
Introduction

A convenient way of representing an economic time series
yt is through the so-called trend-cycle decomposition

yt = TDt + Zt

TDt = deterministic trend

Zt = random cycle/noise

For simplicity, assume

TDt = κ+ δt

φ(L)Zt = θ(L)εt, εt ∼WN(0, σ2)

where φ(L) = 1− φ1L− · · · − φpL
pand θ (L) = 1 +

θ1L + · · · + θqLq. It is assumed that the polynomial
φ(z) = 0 has at most one root on the complex unit
circle and θ(z) = 0 has all roots outside the unit circle.



Trend Stationary and Difference Processes

Defn: The series yt is called trend stationary if the roots
of φ(z) = 0 are outside the unit circle

Defn: The series yt is called difference stationary if φ(z) =
0 has one root on the unit circle and the others outside
the unit circle.

If yt is trend stationary then φ(L) is invertible and Zt
has the stationary or Wold representation

Zt = φ(L)−1θ(L)εt
= ψ(L)εt

where

ψ(L) = φ(L)−1θ(L) =
∞X
k=0

ψkL
k

ψ0 = 1 and ψ(1) 6= 0.



If yt is difference stationary then φ(L) can be factored
as

φ(L) = (1− L)φ∗(L)

where φ∗(z) = 0 has all p−1 roots outside the unit circle.
In this case, ∆Zt has the stationary ARMA(p − 1, q)

representation

∆Zt = φ∗(L)−1θ(L)εt
= ψ∗(L)εt

where

ψ∗(L) = φ∗(L)−1θ(L) =
∞X
k=0

ψ∗kL
k

ψ∗0 = 1 and ψ∗(1) 6= 0.



Example: Difference stationary AR(2)

Let

φ(L)Zt = εt, φ(L) = 1− φ1L− φ2L
2

Assume that φ(z) = 0 has one root equal to unity and
the other root real valued with absolute value less than
1. Factor φ(L) so that

φ(L) = (1− φ∗L)(1− L) = φ∗(L)(1− L)

φ∗(L) = 1− φ∗L with |φ∗| < 1.

Then

φ(L)Zt = (1− φ∗L)(1− L)Zt = (1− φ∗L)∆Zt

so that ∆Zt follows an AR(1) process.



I(1) and I(0) Processes

If the noise series Zt is difference stationary then we say
that Zt is integrated of order 1 and we write Zt ∼ I(1).
To see why, note that

∆Zt = ψ∗(L)εt = ut

ut is stationary

It follows that Zt = Zt−1 + ut and by recursive substi-
tution starting at time t = 0 we have

Zt = Z0 +
tX

k=1

uk

so that Zt can be represented as the (integrated) sum of
t stationary innovations {uk}tk=1.

Moreover, since ut is stationary we say that ut is inte-
grated of order zero, and write ut ∼ I(0), to signify that
ut cannot be written as the sum of stationary innovations.

Note: If ∆Zt is an ARMA(p,q) process then Zt is called
an ARIMA(p,1,q) process. The term ARIMA refers to an
autoregressive integrated moving average process.



Impulse Response Functions from I(1) Processes

Consider an I(1) process with Wold representation∆yt =

ψ∗(L)εt. Since∆yt = yt−yt−1 the level yt may be rep-
resented as

yt = yt−1 +∆yt

Similarly, the level at time t+ h may be represented as

yt+h = yt−1 +∆yt +∆yt+1 + · · ·+∆yt+h

The impulse response on the level of yt+h of a shock to
εt is

∂yt+h
∂εt

=
∂∆yt

∂εt
+
∂∆yt+1
∂εt

+ · · ·+ ∂∆yt+h
∂εt

= 1 + ψ∗1 + · · ·+ ψ∗h
The long-run impact of a shock to the level of yt is given
by

lim
h→∞

∂yt+h
∂εt

=
∞X
j=1

ψ∗j = ψ∗(1).

Hence, ψ∗(1) measures the permanent effect of a shock,
εt, to the level of yt.



Remarks:

1. Since ∂yt
∂εt

= 1 it follows that ψ∗(1) can also be
interpreted as the long-run effect of a shock relative
to the immediate effect of a shock.

2. ψ∗(1) is a natural measure of the importance of a
permanent shock. If ψ∗(1) = 1 then the long-run
effect of a shock is equal to the immediate effect;
if ψ∗(1) > 1 the long-run effect is greater than the
immediate effect; if ψ∗(1) < 1 the long-run effect is
less than the immediate effect.

3. If ψ∗(1) = 0 then Zt ∼ I(0). To see this suppose
Zt ∼ I(0) and has the Wold representation Zt =

ψ(L)εt with ψ(1) 6= 0. Then

∆Zt = (1− L)Zt = (1− L)ψ(L)εt = ψ∗(L)εt
ψ∗(L) = (1− L)ψ(L)

It follows that ψ∗(1) = (1− 1)ψ(1) = 0.



Forecasting from an I(1) Process

Forecasting from an I(1) process follows directly from
writing yt+h as

yt+h = yt +∆yt+1 +∆yt+2 + · · ·+∆yt+h

Then

yt+h|t = yt +∆yt+1|t +∆yt+2|t + · · ·+∆yt+h|t

= yt +
hX

s=1

∆yt+s|t

Notice that forecasting an I(1) process proceeds from the
most recent observation.



Example: Forecasting from an AR(1) model for ∆yt

Let ∆yt follow an AR(1) process

∆yt − μ = φ(∆yt−1 − μ) + εt, εt ∼WN(0, σ2)

where |φ| < 1. Using the chain-rule of forecasting, the
h-step ahead forecast of ∆yt+hbased on information at
time t is

∆yt+h|t = μ+ φh(∆yt − μ)

Then, the h-step ahead forecast of yt+h is

yt+h|t = yt +
hX

s=1

[μ+ φs(∆yt − μ)]

= yt + hμ+ (∆yt − μ)
hX

s=1

φh



The Trend-Cycle Decomposition with Stochastic Trends

Assume Zt ∼ I(1). Then it is possible to decompose Zt
into a stochastic (random walk) trend and a stationary,
I(0), “cyclical” component:

Zt = TSt + Ct

TSt ∼ I(1)

Ct ∼ I(0)

The stochastic trend, TSt, captures shocks that have a
permanent effect on the level of yt

The stationary component, Ct, captures shocks that only
have a temporary effect on the level of yt.

The components representation for yt becomes

yt = TDt + TSt + Ct

TDt + TSt = overall trend

Ct = deviations about trend



Remarks:

1. The decomposition of Zt into TSt and Ct is not
unique. In fact, there are an infinite number of such
combinations depending on how TSt and Ct are defined.

2. Two decompositions have been popular in the empiri-
cal literature: the Beveridge-Nelson (BN) decomposition;
and the orthogonal unobserved components (UC0) de-
composition. Both decompositions define TSt as a pure
random walk. They primarily differ in how they model
the serial correlation in ∆Zt.

3. The BN decomposition uses an unrestricted ARMA(p, q)
model for∆Zt; the UC0 model uses a restricted ARMA(p, q)
for ∆Zt.

4. Recent work (e.g. Morley, Nelson, Zivot (2003)) has
considered UC models with correlated components. Iden-
tification is tricky in these models



The Beveridge-Nelson Decomposition

Beveridge and Nelson (1980) proposed a definition of the
permanent component of an I(1) time series yt with drift
μ as the limiting forecast as horizon goes to infinity, ad-
justed for the mean rate of growth over the forecast hori-
zon,

TDt +BNt = lim
h→∞

³
yt+h|t − TDt+h|t

´
= lim

h→∞

³
yt+h|t − μ · h

´
BNt, is referred to as the BN trend.

The implied cycle at time t is then

CBN
t = yt − TDt −BNt



Beveridge and Nelson showed that if ∆yt has a Wold
representation

∆yt = δ + ψ∗(L)εt

then BNt follows a pure random walk without drift

BNt = BNt−1 + ψ∗(1)εt

= BN0 + ψ∗(1)
tX

j=1

εt



The derivation of the BN trend relies on the following
algebraic result.

Let ψ(L) =
P∞
k=0ψkL

k with ψ0 = 1. Then

ψ(L) = ψ(1) + (1− L)eψ(L),
ψ(1) =

∞X
k=0

ψk,

eψ(L) =
∞X
j=0

eψjLj, eψj = − ∞X
k=j+1

ψk.

In addition, if
P∞
k=0 k|ψk| < ∞ (1-summability) thenP∞

k=0 |eψk| <∞. 1-summability is satisfied by all covari-
ance stationary ARMA(p,q) processes.

For an algebraic proof, see Hamilton (1993) pages 534
and 535.



Derivation of BN decomposition

Consider the Wold representation for ∆yt. By recursive
substitution

yt = y0 + δt+ ψ∗(L)
tX

j=1

εj

Applying the decomposition ψ∗(L) = ψ∗(1) + (1 −
L)eψ(L) gives
yt = y0 + δt+

³
ψ∗(1) + (1− L)eψ∗(L)´ tX

j=1

εj

= y0 + δt+ ψ∗(1)
tX

j=1

εj + eεt − eε0
= TDt + TSt + Ct

where

TDt = y0 + δt

TSt = Z0 + ψ∗(1)
tX

j=1

εj

Ct = eεt − eε0eεt = eψ∗(L)εt



To show that ψ∗(1)
Pt
j=1 εj is the BN trend, consider

the series at time t+ h

yt+h = y0 + δ(t+ h) + ψ∗(1)
t+hX
j=1

εj + eεt+h
The forecast of yt+h at time t is

yt+h|t = y0 + δ(t+ h) + ψ∗(1)
tX

j=1

εj + eεt+h|t
The limiting forecast as horizon goes to infinity, adjusted
for mean growth, is

lim
h→∞

³
yt+h|t − δh

´
= y0 + δt+ ψ∗(1)

tX
j=1

εj + lim
h→∞

eεt+h|t
= y0 + δt+ ψ∗(1)

tX
j=1

εj

= TDt +BNt

as limh→∞ eεt+h|t = 0 since eεt+h is a mean-zero sta-
tionary process.



Example: BN decomposition from MA(1) process for
∆yt (Stock and Watson, 1987)

Let yt = ln(rgdpt). Using postwar quarterly data from
1947:II-1985:IV, Stock andWatson fit the following MA(1)
model to the growth rate of real gdp:

∆yt = 0.008+εt+0.3εt−1, εt ∼ iid(0, σ2), bσ = 0.0106
For the MA(1) model, the Wold representation for ∆yt
has the simple form

∆yt = δ + ψ∗(L)εt
ψ∗(L) = 1 + ψ∗1L, ψ

∗
1 = 0.03

Straightforward calculations give

ψ∗(1) = 1 + ψ∗1 = 1.03eψ∗0 = −
∞X
j=1

ψ∗j = −ψ∗1 = −0.03

eψ∗j = −
∞X

j=k+1

ψ∗j = 0, j = 1, 2 . . .



The trend-cycle decomposition of yt using the BN de-
composition becomes

yt = (y0 + δt) + ψ∗(1)
tX

j=1

εj + eεt
= y0 + 0.008t+ 1.3

tX
j=1

εj − 0.3εt

so that

TDt = y0 + 0.008t

BNt = 1.3
tX

j=1

εj

Ct = −0.3εt
Note that ∂yt∂εt

= 1 and ∂yt+s
∂εt

= 1.3 for s > 0.

Remark: In the BN decomposition, 1.3εt is the shock
to the trend and −0.3εt is the shock to the cycle. It
is tempting to conclude that the BN decomposition as-
sumes that the trend and cycle shocks are perfectly neg-
atively correlated. This is incorrect because εt only has
the interpretation as a forecasting error.



The naive computation of the BN decomposition requires
the following steps:

1. Estimation of ARMA(p,q) model for ∆yt

2. Estimation of ψ∗ (1) from estimated ARMA(p,q) model
for ∆yt

3. Estimation of
Pt
j=1 εj using residuals from estimated

ARMA(p,q) model for ∆yt



Example: BN decomposition from ARMA(2,2) model for
∆yt

Morley, Nelson and Zivot (2003) fit the following ARMA(2,2)
model to the growth rate of postwar quarterly real GDP
over the period 1947:I - 1998:II

∆yt = 0.816 + 1.342∆yt−1 − 0.706∆yt−2
+ε̂t − 1.054ε̂t−1 + 0.519ε̂t−2

φ(L) = 1− 1.342L+ 0.706L2,
θ(L) = 1− 1.054L+ 0.519L2

To compute an estimate of ψ∗ (1) from the ARMA(p,q)
model, solve for the wold representation

φ(L)∆yt = θ(L)εt

⇒ ∆yt = φ(L)−1θ(L)εt = ψ∗(L)εt

where ψ∗(L) = φ(L)−1θ(L). Therefore,

ψ∗ (1) = φ(1)−1θ(1)



The estimate of ψ∗ (1) from the ARMA(2,2) model is

ψ∗ (1) =
1− 1.054 + 0.519
1− 1.342 + 0.706

= 1.276

The estimate of the permanent component is then

TDt +BNt = y0 + 0.816t+ 1.276
tX

j=1

ε̂j



Example: BN decomposition from AR(1) process for
∆yt

From the formula for the h−step ahead forecast for yt,
it is easy to analytically compute the BN trend for yt:

TDt +BNt = lim
h→∞

³
yt+h|t − hδ

´
= yt + (∆yt − δ) lim

h→∞

hX
s=1

φh

= yt +
φ

1− φ
(∆yt − δ)

since

lim
h→∞

hX
s=1

φh =
∞X
s=0

φh − 1 = 1

1− φ
− 1

=
φ

1− φ

The cycle component is then

CBN
t = yt − TDt −BNt

=
φ

1− φ
(∆yt − μ)



Morley (2002) shows how the BN decomposition for an
AR(1) model for ∆yt may be extended to any model
for ∆yt that can be represented in state space form. In
particular, suppose ∆yt − μ is a linear combination of
the elements of the m× 1 state vector αt :

∆yt − μ =
h
z1 z2 · · · zm

i
αt

where zi (i = 1, . . . ,m) is the weight of the ith element
of αt in determining ∆yt − μ. Suppose further that

αt = Tαt−1 + ηt, ηt ∼ iid N(0,Q),

such that all of the eigenvalues of T have modulus less
than unity, and T is invertible. Then, Morley shows that

TDt +BNt = yt +
h
z1 z2 · · · zm

i
T(Im−T)−1at|t

CBN
t = yt − TDt −BNt

= −
h
z1 z2 · · · zm

i
T(Im−T)−1at|t

where at|t denotes the filtered estimate of αt from the
Kalman filter recursions.



The Orthogonal Unobserved Components (UC) Model

The basic idea behind the UC model is to give struc-
tural equations for the components on the trend-cycle
decomposition. For example, Watson (1986) considered
UC-ARIMA models of the form

yt = μt + Ct

μt = α+ μt−1 + εt, εt ∼ iid(0, σ2ε)

φ(L)Ct = θ(L)ηt, ηt ∼ iid(0, σ2η)

φ(L) = 1− φ1L− · · ·− φpL
p

θ(L) = 1 + θ1L+ · · ·+ θqL
q



Identification:

1. The parameters of the UC model are not identified
without further restrictions.

2. Restrictions commonly used in practice to identify all
of the parameters are: (1) the roots of φ(z) = 0 are out-
side the unit circle; (2) θ(L) = 1, and (3) cov(εt, ηt) =
0. These restrictions identify Ct as a transitory autore-
gressive “cyclical” component, and μt as the permanent
trend component.

3. The restriction cov(εt, ηt) = 0 states that shocks to
Ct and μt are uncorrelated. As shown in Morley, Nel-
son and Zivot (2003), for certain models the assumption
that cov(εt, ηt) = 0 turns out to be an over-identifying
restriction.



Example: Clark’s (1986) JPE Model

Clark considered the UC-ARIMA(2,0) model

yt = μt + Ct

μt = α+ μt−1 + εt, εt ∼ iid N(0, σ2ε)
Ct = φ1Ct−1 + φ2Ct−2 + ηt, ηt ∼ iid N(0, σ2η)

cov(εt, ηt) = 0

State Space Representation 1

Define αt = (μt, Ct, Ct−1)0. Then the transition equa-
tion is⎛⎜⎝ μt

Ct
Ct−1

⎞⎟⎠ =

⎛⎜⎝ 1 0 0
0 φ1 φ2
0 1 0

⎞⎟⎠
⎛⎜⎝ μt−1

Ct−1
Ct−2

⎞⎟⎠
+

⎛⎜⎝ α
0
0

⎞⎟⎠+
⎛⎜⎝ 1 0
0 1
0 0

⎞⎟⎠Ã εt
ηt

!

Qt =

Ã
σ2ε 0
0 σ2η

!



The measurement is

yt = (1, 1, 0)

⎛⎜⎝ μt
Ct
Ct−1

⎞⎟⎠
Notice that

α1,t = μt ∼ I(1)

α02,t = (Ct,Ct−1)
0 ∼ I(0)

As a result, the distribution of the initial state vector
α0 = (μ0, C0, C−1)0 cannot be determined in the usual
way. This is because, a1,0 does not have a simple station-
ary unconditional distribution. Since var(μt) = μ0+σ

2
ε ·

t, the usual approach is to assume

a1,0 = 0

var(α1,0) = κ · 106

The distribution for α2,0 may be based on its uncondi-
tional stationary distribution. Therefore, the initial state
distribution is characterized by

a0 = 0

P0 =

Ã
κ · 106 0
0 P2

!



State Space Representation 2

Since yt ∼ I(1), consider the transformed model

∆yt = ∆μt +∆Ct

= α+∆Ct + εt

Define αt = (Ct,Ct−1)0. Then the transition equation
is Ã

Ct
Ct−1

!
=

Ã
φ1 φ2
1 0

!Ã
Ct−1
Ct−2

!
+

Ã
ηt
0

!
The corresponding measurement equation is

∆yt = ( 1 −1 )αt + εt

Since αt is covariance stationary, the distribution of the
initial state vector α0 may be determined in the usual
way.



Proposition: Any UC-ARIMA model with a specified
correlation between εt and ηt is observationally equiva-
lent to an ARMA model for ∆yt with nonlinear restric-
tions on the parameters. The restricted ARMA model for
∆yt is called the reduced form of the UC-ARIMA model.

Proposition: (Lippi and Reichlin (1992) JME) ψ∗(1)
computed from the reduced form ARMA model for ∆yt
based on a UC-ARIMA model for yt is always less than
1.



Example: Random walk plus noise model

Consider the random walk plus noise model

yt = μt + ηt, ηt ∼ iid(0, σ2η)
μt = μt−1 + εt εt ∼ iid(0, σ2ε)

q =
σ2ε
σ2η
= signal-to-noise ratio

ηt and εt are independent

The reduced form ARMA model for ∆yt is

∆yt = ∆μt +∆ηt = εt + ηt − ηt−1.

Claim: ∆yt follows an ARMA(0,1) process. To see this,
consider the autocovariances of ∆yt :

γ∗0 = var(∆yt) = var(εt + ηt − ηt−1) = σ2ε + 2σ
2
η

= σ2η(q + 2)

γ∗1 = cov(∆yt,∆yt−1)
= E[(εt + ηt − ηt−1)(εt−1 + ηt−1 − ηt−2)]
= −σ2η

γ∗j = 0, j > 1



The autocovariances for ∆yt are the same as the autoco-
variances for an ARMA(0,1) model, and so ∆yt has the
representation

∆yt = ςt + θςt−1, ςt ∼ iid(0, σ2ς )

where the ARMA(0,1) parameters θ and σ2ς are nonlin-
early related to the UC-ARIMA parameters σ2η and σ2ε,

and the error term ςt encompasses the structural shocks
ηt and εt.



Identification of structural parameters

1. The reduced form ARMA(0,1) model has two para-
meters θ and σ2ς

2. The structural random walk plus noise model also has
two parameters σ2ε and σ

2
η.

3. Since the reduced form and structural models have
the same number of parameters the order condition for
identification is satisfied.

4. If εt and ηt were allowed to be correlated then there
would be three structural parameters (two variances and
a covariance) and only two reduced form parameters, and
the order condition for identification would not be satis-
fied. Hence, setting cov(εt, ηt) = 0 is an identifying
restriction in this model.



The mapping from UC-ARIMA parameters to the reduced
form parameters is determined as follows. The first order
autocorrelation for the reduced form ARMA(0,1) is

ρ∗1 =
θ

1 + θ2

and for the UC-ARIMA it is

ρ1 =
γ∗1
γ∗0
=

−1
q + 2

Setting ρ∗1 = ρ1 and solving for θ gives

θ =
−(q + 2)±

q
(q + 2)2 − 4
2

The invertible solution is

θ =
−(q + 2) +

q
q2 + 4q

2
, θ < 0.



Remarks:

1. Notice that the MA coefficient θ for the reduced form
ARMA(0,1) model is restricted to be negative.

2. If q = 0, then θ = −1. Similarly, matching variances
for the two models gives

σ2ς =
σ2η

−θ
.

3. Since θ < 0, it follows that

ψ∗(1) = 1 + θ < 1.


