Introduction

A convenient way of representing an economic time series
y¢ I1s through the so-called trend-cycle decomposition

yt = TDi+ Zy
TD; = deterministic trend

Zy = random cycle/noise

For simplicity, assume

TDy = K+ 0t
o(L)Zy = 6(L)et, e ~ WN(0,52)

where ¢(L) =1 —¢1L — -+ — ¢,LPand 0 (L) =1+
O1L 4 --- + 04L9. It is assumed that the polynomial
®(z) = 0 has at most one root on the complex unit

circle and 6(z) = 0 has all roots outside the unit circle.



Trend Stationary and Difference Processes

Defn: The series 1 is called trend stationary if the roots
of ¢(z) = 0 are outside the unit circle

Defn: The series y; is called difference stationary if p(z) =
O has one root on the unit circle and the others outside
the unit circle.

If y¢ is trend stationary then ¢(L) is invertible and Z;
has the stationary or Wold representation

Zy = ¢(L)10(L)es
= P(L)et
where
B(L) = (L)L) = > el

k=0
(15!

1 and (1) # 0.



If y; is difference stationary then ¢(L) can be factored
as

¢(L) = (1 - L)¢*(L)
where ¢*(z) = 0 has all p—1 roots outside the unit circle.

In this case, AZ; has the stationary ARMA(p — 1,q)
representation

AZy = ¢*(L)7LO(L)e
= ™ (L)ey
where
GH(L) = &' (L)L) = Y wiLh

k=0

Yo 1 and 9™(1) # 0.



Example: Difference stationary AR(2)

Let

S(L)Zt = et, $(L) =1 — ¢ L — ¢ L7

Assume that ¢(z) = 0 has one root equal to unity and
the other root real valued with absolute value less than
1. Factor ¢(L) so that

(L) = (1-¢"L)(1—-L)=¢"(L)(1—-L)
o*(L) = 1— &*L with |¢*] < 1.
Then
¢(L)Zy = (1 —¢"L)(1 — L)Z; = (1 — ¢*L)AZ
so that AZ; follows an AR(1) process.



I(1) and 1(0) Processes

If the noise series Z; is difference stationary then we say
that Z; is integrated of order 1 and we write Z; ~ I(1).
To see why, note that

AZt = Qp*(L)é‘t = Ut
ug Is stationary

It follows that Z; = Z;_1 + ut and by recursive substi-
tution starting at time ¢ = 0 we have

t
Zy = Zo + Z UL
k=1
so that Z; can be represented as the (integrated) sum of
t stationary innovations {uk}};:r

Moreover, since u; is stationary we say that u; is inte-
grated of order zero, and write uy ~ I(0), to signify that
u+ cannot be written as the sum of stationary innovations.

Note: If AZ; is an ARMA(p,q) process then Z; is called
an ARIMA(p,1,q) process. The term ARIMA refers to an
autoregressive integrated moving average process.



Impulse Response Functions from I(1) Processes

Consider an (1) process with Wold representation Ay; =
Y*(L)et. Since Ayr = y+—1y_1 the level y¢ may be rep-
resented as

Yt = Yt—1 + Ayy

Similarly, the level at time t + h may be represented as

Ye+h = Yt—1 + Ay + Dypy1 + -+ Aypyp,
The impulse response on the level of y,, 5 of a shock to
Et IS
0 0A 0A 0A
Yt+h _ Yt i Yt+1 R Yt+h
8675 8615 88t 8575
= 14+9Y7+---+ 9}
The long-run impact of a shock to the level of 1; is given

by

lim ath ij b*(1).

h— o0

Hence, 1*(1) measures the permanent effect of a shock,
¢, to the level of y;.



Remarks:

1. Since g_?; = 1 it follows that ¢*(1) can also be

interpreted as the long-run effect of a shock relative
to the immediate effect of a shock.

2. 1*(1) is a natural measure of the importance of a
permanent shock. If 1)*(1) = 1 then the long-run
effect of a shock is equal to the immediate effect;
if 10*(1) > 1 the long-run effect is greater than the
immediate effect; if )*(1) < 1 the long-run effect is
less than the immediate effect.

3. If ¥*(1) = 0 then Z; ~ I(0). To see this suppose
Zy ~ I(0) and has the Wold representation Z; =

Y(L)et with (1) # 0. Then

AZ; = (1—L)Z = (1 — LYb(L)er = ¥*(L)es
(L) = (1—L)y(L)
It follows that ¢*(1) = (1 — 1)¥(1) = 0.



Forecasting from an I(1) Process

Forecasting from an (1) process follows directly from
writing Y44 p, as

Yerh = Yt + Dyp1 + Dypyo + -+ Aypyp
Then

Yerhlt = Yt T BY )+ DYoo+ + BYpp)
h

= Yt + Z Ayt+3|t
s=1

Notice that forecasting an I(1) process proceeds from the

most recent observation.



Example: Forecasting from an AR(1) model for Ay

Let Ay follow an AR(1) process

Ays — p = ¢(Ays_1 — p) +et, e¢ ~ WN(0,02)

where |¢| < 1. Using the chain-rule of forecasting, the
h-step ahead forecast of Ay, jbased on information at
time ¢ is

Ay ipp = 1+ o"(Dys — p)

Then, the h-step ahead forecast of y;,p, is

h
Yernt = yt+ ) [n+ &% (Ay — p)]
s=1

h
= yr+ hu+ (Ays — p) Z¢h
s=1



The Trend-Cycle Decomposition with Stochastic Trends

Assume Z¢ ~ I(1). Then it is possible to decompose Z;
into a stochastic (random walk) trend and a stationary,
1(0), “cyclical” component:

Zy = TS5+ Cy
TS, ~ I(1)
Cy ~ I1(0)

The stochastic trend, 1S, captures shocks that have a
permanent effect on the level of

The stationary component, C%, captures shocks that only
have a temporary effect on the level of y;.

The components representation for y+ becomes

TDy+ TSy + Cy

overall trend

Yt
TD: + TS

C: = deviations about trend



Remarks:

1. The decomposition of Z; into T'Sy and C% is not
unique. In fact, there are an infinite number of such
combinations depending on how 1'S; and C% are defined.

2. Two decompositions have been popular in the empiri-
cal literature: the Beveridge-Nelson (BN) decomposition;
and the orthogonal unobserved components (UC0) de-
composition. Both decompositions define T'S; as a pure
random walk. They primarily differ in how they model
the serial correlation in AZ;.

3. The BN decomposition uses an unrestricted ARMA(p, q)
model for AZy; the UCO model uses a restricted ARMA(p, q)
for AZt.

4. Recent work (e.g. Morley, Nelson, Zivot (2003)) has
considered UC models with correlated components. Iden-
tification is tricky in these models



The Beveridge-Nelson Decomposition

Beveridge and Nelson (1980) proposed a definition of the
permanent component of an I (1) time series y¢ with drift
1 as the limiting forecast as horizon goes to infinity, ad-
justed for the mean rate of growth over the forecast hori-

zon,
I'Dy+ BNy = lim (yt+h|t - TDt+h|t>
= lim (yt+h|t — - h)

BNy, is referred to as the BN trend.

The implied cycle at time ¢ is then

CPN =y, — TD; — BN,



Beveridge and Nelson showed that if Ay; has a Wold
representation

Ayy =+ ™ (L)ey
then BN; follows a pure random walk without drift

BNy = BNg 1+ 97 (1)e

t
= BNo+9*(1) ) et
j=1



The derivation of the BN trend relies on the following
algebraic result.

Let (L) = S22 o ¥ L* with 199 = 1. Then
(L) = (1) + (1 — L)y(L),
Y(1) = i Vs
k=0
(L) = i}&jﬂ, Y = Z V-
iz

—]‘|‘1

In addition, if >27° 4 k|y;| < oo (1-summability) then
> 520 11| < co. 1-summability is satisfied by all covari-
ance stationary ARMA(p,q) processes.

For an algebraic proof, see Hamilton (1993) pages 534
and 535.



Derivation of BN decomposition

Consider the Wold representation for Ay;. By recursive
substitution

t
yt =yo+ 0t + 9 (L) > €
j=1

Applying the decomposition ¥*(L) = ¥*(1) + (1 —
L)Y(L) gives

t
v = yo+ot+ (¥ )+ -L) (L) Y ¢
j=1

¢

= yo+ot+¢*(1) > ej+& — &
=1

= TDt+T5¢+ Cy

where

TDy = yog—+ ot

t
TS = Zo+vY*(1) > e
j=1
Cy = & — &g

& = ¢ (L)ey



To show that *(1) 2321 ej is the BN trend, consider
the series at time t + h

t+h

Yerh = Yo+ O0(t+h) +¢*(1) Y e+ Epyp
=1

The forecast of y; 1 at time t is

t
Yerht = Yo +0(t + ) + " (1) D &5 + Eqpe
J=1
The limiting forecast as horizon goes to infinity, adjusted
for mean growth, is

t
lim (yt+hlt B 5h) = Yo+ ot+ %D*(l)]; %5 M Sl

t
= yo+ 0t +¢"(1) D ¢
J=1

= TD;+ BN

as limy,_, gt+h|t — 0 since €4,p Is a mean-zero sta-
tionary process.



Example: BN decomposition from MA(1) process for
Ay (Stock and Watson, 1987)

Let v+ = In(rgdpt). Using postwar quarterly data from
1947:11-1985:1V, Stock and Watson fit the following MA(1)
model to the growth rate of real gdp:

Ay; = 0.008+¢;+0.3e4_1, et ~ 4id(0, %), & = 0.0106

For the MA(1) model, the Wold representation for Ay
has the simple form

Ay = §+Y*(L)ey
Y*(L) = 14+iL, ¥ =0.03

Straightforward calculations give
YPp*(1) = 1+4] =1.03
oo
Yo = — Y. U)=—yi=-003
j=1

@)
- > ¥;=0,j=12...
j=k+1

~ %k
V;



The trend-cycle decomposition of y; using the BN de-
composition becomes

t
yr = (yo+0t) +4*(1) Y& +&
j=1

t
yo +0.008t + 1.3 Y &, — 0.3¢
j=1

so that

TDy = yo+ 0.008t
t

BNy = 13) ¢
j=1

Cy = —0.3¢¢

Note that g—'gz — 1 and 8(%4;:3 — 1.3 for s > 0.

Remark: In the BN decomposition, 1.3¢; is the shock
to the trend and —0.3¢¢ is the shock to the cycle. It
Is tempting to conclude that the BN decomposition as-
sumes that the trend and cycle shocks are perfectly neg-
atively correlated. This is incorrect because €4 only has
the interpretation as a forecasting error.



The naive computation of the BN decomposition requires

the following steps:
1. Estimation of ARMA(p,q) model for Ay,

2. Estimation of 1)* (1) from estimated ARMA(p,q) model
for Ay

3. Estimation of 2321 g; using residuals from estimated
ARMA(p,q) model for Ay,



Example: BN decomposition from ARMA(2,2) model for
Ay

Morley, Nelson and Zivot (2003) fit the following ARMA(2,2)
model to the growth rate of postwar quarterly real GDP
over the period 1947:1 - 1998:lI

Ay; = 0.816 + 1.342Ay;_1 — 0.706 Ay _»
+2&; — 1.0548,_1 + 0.5198;_»

#(L) = 1—1.342L + 0.706L°,

0(L) = 1—1.054L + 0.519L°

To compute an estimate of 1™ (1) from the ARMA(p,q)
model, solve for the wold representation

$(L)Ay: = O(L)et
= Ay = ¢(L)10(L)er = ¢v*(L)es

where ¥*(L) = ¢(L)~16(L). Therefore,

¥* (1) = ¢(1)716(1)



The estimate of ¥* (1) from the ARMA(2,2) model is

1 —1.054 + 0.519

¥ (1) = =
1—1.342 4 0.706

The estimate of the permanent component is then

1.276

12
TDt+ BNt = yo + 0.816t 4+ 1.276 > &,
j=1



Example: BN decomposition from AR(1) process for
Ayy

From the formula for the h—step ahead forecast for yy,
it is easy to analytically compute the BN trend for y:

TDi+BN; = lim (Y1-nje — ho)

h
_ - h
= yi+ (Ayr — 9) hlmoogqb

= Y+ %(Aw —0)

since
lim thph = iqsh—l:L—l
h— o0 1 s—0 1-0¢
_ _?
l1—¢
The cycle component is then

CPN = y,—TDy— BN

= T



Morley (2002) shows how the BN decomposition for an
AR(1) model for Ay; may be extended to any model
for Ays that can be represented in state space form. In
particular, suppose Ay; — p is a linear combination of
the elements of the m X 1 state vector oy :

Ayt—uz[Z1 Zp - Zm}at

where z; (1 = 1,...,m) is the weight of the ith element
of a4 in determining Ay — . Suppose further that

ar = Tay_1 + 1, My ~iid N(0,Q),

such that all of the eigenvalues of T have modulus less
than unity, and T is invertible. Then, Morley shows that

T'Di+ BNy = yi+ { Z1 29 -+ Zm } T(Im—T)_lat|t
CPN = y,—TDy— BN

where gy denotes the filtered estimate of ay from the
Kalman filter recursions.



The Orthogonal Unobserved Components (UC) Model

The basic idea behind the UC model is to give struc-
tural equations for the components on the trend-cycle

decomposition. For example, Watson (1986) considered
UC-ARIMA models of the form

yr = pp+ Gy
pe = o+ py_y+er, g ~ 4d(0,07)
o(L)Cr = O(L)ng, ny ~ 1d(0, 0727)
¢(L) = 1—¢1L—---—¢,LF
O(L) = 1+601L+ -+ 0qL1



Identification:

1. The parameters of the UC model are not identified
without further restrictions.

2. Restrictions commonly used in practice to identify all
of the parameters are: (1) the roots of ¢(z) = 0 are out-
side the unit circle; (2) 6(L) = 1, and (3) cov(et, ;) =
0. These restrictions identify C} as a transitory autore-
gressive “cyclical’ component, and p; as the permanent
trend component.

3. The restriction cov(e¢, ;) = 0O states that shocks to
C't and p; are uncorrelated. As shown in Morley, Nel-
son and Zivot (2003), for certain models the assumption
that cov(e¢, ;) = O turns out to be an over-identifying
restriction.



Example: Clark's (1986) JPE Model

Clark considered the UC-ARIMA(2,0) model

yr = e+ Ch

e = a1 +eg, g ~iid N(0,02)

Ct = $101-1+ $2Ci2 + 1,y ~ iid N(0, 7))
cov(et,my) = 0

State Space Representation 1

Define oy = (4, Ct, Cy_1)’. Then the transition equa-

tion Is
it 1 0 0 -1
C = |10 ¢1 ¢ Ci—1
Ci_1 O 1 O Cy_»o
1 O
o 1) (5)
O' 0
Q= O 0%



The measurement is

227
Yt = (17 17 O) Ct
Cy—1

Notice that

a1t = Mg~ (1)

ay; = (Cy,Ci—1) ~ I(0)
As a result, the distribution of the initial state vector
ag = (ug, Co, C—_1)" cannot be determined in the usual
way. This is because, a1 g does not have a simple station-
ary unconditional distribution. Since var(u;) = pg+o2-
t, the usual approach is to assume

ajo = 0
var(alg) = K - 10°

The distribution for arp o may be based on its uncondi-
tional stationary distribution. Therefore, the initial state
distribution is characterized by

3.0:0

k-10% 0
PO_( 0 P2>



State Space Representation 2

Since y; ~ I(1), consider the transformed model

Ay = Apy+ AC
= a+ AC: + &4

Define ay = (Cy, Cy_1)’. Then the transition equation

(S=(re) (&) + ()

The corresponding measurement equation is

IS

Ayt = (1 —1 )+ ey

Since a; is covariance stationary, the distribution of the
initial state vector ag may be determined in the usual
way.



Proposition: Any UC-ARIMA model with a specified
correlation between ¢ and 7); is observationally equiva-
lent to an ARMA model for Ay; with nonlinear restric-

tions on the parameters. The restricted ARMA model for
Ay is called the reduced form of the UC-ARIMA model.

Proposition: (Lippi and Reichlin (1992) JME) ¢*(1)
computed from the reduced form ARMA model for Ay

based on a UC-ARIMA model for 1 is always less than
1.



Example: Random walk plus noise model

Consider the random walk plus noise model

Yt = Mg+ Mg Mg iid(O,O%)
pe = pe_1+ et & ~ iid(0,07)

o2

q = —Z — signal-to-noise ratio
on

1 and ¢ are independent

The reduced form ARMA model for Ay is

Ayt = ADpy + Any =+ 1 — Mp—1-

Claim: Ay, follows an ARMA(0,1) process. To see this,
consider the autocovariances of Ayy :

¥ = var(Ay) = var(es +n; —n-1) = og + 207,
on(q+2)

vl = cov(Ayt, Ay;_1)
= FEl(et +n — m—1)(Et—1 +m—1 — M1—2)]
2
= —0

n
v; = 0,j>1



The autocovariances for Ay; are the same as the autoco-
variances for an ARMA(0,1) model, and so Ay has the
representation

Ays = st + 05,1, st ~ iid(0, 2)
where the ARMA(0,1) parameters 6 and Ug are nonlin-

early related to the UC-ARIMA parameters 0727 and ag,

and the error term ¢+ encompasses the structural shocks
1 and e¢.



Identification of structural parameters

1. The reduced form ARMA(0,1) model has two para-
meters 6 and ag

2. The structural random walk plus noise model also has
2

two parameters oz and 0727.
3. Since the reduced form and structural models have
the same number of parameters the order condition for

Identification is satisfied.

4. If e¢ and n; were allowed to be correlated then there
would be three structural parameters (two variances and
a covariance) and only two reduced form parameters, and
the order condition for identification would not be satis-
fied. Hence, setting cov(et,m;) = 0 is an identifying
restriction in this model.



The mapping from UC-ARIMA parameters to the reduced
form parameters is determined as follows. The first order
autocorrelation for the reduced form ARMA(0,1) is

. 0
P1 — 11 02
and for the UC-ARIMA it is
o1 1
pl - *
Y0 q+2

Setting p] = p1 and solving for 0 gives

9:—<q+2>ig(q+2>2—4

The invertible solution is

9_—(q+2)+\/q2+4q -0

2




Remarks:

1. Notice that the MA coefficient 6 for the reduced form
ARMA(0,1) model is restricted to be negative.

2. If g =0, then & = —1. Similarly, matching variances
for the two models gives
2
2 %0
S -0
3. Since 6 < 0, it follows that

P (1) =146 < 1.



