 0.26 
Skewness 0.83 0.66 0.96 
Kurtosis 0.54 -0.03 0.90 

Panel C. Excess of the Continuously Compounded Monthly Return on the CRSP 
Value-weighted Index of Status on the NYSE over That on Treasury Bills 

Mean (xlOO) -0.21 1.34 0.48 
Standard Deviation (xlOO) 6.17 5.19 3.83 
Skewness -1.40 0.18 -0.48 
Kurtosis 6.70 -0.43 0.65 
Mean/variance 0.56 0.50 3.28 

holiday season. Comprehensive and reliable information about consumer 
spending during this period typically becomes available during January. 

One has to stretch to provide an explanation for October volatility, and had 
this study been done prior to October 1987, we probably would not have 
singled out October. Yet, there is the perception that October has excess 
volatility. Laurie Cohen, writing in a Wall Street Journal article, attributes to 
Mark Twain the observation, "October is one of the peculiarly dangerous 
months to speculate in stocks. The others are: July, January, September, 
April, November, May, March, June, December, August, and February." Our 
purpose is to illustrate a methodology for dealing with seasonal patterns 
rather than to provide a detailed analysis of them. Though the seasonal 
variables are statistically significant, our general conclusions from the model 
estimations do not depend upon the inclusion of the seasonal variables. 
Rather, their significance suggests the value of further investigations of 
seasonal patterns. 

We also allow positive and negative innovations to returns to have different 
impacts on conditional variance. To see why this is desirable, suppose dis- 
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count rates are constant and have no relationship to anticipated future 
volatility. Any unanticipated decrease in expected future cash flows decreases 
the stock price. If the variance of the future cash flows remains the same or 
does not fall proportionately to the fall in stock prices, the variance of future 
cash flows per dollar of stock price will rise and future returns will be more 
volatile. Hence, if most of the fluctuations in stock prices are caused by 
fluctuations in expected future cash flows and the riskiness of future cash 
flows does not change proportionally when investors revise their expecta- 
tions, then unanticipated changes in stock prices and returns will be nega- 
tively related to unanticipated changes in future volatility. Black (1976) and 
Christie (1982) have suggested a different reason for the negative effect of 
current returns on future variance: a decrease in today's stock price changes 
a firm's capital structure by increasing leverage. This increased leverage 
causes higher expected variance in the future. Both Black and Christie find 
support for their predictions in the relation between expected return and 
variance for individual stocks. 

C. Modified GARCH-M Model of the Variance 

C. 1. Model Specifications 

The GARCH model assumes that the information set of investors and the 
econometrician coincide. The general Modified GARCH-M model can be writ- 
ten 

Equation for the conditional mean: 

E[xt+llGt] = t(Gt) 

where 4id ) is a function that describes the nature of the dependence of the 
conditional mean on the elements of the information set Gt. Hence, we can 
write 

xt+1 = ,A(Gt) + Et+?, with E[et+llGt] = 0. 

Equation for the conditional variance: 

Var(xt+1lGt) Var(et+IGt) = V(Gt) 

where V(.) is a function that describes the nature of the dependence of the 
conditional variance on the elements of the information set Gt. It is conve- 
nient to assume that the conditional variance function can be decomposed in 
the following way:4 

V(Gt) = fm (Gt - 1) + f(Gt \ Gt - 1) 

where fm(Gt 1) is that part of the conditional variance, V(Gt), that depends 
only on information known as of date t - 1, and f(Gt \ Gt_ 1) is that part of 

4In the case of the EGARCH-M models, V(.) is the log of the variance. 
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the conditional variance that depends on the new information, Gt \ Gt1, that 
becomes available at date t. Our analysis of various specifications focuses on 
the function f(.). 

Now consider the standard GARCH-M process suggested by Bollerslev 
(1986) for stock excess return, xt, given by 

Model 1: 

xt = ao + a1vt-1 + ot (7) 

vt1 = bo +b1v_2 +g1Eb2 (8) 

where Et- [ et] = 0 and Et- [ E2] = vt1. The GARCH-M model specifies the 
conditional mean function, pX(Gt-) = ao + a1vtv1, and the conditional vari- 
ance function, V(Gt_1) = bo + b1v_2 ?g1EU1. That is, fm(Gt2) = bo + 
b1v-2 and f(Gt-1 \ Gt2) = g1e21. The univariate GARCH-M model as- 
sumes that the econometrician's information set consists only of the past 
innovations to the excess return, xt. Hence, the only new information that 
becomes available at date t - 1 is et.- 1 The model further assumes that the 
function f(Gt 1 \ Gt -2) = g1ft 1. As we have argued earlier, there are a 
priori reasons to suspect that this assumption may not be reasonable. 

If future variance is not a function only of the squared innovation to 
current return, then a simple GARCH-M model is misspecified and any 
empirical results based on it alone are not reliable. In Model 2 we assume 
that the impact of E2 1 on conditional variance vt1 is different when et- 1 is 
positive (i.e., when the indicator or dummy variable It 1 in (9) is 1) than 
when et- 1 is negative (i.e., when the indicator or dummy variable It_ in (9) 
is 0). This leads to 

Model 2: 

vt- 1 = bo + b1vt-2 +g1et-1 +g2 t 1I_1. (9) 

In Models 3 through 5 we relax the assumption that the information set, 
Gt, consists only of past realizations of the excess return on the portfolio. 
Including the risk-free interest rate, rft, leads to 

Model 3: 

Vt- = bo + b1v_2 + b2 rft + g1E21 + g2 Et1I_1. (10) 

Given the results of Table I and for reasons mentioned earlier, we intro- 
duce January and October seasonal dummies in the variance of stock index 
excess returns. For this purpose we assume that the seasonal effects amplify 
the underlying fundamental volatility (which does not by definition exhibit 
any seasonal patterns) in the months of October and January by a constant 
month-specific scale factor. We also assume that the fundamental volatility 
next period depends only on the fundamental part of the excess return 
innovation. 
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In particular, we assume that we can write the excess return innovation in 
any calendar month as a scale multiple of some underlying fundamental 
innovation that does not exhibit any seasonal patterns, as follows: 

Et = (1 + A1 OCTt + A2 JANt)'qt 

where -qt does not exhibit any deterministic seasonal behavior. Let ht-1 = 

E _1[ t ] denote the conditional variance of 't. We postulate that ht evolves 
over time according to 

Model 4: 

ht-, = bo + blht2 ?g1'q-1 
2 

g2 lIt_1; (11) 

or, when the risk-free rate is included, 

Model 5: 

ht-, = bo + blht2 + b2rft + g, 1l ?g2 j_I_1. (12) 

Notice that Model 1 is obtained from Model 5 by imposing the restriction that 
A1 = A2 = b2 = 92 = 0. Similarly, Models 2, 3, and 4 can be considered as 
restricted versions of Model 5. 

Our approach to modelling seasonals is different from the one used by 
Baillie and Bollerslev (1989). In our specification, we assume that we can 
deseasonalize the excess return innovation, E, to get -q. The realized value of 
the deseasonalized innovation, , influences the conditional variance of the 
distribution from which the deseasonalized innovation for the next period is 
drawn from. In contrast, in Baillie and Bollerslev (1989), the seasonal part of 
the innovation to this period's return affects the variance of the deseasonal- 
ized innovation next period. 

Because inference in GARCH-M models depends on the correct specifica- 
tion of the information set and the validity of the functions used to represent 
the conditional mean and the conditional variance, we estimate three addi- 
tional models to check our specification. First, we check for nonlinearity in 
the mean equation by adding v 1'2f to Model 2 and Model 4. These models are 
then called Model 6 and Model 7. If the coefficient on vt- 1' is significantly 
different from zero, that difference is evidence of misspecification. 

In the above models, there are a priori reasons to suspect that the coeffi- 
cient g2 as well as g1 -+ g2 are negative, since empirical evidence suggests 
that a positive innovation to stock return is associated with a decrease in 
return volatility. However, if g1 + g2 is negative, conditional variance can 
potentially become negative for some realization of e. Hence we also follow 
the suggestions of Engle (1982) and Nelson (1991) and consider the exponen- 
tial form for the law of motion for.conditional variance, as given below: 

Model 2-L: 

log(ht -1) = b0 + b1 log(h t- 2) + glit- ht2 + g2t- 1It- 1/ h2. (13) 
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Following Nelson (1991), we use t - 1/ ht2 instead of functions of 'q2_1 in 
equation (13) to minimize the impact of extremely large realizations in 
absolute value so that the stochastic process for ht will be well behaved.5 
Model 1-L is the same as Model 2-L but with g2 restricted to be zero. 

Since we also want to test whether the risk-free rate, rft, helps predict 
conditional variance using the log specification, we also estimate 

Model 3-L: 

log(ht-1) = b0 + b llog(ht-2) + b2rft +?glt-1/ ht2+g2tt-I i/t- h 

(14) 

Models 4-L and 5-L add deterministic seasonals to the variance equation of 
Models 2-L and 3-L in the manner adopted for the level specification. Two 
additional models were estimated to test the specification of the EGARCH-M 
model. Model 6-L adds v1/ 2 to the mean equation for Model 4-L. 

C.2. Estimation and Inference and Diagnostic Tests 

We estimate all models discussed in this section by maximizing the log- 
likelihood function for the model, assuming that Et is conditionally normally 
distributed. Even if this assumption is incorrect, as long as the conditional 
means and variances are correctly specified, the quasi-maximum likelihood 
estimates will be consistent and asymptotically normal, as pointed out by 
Glosten, Jagannathan, and Runkle (1988) and Bollerslev and Wooldridge 
(1992). All our inference is based on robust standard errors from the quasi- 
maximum likelihood estimation, employing the procedures described in 
Bollerslev and Wooldridge (1992) and Glosten, Jagannathan, and Runkle 
(1988). We compute robust standard errors using two-sided numerical deriva- 
tives.6 

We also use a variety of diagnostic tests to determine whether various 
aspects of our different models are correctly specified. First, we examine 
whether the residuals of the estimated models display excess skewness and 
kurtosis. Properly specified GARCH-M and EGARCH-M models should be 
able to significantly reduce the excess skewness and kurtosis evident in 
nominal excess returns. We test for excess skewness and kurtosis, under the 

5 Potential negative values for the constructed conditional variances are not the only possible 
reason for using the log specification. It may also be true that the log model simply models the 
true conditional variance better than the level model. For more on this issue, see Engle and Ng 
(1993). 

6 Since we use dummy variables which take the value of one or zero, it may appear as though 
we may be violating the differentiability assumptions underlying the derivation of the robust 
standard errors. Note, however, that since the dummy variables are multiplied by the corre- 
sponding squared innovations, the differentiability conditions will be satisfied for the modified 
GARCH-M models we consider. Although the differentiability conditions will be violated for the 
modified versions of Nelson's E-GARCH model we consider, this is unlikely to be an issue since 
points at which the differentiability assumptions are not satisfied will occur with zero probabil- 
ity, and the numerical derivatives we compute are always bounded. 
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null hypothesis that the errors are drawn from a conditional normal distribu- 
tion. These tests have been previously applied to GARCH-M models by 
Campbell and Hentschel (1992). 

Second, we examine whether the squared standardized residuals from the 
estimated models, (Et/ t2, are independent and identically distributed. 
We use the three tests proposed by Engle and Ng (1993): the Sign Bias Test, 
the Negative Size Bias Test, and the Positive Size Bias Test as well as a joint 
test of all three. 

In the Sign Bias Test, the squared standardized residuals are regressed on 
a constant and a dummy variable, denoted St, that takes a value of one if 
Et-l is negative and zero otherwise. The Sign Bias Test Statistic is the 
t-statistic for the coefficient on S -. This test shows whether positive and 
negative innovations affect future volatility differently from the prediction of 
the model. 

In the Negative Size Bias Test, the squared standardized residuals are 
regressed on a constant and St Et 1- The Negative Size Bias Test Statistic is 
the t-statistic for the coefficient on St Et 1- This test shows whether larger 
negative innovations are correlated with larger biases in predicted volatility. 

In the Positive Size Bias Test, the squared standardized residuals are 
regressed on a constant and St Et- where St = 1 - St. The Positive Size 
Bias Test Statistic is the t-statistic for the coefficient on St Et-1. This test 
shows whether larger positive innovations are correlated with larger biases 
in predicted volatility. 

There is one additional comparison that we make among the models, 
although it is not formally a diagnostic test. Because the parameterization of 
the models differs so much, it is hard to compare the amount of persistence in 
variance that these models predict. One way to compare persistence in 
variance across models is to regress ht on a constant and ht 1. We report the 
slope coefficient and its standard error (it is one over the square root of the 
number of observations) of the regression for each model. 

III. Empirical Results 

Our objective is to examine the role of model specification in determining 
the estimated relation between risk and return. The discussion above sug- 
gests that we can estimate this relation using either Campbell's Instrumental 
Variable Model or a variety of Modified GARCH-M and EGARCH-M models. 
While our focus is on the latter, we first present results using the first 
apprcach and find that Campbell's general conclusions are replicated in our 
data. We then present the results for the various GARCH-M models. 

A. Campbell's Instrumental Variable Model 

Table II provides the empirical results obtained when the CRSP value- 
weighted index of stocks on the New York Stock Exchange (NYSE) is used as 
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Table II 

Monthly Risk-Return Relation on the CRSP Value-weighted 
Index of NYSE Equities: Campbell's Instrumental Variable 

Approach, 1951:4 to 1989:12 
The variable, xt, is the differential between the continuously compounded monthly return on the 
CRSP value-weighted index of equities on the NYSE and rft, the continuously compounded 
monthly return on Treasury bills from Ibbotson & Associates. The variable JANt takes the value 
one in January and zero otherwise, and OCTt takes the value one in October and zero otherwise. 
The t-statistics are computed using the procedures in Hansen (1982) which allows for conditional 
heteroskedasticity. The reported t-statistics are for 20 lags. 

Model A 

Mean Equation: xt = c0 + cl OCTt + c2 JANt + c3rft + Et 
Variance Equation: Es = do + d1 OCTt + d2 JANt + d 3rft + t 

do X 104 d, X 104 d2 X 104 d3 co x 100 c1 X 100 c2 X lOO c3 

Coefficient 7.25 21.68 13.11 0.18 1.48 -0.63 0.86 -2.31 
t-Statistic 2.70 1.35 2.25 2.74 5.21 -0.56 1.01 -3.42 

Model B 

Restricted Mean Equation: xt = c0 + fd1 OCTt + fd2 JANt + fd3rft + Et 
Variance Equation: E 2 = do + d, OCTt + d2 JANt + d3rft + t 

do x 104 d1 X 104 d2 X 104 d3 co X 100 p ChiSQ(2) p-Value 

Coefficient 8.25 9.23 4.19 0.15 1.44 - 12.75 3.22 0.20 
t-Statistic 3.49 0.87 1.42 2.90 5.02 -2.43 

the stock index portfolio. We limit attention to 1951:4 to 1989:12, which is the 
post-Treasury Accord period. The estimated value of the slope coefficient for 
the risk-free rate in equation (5) for expected excess return is -2.31 (t = 

- 3.42.). The estimated value of the slope coefficient for the risk-free rate in 
the variance equation given by (6) is 0.18 (t = 2.74). 

Note that the residuals in equations (5) and (6) can be serially correlated, 
since the econometrician's information set may be strictly smaller than that 
of economic agents. Therefore, the t-statistics were computed using the 
procedures suggested by Newey and West (1987). Since there is substantial 
persistence in the residuals of equation (6), we report the t-statistics corre- 
sponding to a lag length of 20. In this sample, the t-statistics decrease as the 
number of lags increases, but stabilize at about 10 lags. 

We also estimate the model by imposing the constraint that the slope 
coefficients in equation (5) be scalar multiples of the slope coefficients in 
equation (6). The estimated value of the scalar, /3, is - 12.75 (t = -2.43). 
With this restriction are two over-identifying restrictions. The null hypothe- 
sis that the over-identifying restrictions are not binding lead to a chi-square 
(D.F. = 2) value of 3.22 with an associated p-value of 0.20. Hence, based on 
these results, we cannot reject the hypothesis that there is a negative relation 
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between the conditional mean and conditional variance of the excess return 
on stocks. 

The natural question that arises at this stage is why the findings reported 
by French et al. (1987) for the standard GARCH-M model are different from 
the conclusions in this section. We address this issue in the next section. 

B. Modified GARCH-M Models 

Tables III and IV present the estimates for Models 1 through 7. A compari- 
son of Model 1 and Model 2 illustrates the restrictive nature of the standard 
GARCH-M specification for the conditional variance equation. Model 1 pre- 
sents the results for a standard GARCH-M model. Both positive and negative 
innovations to excess returns result in upward revisions of the conditional 
variance (g1 is positive). Also, time periods with relatively large variances 
are associated, on average, with relatively larger returns (a1 is positive). 
However, the association is weak and not statistically significant at conven- 
tional levels. 

These relations change as soon as positive and negative unanticipated 
returns are allowed to have different effects on conditional variance. Model 2 
allows for such a difference by estimating the parameter g2. A simple 
specification test comparing Model 1 and Model 2 shows that the standard 
GARCH-M model is too restrictive. If the parameters that the two models 
share are compared using a generalized specification test, computed using 
robust standard errors, the value of the test statistic is 12.829.7 Under the 
null hypothesis that Model 1 is correctly specified, this test statistic should be 
asymptotically distributed as a X5 random variable. Thus, we can reject the 
null hypothesis at the 5 percent level. Note that in Model 2 an unexpected 
negative return sharply increases conditional variance of the next period 
excess return, while an unexpected positive return decreases conditional 
variance. Model 1 does not allow for such a possibility. 

There is another important difference between Model 1 and Model 2. Table 
IV shows that for Model 2, the estimated persistence of variance from one 
period to the next, as measured by the first-order autoregressive coefficient 
for ht, is smaller than it is for Model 1. 

Even though Model 2 seems less restrictive than Model 1, there are two 
reasons that we should. not be satisfied with it. First, the robust standard 
errors suggest that the coefficient g2 is imprecisely estimated. In fact, it is 
not significantly different from zero. Second, Model 2 does little better than 
Model 1 in all of the diagnostic tests. 

Models 3, 4, and 5 attempt to solve the deficiencies in Model 2 by including 
the effect of the risk-free interest rate and deterministic seasonals on condi- 
tional variance. Each of these models results in statistically significant 
asymmetry in the conditional variance equation (i.e., g2 is not equal to zero). 

7For more on generalized specification tests, see Newey (1985). 
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Table III 

Monthly Risk-Return Relation of the CRSP Value-weighted 
Index of NYSE Equities: Modified GARCH-M, 1951:4 to 1989:12 

(Model Estimates) 
With xt the differential between the continuously compounded monthly return on the CRSP 
value-weighted index of equities on the NYSE and rft, the continuously compounded monthly 
return on Treasury bills from Ibbotson & Associates, the models are defined by 

xt = ao + a1vt-1 + a2v 2l + Et; Et=(1 + A1QCT - A2JAN)-qt; vt_1 = Vart- GEt); 

ht_ 1 = Vart - 11t); It- 1 = 1 if qt - 1 > 0, and 0 otherwise; 

ht-, = bo + blht-2 + b2rft +?g 1 t- +?g2qtr_tIt-1; 

where OCT takes the value one in October and zero otherwise and JAN takes the value one in 
January and zero otherwise. Robust t-statistics (in brackets) are calculated using the procedure 
in Bollerslev and Wooldridge (1992). 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 

ao - 0.453 1.064 1.850 1.071 1.854 5.730 7.782 
(xlOO) [-0.575] [1.947] [4.232] [2.398] [4.419] [2.064] [2.289] 

a1 5.926 - 2.843 - 7.625 -3.165 - 8.019 16.893 30.349 
[1.307] [-0.878] [-2.621] [- 1.131] [-2.828] [1.163] [1.652] 

bo 0.016 0.074 0.035 0.026 0.030 0.059 0.018 
(xlOO) [2.058] [1.653] [1.595] [2.467] [2.477] [1.902] [3.295] 

b, 10.842 0.483 0.334 0.769 0.506 0.623 0.848 
[16.758] [1.572] [0.824] [8.801] [2.927] [2.830] [17.299] 

b2 0.159 0.078 
[1.433] [2.221] 

91 0.070 0.257 0.188 0.153 0.177 0.161 0.121 
[2.541] [1.709] [2.109] [2.590] [2.268] [1.502] [2.734] 

92 - 0.340 -0.248 -0.227 -0.252 -0.267 - 0.207 
[- 2.270] [- 2.602] [-3.570] [- 3.272] [-2.683] [- 3.749] 

A1 0.677 0.454 0.606 
[3.638] [3.120] [3.600] 

A2 0.269 1.254 0.306 
[1.816] [1.795] [1.936] 

a2 - 1.983 - 3.123 
[- 1.576] [- 1.947] 

Log 
likelihood 1248.202 1252.917 1266.288 1268.422 1276.518 1254.276 1271.824 

In Model 3, the risk-free rate is included as an explanatory variable in the 
conditional variance equation in Model 2. Note that a1 and g2 both become 
statistically significant. The coefficient on the risk-free rate itself, b2, is 
positive, but not significant, and may be imprecisely measured. Table IV 
shows that excess skewness and kurtosis remain quite severe after the 
risk-free rate is included. 
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Table IV 

Monthly Risk-Return Relation on the CRSP Value-weighted 
Index of NYSE Equities: Modified GARCH-M, 1951:4 to 1989:12 

(Diagnostic Tests) 
Skewness and Kurtosis are the estimated skewness and kurtosis of the estimated standardized 
residuals from the mean equation. The Sign bias, Negative size bias, Positive size bias, and Joint 
tests are those suggested by Engle and Ng (1993). We report the slope coefficient and t-statistic 
from the regression of the squared standardized residual on (respectively) (1) an indicator 
variable which takes the value one if the residual is negative and zero otherwise, (2) the product 
of this indicator variable and the residual, and (3) the product of the residual and an indicator 
variable that takes the value one if the residual is positive and zero otherwise. The AR(1) 
coefficient is the slope coefficient from the regression of the fitted deseasonalized variance at 
time t on the fitted deseasonalized variance at time t - 1. 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 

Skewness -0.781 -0.701 -0.463 - 0.455 - 0.289 - 0.709 - 0.478 
t-Statistic - 6.855 - 6.157 - 4.065 - 3.992 - 2.532 - 6.225 - 4.190 

Kurtosis 3.177 3.359 1.918 0.927 0.557 3.527 1.154 
t-Statistic 13.880 14.675 8.380 4.052 2.431 15.408 5.040 

Sign bias 0.745 0.988 0.776 0.710 0.429 0.841 0.673 
t-Statistic 2.280 2.992 2.756 2.932 1.895 2.515 2.613 

Negative size bias 0.013 8.117 5.758 5.539 3.861 4.243 5.477 
t-Statistic 0.0028 1.612 1.329 1.483 1.052 0.837 1.389 

Positive size bias -3.866 2.138 1.342 0.015 - 1.220 1.988 -0.826 
t-Statistic -0.596 0.345 0.256 0.0035 - 0.314 0.316 -0.166 

Joint test 16.797 11.854 10.851 13.050 6.459 9.415 11.997 
Significance level 0.0008 0.0079 0.013 0.0045 0.091 0.024 0.0074 

AR(1) Coefflcient 
on deseasonalized 
conditional variance 
(std. error = 0.0464) 0.897 0.494 0.609 0.265 0.374 0.677 0.355 

In Model 4, deterministic seasonals are added to Model 2. A Wald test that 
the October and January seasonal effects are jointly significant (i.e., the null 
that A1 = A2 = 0) is estimated to be 6.38. Under the null, this statistic should 
be asymptotically distributed as a X22 random variable. Thus, we can reject 
the hypothesis that A1 = A2 = 0 at the 5 percent level. There are three other 
important characteristics of this model worth noting. First, with the inclusion 
of deterministic seasonals, both g1 and g2 are statistically significant (as 
they were in Model 3). Second, this method of modelling seasonals in variance 
greatly reduces the excess kurtosis in the residuals. Finally, note that the 
amount of persistence in the -conditional variance, as measured by the 
first-order autoregressive coefficient for ht, is much smaller than in any of 
the previous models. 

Model 5 adds both the risk-free rate and deterministic seasonals to Model 
2. As in Model 4, both g1 and g2 are significantly different from zero. Unlike 
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in Model 3, b2, the coefficient on the risk-free rate, is significantly positive. 
Note that the serial correlation in the estimated conditional variances is 
much smaller than the standard GARCH-M model, Model 1. 

Table IV shows that the level of excess skewness and kurtosis have been 
significantly reduced-although the null hypothesis of no excess skewness or 
kurtosis can be rejected at the 5 percent level. Model 5 is also the first model 
that does not fail the Sign Bias Test at the 5 percent level. In addition, it is 
the first model not to fail the joint test of sign bias, negative size bias, and 
positive size bias at the 5 percent level. These diagnostics suggest that Model 
5 is the most satisfactory model considered thus far. 

Despite its success, Model 5 is still quite fragile. We attempted to check the 
robustness of the specification by adding v l/~2 to the mean equation. Even 
with great effort, we were not able to get the parameter estimates from that 
model to converge. Models 6 and 7 show the effects of adding vt12l to the 
mean equation in Models 2 and 4, respectively. In neither case was the 
coefficient on v 1/2l statistically significant. Note also that the estimated 
coefficients in the conditional variance equation are relatively close in all of 
these models. 

We therefore come to the following five conclusions from our examination of 
the seven different GARCH-M specifications. 

1. The relation between conditional mean and conditional variance is 
negative and statistically significant; 

2. the risk-free rate contains information about future volatility, within the 
Modified GARCH-M framework; 

3. the October and January seasonals in volatility are statistically signifi- 
cant; 

4. conditional volatility of the monthly excess return is not highly persis- 
tent; and 

5. negative residuals are associated with an increase in variance, while 
positive residuals are associated with a slight decrease in variance. 

With the exception of the third conclusion, these results hold with or without 
the inclusion of seasonals. 

Because even the best of these models displays excess skewness and 
kurtosis, we also estimated different EGARCH-M models. The estimates for 
Models 1-L and 6-L are shown in Tables V and VI. Models 1-L and 2-L are 
based on the EGARCH-M model proposed by Nelson (1991). However, the 
results in these models, using monthly data, are quite different from those 
found by Nelson. Note that g2, the coefficient detecting asymmetry in the 
conditional variance equation, has a very small t-statistic. Table V shows 
that both Model 1-L and Model 2-L display excess skewness and kurtosis, and 
that both fail the Sign Bias Test. Note also that the first-order serial 
correlation of the h 's in both models is quite low. 

Unlike in the level models, the coefficient on g2 remains insignificant, 
regardless of which additional variables are included in the conditional 
variance equation. As a result, we do not report these regressions. Instead, 
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Table V 

Monthly Risk-Return Relation on the CRSP Value-weighted 
Index of NYSE Equities: Modified EGARCH-M, 1951:4 to 

1989:12 (Model Estimates) 
With xt the differential between the continuously compounded monthly return on the CRSP 
value-weighted index of equities on the NYSE and rft, the continuously compounded monthly 
return oni Treasury bills from Ibbotson & Associates, the models are defined by 

=t = aO + a1vt-1 + a2vl'i + Et; Et=(1 + AlOCT + A2JAN)rqt; vt-1=Vart- (Et); 

ht_ 1 = Vart - 61t); Ht- 1 = log(ht- 1); It- l = 1 if r-t- l > 0, and 0 otherwise; 

Ht_ = bo + bjHtH2 + b2rft +?g(t11ht-2) +g2(,qt- / 2)Iti ; 

where OCT takes the value one in October and zero otherwise, and JAN takes the value one in 
January and zero otherwise. Robust t-statistics (in brackets) are calculated using the procedure 
in Bollerslev and Wooldridge (1992). 

Model 1-L Model 2-L Model 3-L Model 4-L Model 5-L Model 6-L 

ao 1.195 1.199 1.604 1.097 1.536 3.890 
(xlOO) [2.932] [2.290] [4.176] [2.657] [4.158] [1.231] 

a1 - 3.947 -4.022 - 6.387 -3.486 - 6.119 12.157 
[- 1.532] [ - 1.537] [ - 2.483] [ - 1.305] [- 2.426] [0.707] 

a2 - 1.366 
[-0.908] 

bo - 5.583 -5.567 - 5.728 - 5.035 - 5.102 - 4.479 
(xlOO) [- 6.476] [ - 6.4721 [ - 5.719] [ - 4.513] [- 4.390] [- 2.654] 

b, 0.133 0.133 0.183 0.235 0.281 0.321 
[0.999] [0.992] [1.271] [1.386] [1.701] [1.248] 

b2 99.600 81.002 
[3.624] [3.127] 

91 - 0.456 -0.427 - 0.383 -0.378 - 0.338 - 0.355 
[- 6.448] [ -3.599] [- 5.1951 [- 5.249] [- 4.811] [- 3.738] 

92 --0.052 
[ -0.274] 

Al 0.426 0.349 0.451 
[2.573] [2.392] [2.579] 

A2 0.318 0.299 0.346 
[2.027] [2.035] [2.017] 

Log 
likelihood 1262.937 1262.274 1272.081 1270.970 1279.081 1271.538 

we try to address the deficiencies in Model 1-L in Models 3-L, 4-L, and 5-L by 
including the effect of the risk-free interest rate and deterministic seasonals 
on conditional variance. Note that Models 3-L through 5-L impose the restric- 
tion that g2 = 0. 

Model 3-L adds the risk-free rate to the conditional variance equation in 
Model 1-L. In contrast to Model 3, the coefficient on the risk-free rate has a 
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Table VI 

Monthly Risk-Return Relation on the CRSP Value-weighted 
Index of NYSE Equities: Modified EGARCH-M, 1951:4 to 

1989:12 (Diagnostic Tests) 
Skewness and Kurtosis are the estimated skewness and kurtosis of the estimated standardized 
residuals from the mean equation. The Sign bias, Negative size bias, Positive size bias, and Joint 
tests are those suggested by Engle and Ng (1993). We report the slope coefficient and t-statistic 
of the regression of the squared standardized residual on (respectively) (1) an indicator variable 
which takes the value one if the residual is negative and zero otherwise, (2) the product of this 
indicator variable and the residual, and (3) the product of the residual and an indicator variable 
that takes the value one if the residual is positive and zero otherwise. The AR(1) coefficient is the 
slope coefficient in the regression of the fitted deseasonalized variance at time t on the fitted 
deseasonalized variance at time t - 1. 

Model 1-L Model 2-L Model 3-L Model 4-L Model 5-L Model 6-L 

Skewness - 0.484 - 0.491 - 0.400 - 0.416 - 0.337 - 0.436 
t-Statistic - 4.249 - 4.306 - 3.506 - 3.654 - 2.954 - 3.825 

Kurtosis 1.372 1.409 1.095 0.620 0.441 0.722 
t-Statistic 5.995 6.157 4.786 2.710 1.925 3.153 

Sign bias 0.555 0.577 0.364 0.507 0.409 0.549 
t-Statistic 2.109 2.180 1.446 2.183 1.833 2.311 

Negative size bias 4.111 3.794 3.244 3.676 3.575 4.342 
t-Statistic 1.004 0.919 0.816 1.018 1.011 1.192 

Positive size bias 7.469 8.257 3.054 5.982 3.449 4.910 
t-Statistic 1.535 1.693 0.660 1.409 0.861 1.103 

Joint test 4.632 5.074 2.139 4.813 2.407 5.408 
Significance level 0.201 0.166 0.544 0.186 0.333 0.144 

AR(1) Coefficient on 
deseasonalized 
conditional 
variance (std. 
error = 0.0464) 0.078 0.089 0.430 0.062 0.335 0.102 

large t-statistic, even without deterministic seasonals. However, excess skew- 
ness and kurtosis are still a problem in this model. Note that there is no 
significant sign bias in this model. In fact, none of the Engle-Ng tests show 
any evidence of misspecification in this model. 

Model 4-L adds* deterministic seasonals to Model 1-L, using the same 
method adopted for the level models. A Wald test that the October and 
January seasonal effects are jointly significant (i.e., the test of the null that 
A1 = A2 = 0) is estimated to be 7.66. Under the null, this statistic should be 
asymptotically distributed as a X22 random variable. Thus, we can reject the 
hypothesis that A1 = A2 = 0 at the 5 percent level. Although the amount of 
excess kurtosis is much lower for Model 4-L than for any of the previous 
models, we can still reject the hypothesis of no excess kurtosis at the 5 
percent level. Note also, that Model 4-L appears to have sign bias. 
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Model 5-L adds both the risk-free interest rate and deterministic seasonals 
to Model 1-L. The coefficients on all of those terms are statistically signifi- 
cant. The Wald test statistic for the hypothesis that A1 = A2 = 0 is 7.31, while 
the test statistic for the hypothesis that A1 = A2 = b2 = 0 is 15.53. Thus, we 
can reject both hypotheses at the 5 percent level. Table V shows that we 
cannot reject the hypothesis that there is no excess kurtosis in the estimated 
residuals from Model 5-L. Model 5-L also shows no signs of sign bias, 
negative size bias, or positive size bias. 

Since Model 5-L passed more of the diagnostic tests than any other model, 
it is our preferred specification. As a further check, we estimated Model 6-L, 
by adding v 1 to the conditional mean equation. The coefficient on v1V2 is 
not statistically significant, and the results for the conditional variance 
equation are qualitatively the same as for Model 5-L. However, the diagnostic 
tests show that Model 6-L performs worse than Model 5-L in some important 
ways. Model 6-L has a statistically significant amount of excess kurtosis, and 
it fails the Sign Bias Test. This suggests there is little evidence of misspecifi- 
cation in Model 5-L, and that the model should be the preferred specification. 
Note also that the first-order serial correlation of ht in Model 5-L is still 
relatively low at 0.3358.8 

Given the essentially exploratory nature of our seasonal analysis, it is 
important to note that the coefficient estimates for Model 3-L (without 
seasonals) and Model 5-L are very close. Thus, general conclusions about the 
nature of stochastic volatility are invariant to the inclusion and exclusion of 
the January and October seasonals. Notice also that the conclusions derived 
from Model 5 (the "levels" model with the risk-free rate and seasonals) and 
Model 5-L are the same. 

Since the finding of low persistence of conditional variance is so different 
from results reported in the literature (except for Campbell and Hentschel 
1992), it needs some explanation. At this point, we can only speculate. 
Perhaps there are regimes in which variance is relatively persistent, but 
there are frequent and relatively unpredictable regime shifts.9 Thus, the data 
are characterized by both persistence and random changes in variance. This 
explanation is suggested by the fact that the likelihood function of Model 2-L 
has two local maxima (we report the global maximum results). The local (not 
global) maximum is characterized by variance estimates that are highly 
persistent, but produces residuals that exhibit substantial skewness and 
kurtosis. It is possible that the two local maxima are merely an artifact of the 
relatively small postwar sample. On the other hand, the likelihood function 

8 We also tested the robustness of our conclusions in two other ways. First, we estimated 
Model 5-L with a sample ending in December 1986 to see whether the October 1987 stock market 
crash had an undue influence on our estimates. Second, we estimated Model 5-L using equally 
weighted returns. Both sets of results were qualitatively similar to those for Model 5-L. 

9 Models of "regime shifting" have been examined in Hamilton and Susmel (1992), and Cai 

(1993). 
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may be suggesting that there are two ways to fit the data, and the fit with 
lower persistence is slightly better. 

IV. Conclusion 

There is a positive but insignificant relation between the conditional mean 
and conditional volatility of the excess return on stocks when the standard 
GARCH-M framework is used to model the stochastic volatility of stock 
returns. On the other hand, Campbell's Instrumental Variable Model esti- 
mates a negative relation between conditional mean and conditional volatil- 
ity. In this paper we empirically show that the standard GARCH-M model is 
misspecified and alternative specifications provide a reconciliation between 
these two results. When the model is modified to allow positive and negative 
unanticipated returns to have different impacts on the conditional variance, 
we find a negative relation between the conditional mean and the conditional 
variance of the excess return on stocks. This relation becomes stronger and 
statistically significant when conditional variance is allowed to have deter- 
ministic monthly seasonals and to depend on the nominally risk-free interest 
rate. Hence our results are consistent with the negative relation between 
volatility and expected return reported in Fama and Schwert (1977), Camp- 
bell (1987), Breen, Glosten, and Jagannathan (1989), and Harvey (1991). We 
show that our conclusions do not change when we use Nelson's EGARCH-M 
model modified to include the risk-free rate or seasonals or both. 

We also find that the time series properties of monthly excess returns are 
substantially different from the reported properties of daily excess returns. 
First, persistence of conditional variance in excess returns is quite low in 
monthly data while Nelson (1991) finds persistence high in daily data. 
Second, positive and negative unexpected returns have vastly different effects 
on future conditional variance; the expected impact of a positive unexpected 
return is negative. In contrast, Nelson (1991) and Engle and Ng (1993) find 
different effects for positive and negative unexpected returns, but both lead to 
variance increases. 
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