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Time Series Concepts

3.1 Introduction

This chapter provides background material on time series concepts that
are used throughout the book. These concepts are presented in an informal
way, and extensive examples using S-PLUS are used to build intuition. Sec-
tion 3.2 discusses time series concepts for stationary and ergodic univariate
time series. Topics include testing for white noise, linear and autoregressive
moving average (ARMA) process, estimation and forecasting from ARMA
models, and long-run variance estimation. Section 3.3 introduces univariate
nonstationary time series and defines the important concepts of I(0) and
I(1) time series. Section 3.4 explains univariate long memory time series.
Section 3.5 covers concepts for stationary and ergodic multivariate time
series, introduces the class of vector autoregression models, and discusses
long-run variance estimation.
Rigorous treatments of the time series concepts presented in this chapter

can be found in Fuller (1996) and Hamilton (1994). Applications of these
concepts to financial time series are provided by Campbell, Lo and MacKin-
lay (1997), Mills (1999), Gourieroux and Jasiak (2001), Tsay (2001), Alexan-
der (2001) and Chan (2002).
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3.2 Univariate Time Series

3.2.1 Stationary and Ergodic Time Series

Let {yt} = {. . . yt−1, yt, yt+1, . . .} denote a sequence of random variables
indexed by some time subscript t. Call such a sequence of random variables
a time series.
The time series {yt} is covariance stationary if

E[yt] = µ for all t

cov(yt, yt−j) = E[(yt − µ)(yt−j − µ)] = γj for all t and any j

For brevity, call a covariance stationary time series simply a stationary
time series. Stationary time series have time invariant first and second
moments. The parameter γj is called the j

th order or lag j autocovariance
of {yt} and a plot of γj against j is called the autocovariance function. The
autocorrelations of {yt} are defined by

ρj =
cov(yt, yt−j)p
var(yt)var(yt−j)

=
γj
γ0

and a plot of ρj against j is called the autocorrelation function (ACF).
Intuitively, a stationary time series is defined by its mean, variance and
ACF. A useful result is that any function of a stationary time series is also
a stationary time series. So if {yt} is stationary then {zt} = {g(yt)} is
stationary for any function g(·).
The lag j sample autocovariance and lag j sample autocorrelation are

defined as

γ̂j =
1

T

TX
t=j+1

(yt − ȳ)(yt−j − ȳ) (3.1)

ρ̂j =
γ̂j
γ̂0

(3.2)

where ȳ = 1
T

PT
t=1 yt is the sample mean. The sample ACF (SACF) is a

plot of ρ̂j against j.
A stationary time series {yt} is ergodic if sample moments converge in

probability to population moments; i.e. if ȳ
p→ µ, γ̂j

p→ γj and ρ̂j
p→ ρj .

Example 1 Gaussian white noise (GWN) processes

Perhaps the most simple stationary time series is the independent Gaus-
sian white noise process yt ∼ iid N(0, σ2) ≡ GWN(0, σ2). This process
has µ = γj = ρj = 0 (j 6= 0). To simulate a GWN(0, 1) process in S-PLUS
use the rnorm function:
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FIGURE 3.1. Simulated Gaussian white noise process and SACF.

> set.seed(101)

> y = rnorm(100,sd=1)

To compute the sample moments ȳ, γ̂j , ρ̂j (j = 1, . . . , 10) and plot the
data and SACF use

> y.bar = mean(y)

> g.hat = acf(y,lag.max=10,type="covariance",plot=F)

> r.hat = acf(y,lag.max=10,type="correlation",plot=F)

> par(mfrow=c(1,2))

> tsplot(y,ylab="y")

> acf.plot(r.hat)

By default, as shown in Figure 3.1, the SACF is shown with 95% con-
fidence limits about zero. These limits are based on the result (c.f. Fuller
(1996) pg. 336) that if {yt} ∼ iid (0, σ2) then

ρ̂j
A∼ N

µ
0,
1

T

¶
, j > 0.

The notation ρ̂j
A∼ N

¡
0, 1T

¢
means that the distribution of ρ̂j is approxi-

mated by normal distribution with mean 0 and variance 1
T and is based on

the central limit theorem result
√
T ρ̂j

d→ N (0, 1). The 95% limits about

zero are then ±1.96√
T
.
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FIGURE 3.2. Normal qq-plot for simulated GWN.

Two slightly more general processes are the independent white noise
(IWN) process, yt ∼ IWN(0, σ2), and the white noise (WN) process,
yt ∼ WN(0, σ2). Both processes have mean zero and variance σ2, but
the IWN process has independent increments, whereas the WN process
has uncorrelated increments.

Testing for Normality

In the previous example, yt ∼ GWN(0, 1). There are several statistical
methods that can be used to see if an iid process yt is Gaussian. The most
common is the normal quantile-quantile plot or qq-plot, a scatterplot of the
standardized empirical quantiles of yt against the quantiles of a standard
normal random variable. If yt is normally distributed, then the quantiles
will lie on a 45 degree line. A normal qq-plot with 45 degree line for yt may
be computed using the S-PLUS functions qqnorm and qqline

> qqnorm(y)

> qqline(y)

Figure 3.2 shows the qq-plot for the simulated GWN data of the previous
example. The quantiles lie roughly on a straight line. The S+FinMetrics
function qqPlot may be used to create a Trellis graphics qq-plot.
The qq-plot is an informal graphical diagnostic. Two popular formal

statistical tests for normality are the Shapiro-Wilks test and the Jarque-
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Bera test. The Shapiro-Wilk’s test is a well-known goodness of fit test for
the normal distribution. It is attractive because it has a simple, graphical
interpretation: one can think of it as an approximate measure of the cor-
relation in a normal quantile-quantile plot of the data. The Jarque-Bera
test is based on the result that a normally distributed random variable has
skewness equal to zero and kurtosis equal to three. The Jarque-Bera test
statistic is

JB =
T

6

Ã
[skew

2
+
(dkurt− 3)2

4

!
(3.3)

where [skew denotes the sample skewness and dkurt denotes the sample
kurtosis. Under the null hypothesis that the data is normally distributed

JB
A∼ χ2(2).

Example 2 Testing for normality using the S+FinMetrics function
normalTest

The Shapiro-Wilks and Jarque-Bera statistics may be computed using
the S+FinMetrics function normalTest. For the simulated GWN data of
the previous example, these statistics are

> normalTest(y, method="sw")

Test for Normality: Shapiro-Wilks

Null Hypothesis: data is normally distributed

Test Statistics:

Test Stat 0.9703

p.value 0.1449

Dist. under Null: normal

Total Observ.: 100

> normalTest(y, method="jb")

Test for Normality: Jarque-Bera

Null Hypothesis: data is normally distributed

Test Statistics:

Test Stat 1.8763

p.value 0.3914
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Dist. under Null: chi-square with 2 degrees of freedom

Total Observ.: 100

The null of normality is not rejected using either test.

Testing for White Noise

Consider testing the null hypothesis

H0 : yt ∼WN(0, σ2)

against the alternative that yt is not white noise. Under the null, all of the
autocorrelations ρj for j > 0 are zero. To test this null, Box and Pierce
(1970) suggested the Q-statistic

Q(k) = T
kX

j=1

ρ̂2j (3.4)

where ρ̂j is given by (3.2). Under the null, Q(k) is asymptotically dis-
tributed χ2(k). In a finite sample, the Q-statistic (3.4) may not be well
approximated by the χ2(k). Ljung and Box (1978) suggested the modified
Q-statistic

MQ(k) = T (T + 2)
kX

j=1

ρ̂2j
T − j

(3.5)

which is better approximated by the χ2(k) in finite samples.

Example 3 Daily returns on Microsoft

Consider the time series behavior of daily continuously compounded re-
turns on Microsoft for 2000. The following S-PLUS commands create the
data and produce some diagnostic plots:

> r.msft = getReturns(DowJones30[,"MSFT"],type="continuous")

> r.msft@title = "Daily returns on Microsoft"

> sample.2000 = (positions(r.msft) > timeDate("12/31/1999")

+ & positions(r.msft) < timeDate("1/1/2001"))

> par(mfrow=c(2,2))

> plot(r.msft[sample.2000],ylab="r.msft")

> r.acf = acf(r.msft[sample.2000])

> hist(seriesData(r.msft))

> qqnorm(seriesData(r.msft))

The daily returns on Microsoft resemble a white noise process. The qq-
plot, however, suggests that the tails of the return distribution are fatter
than the normal distribution. Notice that since the hist and qqnorm func-
tions do not have methods for “timeSeries” objects the extractor func-
tion seriesData is required to extract the data frame from the data slot
of r.msft.
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FIGURE 3.3. Daily returns on Microsoft with diagnostic plots.

The S+FinMetrics functions histPlot and qqPlot will produce a his-
togram and qq-plot for a “timeSeries” object using Trellis graphics. For
example,

> histPlot(r.msft,strip.text="MSFT monthly return")

> qqPlot(r.msft,strip.text="MSFT monthly return")

However, Trellis plots cannot be displayed in a multipanel plot created
using par.
The S+FinMetrics function autocorTest may be used to compute the

Q-statistic and modified Q-statistic to test the null that the returns on
Microsoft follow a white noise process:

> autocorTest(r.msft, lag.n=10, method="lb")

Test for Autocorrelation: Ljung-Box

Null Hypothesis: no autocorrelation

Test Statistics:

Test Stat 11.7746

p.value 0.3004

Dist. under Null: chi-square with 10 degrees of freedom
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Total Observ.: 2527

The argument lag.n=10 specifies that k = 10 autocorrelations are used
in computing the statistic, and method="lb" specifies that the modified
Box-Pierce statistic (3.5) be computed. To compute the simple Box-Pierce
statistic, specify method="bp". The results indicate that the white noise
null cannot be rejected.

3.2.2 Linear Processes and ARMA Models

Wold’s decomposition theorem (c.f. Fuller (1996) pg. 96) states that any
covariance stationary time series {yt} has a linear process or infinite order
moving average representation of the form

yt = µ+
∞X
k=0

ψkεt−k (3.6)

ψ0 = 1,
∞X
k=0

ψ2k <∞

εt ∼ WN(0, σ2)

In the Wold form, it can be shown that

E[yt] = µ

γ0 = var(yt) = σ2
∞X
k=0

ψ2k

γj = cov(yt, yt−j) = σ2
∞X
k=0

ψkψk+j

ρj =

P∞
k=0 ψkψk+jP∞

k=0 ψ
2
k

Hence, the pattern of autocorrelations in any stationary and ergodic time
series {yt} is determined by the moving average weights {ψj} in its Wold
representation. To ensure convergence of the linear process representation
to a stationary and ergodic process with nice properties, it is necessary
to further restrict the behavior of the moving average weights {ψj}. A
standard assumption used in the econometrics literature (c.f. Hamilton
(1994) pg. 504) is 1-summability

∞X
j=0

j|ψj | = 1 + 2|ψ2|+ 3|ψ3|+ · · · <∞.

The moving average weights in the Wold form are also called impulse
responses since

∂yt+s
∂εt

= ψs, s = 1, 2, . . .
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For a stationary and ergodic time series lims→∞ ψs = 0 and the long-run
cumulative impulse response

P∞
s=0 ψs <∞. A plot of ψs against s is called

the impulse response function (IRF).
The general Wold form of a stationary and ergodic time series is handy

for theoretical analysis but is not practically useful for estimation purposes.
A very rich and practically useful class of stationary and ergodic processes is
the autoregressive-moving average (ARMA) class of models made popular
by Box and Jenkins (1976). ARMA(p, q) models take the form of a pth
order stochastic difference equation

yt − µ = φ1(yt−1 − µ) + · · ·+ φp(yt−p − µ) (3.7)

+εt + θ1εt−1 + · · ·+ θqεt−q
εt ∼ WN(0, σ2)

ARMA(p, q) models may be thought of as parsimonious approximations
to the general Wold form of a stationary and ergodic time series. More
information on the properties of ARMA(p, q) process and the procedures
for estimating and forecasting these processes using S-PLUS are in the S-
PLUS Guide to Statistics Vol. II, chapter 27, Venables and Ripley (1999)
chapter 13, and Meeker (2001)1.

Lag Operator Notation

The presentation of time series models is simplified using lag operator no-
tation. The lag operator L is defined such that for any time series {yt},
Lyt = yt−1. The lag operator has the following properties: L2yt = L ·Lyt =
yt−2, L0 = 1 and L−1yt = yt+1. The operator ∆ = 1 − L creates the first
difference of a time series: ∆yt = (1 − L)yt = yt − yt−1. The ARMA(p, q)
model (3.7) may be compactly expressed using lag polynomials. Define
φ(L) = 1− φ1L− · · ·− φpL

p and θ(L) = 1 + θ1L+ · · ·+ θqL
q. Then (3.7)

may be expressed as

φ(L)(yt − µ) = θ(L)εt

Similarly, the Wold representation in lag operator notation is

yt = µ+ ψ(L)εt

ψ(L) =
∞X
k=0

ψkL
k, ψ0 = 1

and the long-run cumulative impulse response is ψ(1) (i.e. evaluate ψ(L)
at L = 1). With ARMA(p, q) models the Wold polynomial ψ(L) is approx-

1William Meeker also has a library of time series functions for the analysis of
ARMA models available for download at
http://www.public.iastate.edu/~stat451/splusts/splusts.html.
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imated by the ratio of the AR and MA polynomials

ψ(L) =
θ(L)

φ(L)

3.2.3 Autoregressive Models

AR(1) Model

A commonly used stationary and ergodic time series in financial modeling
is the AR(1) process

yt − µ = φ(yt−1 − µ) + εt, t = 1, . . . , T

where εt ∼WN(0, σ2) and |φ| < 1. The above representation is called the
mean-adjusted form. The characteristic equation for the AR(1) is

φ(z) = 1− φz = 0 (3.8)

so that the root is z = 1
φ . Stationarity is satisfied provided the absolute

value of the root of the characteristic equation (3.8) is greater than one:

| 1φ | > 1 or |φ| < 1. In this case, it is easy to show that E[yt] = µ, γ0 =
σ2

1−φ2 ,
ψj = ρj = φj and the Wold representation is

yt = µ+
∞X
j=0

ρjεt−j .

Notice that for the AR(1) the ACF and IRF are identical. This is not true
in general. The long-run cumulative impulse response is ψ(1) = 1

1−φ .
The AR(1) model may be re-written in components form as

yt = µ+ ut

ut = φut−1 + εt

or in autoregression form as

yt = c+ φyt−1 + εt

c = µ(1− φ)

An AR(1) with µ = 1, φ = 0.75, σ2 = 1 and T = 100 is easily simulated
in S-PLUS using the components form:

> set.seed(101)

> e = rnorm(100,sd=1)

> e.start = rnorm(25,sd=1)

> y.ar1 = 1 + arima.sim(model=list(ar=0.75), n=100,
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FIGURE 3.4. Simulated AR(1), ACF, IRF and SACF.

+ innov=e, start.innov=e.start)

> mean(y.ar1)

[1] 1.271

> var(y.ar1)

[1] 2.201

The ACF and IRF may be computed as

> gamma.j = rep(0.75,10)^seq(10)

The simulated data, ACF and SACF are illustrated in Figure 3.4 using

> par(mfrow=c(2,2))

> tsplot(y.ar1,main="Simulated AR(1)")

> abline(h=1)

> tsplot(gamma.j, type="h", main="ACF and IRF for AR(1)",

+ ylab="Autocorrelation", xlab="lag")

> tmp = acf(y.ar1, lag.max=10)

Notice that {yt} exhibits mean-reverting behavior. That is, {yt} fluctuates
about the mean value µ = 1. The ACF and IRF decay at a geometric rate.
The decay rate of the IRF is sometimes reported as a half-life — the lag
jhalf at which the IRF reaches 12 . For the AR(1) with positive φ, it can be
shown that jhalf = ln(0.5)/ ln(φ). For φ = 0.75, the half-life is

> log(0.5)/log(0.75)
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FIGURE 3.5. US/CA 30 day interest rate differential and SACF.

[1] 2.409

Many economic and financial time series are well characterized by an
AR(1) process. Leading examples in finance are valuation ratios (dividend-
price ratio, price-earning ratio etc), real exchange rates, interest rates,
and interest rate differentials (spreads). To illustrate, consider the 30-
day US/CA interest rate differential2 constructed from the S+FinMetrics
“timeSeries” object lexrates.dat:

> uscn.id = 100*(lexrates.dat[,"USCNF"]-

+ lexrates.dat[,"USCNS"])

> colIds(uscn.id) = "USCNID"

> uscn.id@title = "US/CA 30 day interest rate differential"

> par(mfrow=c(2,1))

> plot(uscn.id,reference.grid=F)

> abline(h=0)

> tmp = acf(uscn.id)

The interest rate differential is clearly persistent: autocorrelations are
significant at the 5% level up to 15 months.

2By covered interest rate parity, the nominal interest rate differential between risk
free bonds from two countries is equal to the difference between the nominal forward
and spot exchange rates.
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AR(p) Models

The AR(p) model in mean-adjusted form is

yt − µ = φ1(yt−1 − µ) + · · ·+ φp(yt−p − µ) + εt

or, in lag operator notation,

φ(L)(yt − µ) = εt

where φ(L) = 1− φ1L− · · ·− φpL
p. The autoregressive form is

φ(L)yt = c+ εt.

It can be shown that the AR(p) is stationary and ergodic provided the
roots of the characteristic equation

φ(z) = 1− φ1z − φ2z
2 − · · ·− φpz

p = 0 (3.9)

lie outside the complex unit circle (have modulus greater than one). A
necessary condition for stationarity that is useful in practice is that |φ1 +
· · · + φp| < 1. If (3.9) has complex roots then yt will exhibit sinusoidal
behavior. In the stationary AR(p), the constant in the autoregressive form
is equal to µ(1− φ1 − · · ·− φp).
The moments of the AR(p) process satisfy the Yule-Walker equations

γ0 = φ1γ1 + φ2γ2 + · · ·+ φpγp + σ2 (3.10)

γj = φ1γj−1 + φ2γj−2 + · · ·+ φpγj−p

A simple recursive algorithm for finding the Wold representation is based
on matching coefficients in φ(L) and ψ(L) such that φ(L)ψ(L) = 1. For
example, in the AR(2) model

(1− φ1L− φ2L
2)(1 + ψ1L+ ψ2L

2 + · · · ) = 1
implies

ψ1 = 1

ψ2 = φ1ψ1 + φ2

ψ3 = φ1ψ2 + φ2ψ1
...

ψj = φ1ψj−1 + φ2ψj−2

Partial Autocorrelation Function

The partial autocorrelation function (PACF) is a useful tool to help iden-
tify AR(p) models. The PACF is based on estimating the sequence of AR



70 3. Time Series Concepts

Lag

AC
F

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Series : irate.real
Monthly Real Interest Rate

1965 1970 1975 1980 1985 1990 1995 2000

-0
.0

04
0.

00
0

0.
00

4

Lag

Pa
rti

al
 A

C
F

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

 Series : irate.real

FIGURE 3.6. Monthly U.S. real interest rate, SACF and SPACF.

models

zt = φ11zt−1 + ε1t

zt = φ21zt−1 + φ22zt−2 + ε2t
...

zt = φp1zt−1 + φp2zt−2 + · · ·+ φppzt−p + εpt

where zt = yt−µ is the demeaned data. The coefficients φjj for j = 1, . . . , p
(i.e., the last coefficients in each AR(p) model) are called the partial auto-
correlation coefficients. In an AR(1) model the first partial autocorrelation
coefficient φ11 is non-zero, and the remaining partial autocorrelation coef-
ficients φjj for j > 1 are equal to zero. Similarly, in an AR(2), the first
and second partial autocorrelation coefficients φ11 and φ22 are non-zero
and the rest are zero for j > 2. For an AR(p) all of the first p partial
autocorrelation coefficients are non-zero, and the rest are zero for j > p.
The sample partial autocorrelation coefficients up to lag p are essentially
obtained by estimating the above sequence of p AR models by least squares
and retaining the estimated coefficients φ̂jj .

Example 4 Monthly real interest rates
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The “timeSeries” object varex.ts in the S+FinMetrics module con-
tains monthly data on real stock returns, real interest rates, inflation and
real output growth.

> colIds(varex.ts)

[1] "MARKET.REAL" "RF.REAL" "INF" "IPG"

Figure 3.6 shows the real interest rate, RF.REAL, over the period January
1961 through December 2000 produced with the S-PLUS commands

> smpl = (positions(varex.ts) > timeDate("12/31/1960"))

> irate.real = varex.ts[smpl,"RF.REAL"]

> par(mfrow=c(2,2))

> acf.plot(acf(irate.real, plot=F))

> plot(irate.real, main="Monthly Real Interest Rate")

> tmp = acf(irate.real, type="partial")

The SACF and SPACF indicate that the real interest rate might be modeled
as an AR(2) or AR(3) process.

3.2.4 Moving Average Models

MA(1) Model

The MA(1) model has the form

yt = µ+ εt + θεt−1, εt ∼WN(0, σ2)

For any finite θ the MA(1) is stationary and ergodic. The moments are
E[yt] = µ, γ0 = σ2(1+θ2), γ1 = σ2θ, γj = 0 for j > 1 and ρ1 = θ/(1+θ2).
Hence, the ACF of an MA(1) process cuts off at lag one, and the maximum
value of this correlation is ±0.5.
There is an identification problem with the MA(1) model since θ = 1/θ

produce the same value of ρ1. The MA(1) is called invertible if |θ| < 1 and
is called non-invertible if |θ| ≥ 1. In the invertible MA(1), the error term
εt has an infinite order AR representation of the form

εt =
∞X
j=0

θ∗j(yt−j − µ)

where θ∗ = −θ so that εt may be thought of as a prediction error based on
past values of yt. A consequence of the above result is that the PACF for
an invertible MA(1) process decays towards zero at an exponential rate.

Example 5 Signal plus noise model
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Signal plus noise
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FIGURE 3.7. Simulated data, SACF and SPACF from signal plus noise model.

MA(1) models often arise through data transformations like aggregation
and differencing3. For example, consider the signal plus noise model

yt = zt + εt, εt ∼WN(0, σ2ε)

zt = zt−1 + ηt, ηt ∼WN(0, σ2η)

where εt and ηt are independent. For example, zt could represent the funda-
mental value of an asset price and εt could represent an iid deviation about
the fundamental price. A stationary representation requires differencing yt:

∆yt = ηt + εt − εt−1

It can be shown, e.g. Harvey (1993), that ∆yt is an MA(1) process with θ =
−(q+2)+

√
q2+4q

2 where q =
σ2η
σ2ε
is the signal-to-noise ratio and ρ1 =

−1
q+2 < 0.

Simulated data with σ2ε = 1 and σ2η = (0.5)2 created with the S-PLUS
commands

> set.seed(112)

> eps = rnorm(100,sd=1)

> eta = rnorm(100,sd=0.5)

3MA(1) type models for asset returns often occur as the result of no-trading effects
or bid-ask bounce effects. See Campbell, Lo and MacKinlay (1997) chapter 3 for details.
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> z = cumsum(eta)

> y = z + eps

> dy = diff(y)

> par(mfrow=c(2,2))

> tsplot(y, main="Signal plus noise",ylab="y")

> tsplot(dy, main="1st difference",ylab="dy")

> tmp = acf(dy)

> tmp = acf(dy,type="partial")

are illustrated in Figure 3.7. The signal-to-noise ratio q = 0.25 implies a
first lag autocorrelation of ρ1 = −0.444. This negative correlation is clearly
reflected in the SACF.

MA(q) Model

The MA(q) model has the form

yt = µ+ εt + θ1εt−1 + · · ·+ θqεt−q, where εt ∼WN(0, σ2)

The MA(q) model is stationary and ergodic provided θ1, . . . , θq are finite.
It is invertible if all of the roots of the MA characteristic polynomial

θ(z) = 1 + θ1z + · · · θqzq = 0 (3.11)

lie outside the complex unit circle. The moments of the MA(q) are

E[yt] = µ

γ0 = σ2(1 + θ21 + · · ·+ θ2q)

γj =

½
(θj + θj+1θ1 + θj+2θ2 + · · ·+ θqθq−j)σ2 for j = 1, 2, . . . , q

0 for j > q

Hence, the ACF of an MA(q) is non-zero up to lag q and is zero afterwards.
As with the MA(1), the PACF for an invertible MA(q) will show exponen-
tial decay and possibly pseudo cyclical behavior if the roots of (3.11) are
complex.

Example 6 Overlapping returns and MA(q) models

MA(q) models often arise in finance through data aggregation trans-
formations. For example, let Rt = ln(Pt/Pt−1) denote the monthly con-
tinuously compounded return on an asset with price Pt. Define the an-
nual return at time t using monthly returns as Rt(12) = ln(Pt/Pt−12) =P11

j=0Rt−j. Suppose Rt ∼ WN(µ, σ2) and consider a sample of monthly
returns of size T , {R1, R2, . . . , RT }. A sample of annual returns may be cre-
ated using overlapping or non-overlapping returns. Let {R12(12), R13(12),
. . . , RT (12)} denote a sample of T ∗ = T − 11 monthly overlapping annual
returns and {R12(12), R24(12), . . . , RT (12)} denote a sample of T/12 non-
overlapping annual returns. Researchers often use overlapping returns in
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analysis due to the apparent larger sample size. One must be careful using
overlapping returns because the monthly annual return sequence {Rt(12)}
is not a white noise process even if the monthly return sequence {Rt} is.
To see this, straightforward calculations give

E[Rt(12)] = 12µ

γ0 = var(Rt(12)) = 12σ
2

γj = cov(Rt(12), Rt−j(12)) = (12− j)σ2 for j < 12

γj = 0 for j ≥ 12
Since γj = 0 for j ≥ 12 notice that {Rt(12)} behaves like an MA(11)
process

Rt(12) = 12µ+ εt + θ1εt−1 + · · ·+ θ11εt−11
εt ∼ WN(0, σ2)

To illustrate, consider creating annual overlapping continuously com-
pounded returns on the S&P 500 index over the period February 1990
through January 2001. The S+FinMetrics “timeSeries” singleIndex.dat
contains the S&P 500 price data and the continuously compounded monthly
returns are computed using the S+FinMetrics function getReturns

> sp500.mret = getReturns(singleIndex.dat[,"SP500"],

+ type="continuous")

> sp500.mret@title = "Monthly returns on S&P 500 Index"

The monthly overlapping annual returns are easily computed using the
S-PLUS function aggregateSeries

> sp500.aret = aggregateSeries(sp500.mret,moving=12,FUN=sum)

> sp500.aret@title = "Monthly Annual returns on S&P 500 Index"

The optional argument moving=12 specifies that the sum function is to
be applied to moving blocks of size 12. The data together with the SACF
and SPACF of the monthly annual returns are displayed in Figure 3.8.
The SACF has non-zero values up to lag 11. Interestingly, the SPACF is

very small at all lags except the first.

3.2.5 ARMA(p,q) Models

The general ARMA(p, q) model in mean-adjusted form is given by (3.7).
The regression formulation is

yt = c+ φ1yt−1 + · · ·+ φpyt−p + εt + θεt−1 + · · ·+ θεt−q (3.12)

It is stationary and ergodic if the roots of the characteristic equation φ(z) =
0 lie outside the complex unit circle, and it is invertible if the roots of the
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FIGURE 3.8. Monthly non-overlapping and overlapping annual returns on the
S&P 500 index.

MA characteristic polynomial θ(z) = 0 lie outside the unit circle. It is
assumed that the polynomials φ(z) = 0 and θ(z) = 0 do not have canceling
or common factors. A stationary and ergodic ARMA(p, q) process has a
mean equal to

µ =
c

1− φ1 − · · ·− φp
(3.13)

and its autocovariances, autocorrelations and impulse response weights sat-
isfy the recursive relationships

γj = φ1γj−1 + φ2γj−2 + · · ·+ φpγj−p
ρj = φ1ρj−1 + φ2ρj−2 + · · ·+ φpρj−p
ψj = φ1ψj−1 + φ2ψj−2 + · · ·+ φpψj−p

The general form of the ACF for an ARMA(p, q) process is complicated.
See Hamilton (1994) chapter five for details. In general, for an ARMA(p, q)
process, the ACF behaves like the ACF for an AR(p) process for p > q, and
the PACF behaves like the PACF for an MA(q) process for q > p. Hence,
both the ACF and PACF eventually show exponential decay.
ARMA(p, q) models often arise from certain aggregation transforma-

tions of simple time series models. An important result due to Granger
and Morris (1976) is that if y1t is an ARMA(p1, q1) process and y2t is
an ARMA(p2, q2) process, which may be contemporaneously correlated
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with y1t, then y1t + y2t is an ARMA(p, q) process with p = p1 + p2 and
q = max(p1 + q2, q1 + p2). For example, if y1t is an AR(1) process and y2
is a AR(1) process, then y1 + y2 is an ARMA(2,1) process.
High order ARMA(p, q) processes are difficult to identify and estimate

in practice and are rarely used in the analysis of financial data. Low order
ARMA(p, q) models with p and q less than three are generally sufficient for
the analysis of financial data.

ARIMA(p, d, q) Models

The specification of the ARMA(p, q) model (3.7) assumes that yt is station-
ary and ergodic. If yt is a trending variable like an asset price or a macroeco-
nomic aggregate like real GDP, then yt must be transformed to stationary
form by eliminating the trend. Box and Jenkins (1976) advocate removal of
trends by differencing. Let∆ = 1−L denote the difference operator. If there
is a linear trend in yt then the first difference ∆yt = yt−yt−1 will not have
a trend. If there is a quadratic trend in yt, then ∆yt will contain a linear
trend but the second difference ∆2yt = (1− 2L+L2)yt = yt− 2yt−1+yt−2
will not have a trend. The class of ARMA(p, q) models where the trends
have been transformed by differencing d times is denoted ARIMA(p, d, q)4.

3.2.6 Estimation of ARMA Models and Forecasting

ARMA(p, q) models are generally estimated using the technique of maxi-
mum likelihood, which is usually accomplished by putting the ARMA(p, q)
in state-space form from which the prediction error decomposition of the
log-likelihood function may be constructed. Details of this process are given
in Harvey (1993). An often ignored aspect of the maximum likelihood es-
timation of ARMA(p, q) models is the treatment of initial values. These
initial values are the first p values of yt and q values of εt in (3.7). The ex-
act likelihood utilizes the stationary distribution of the initial values in the
construction of the likelihood. The conditional likelihood treats the p initial
values of yt as fixed and often sets the q initial values of εt to zero. The exact
maximum likelihood estimates (MLEs) maximize the exact log-likelihood,
and the conditional MLEs maximize the conditional log-likelihood. The
exact and conditional MLEs are asymptotically equivalent but can differ
substantially in small samples, especially for models that are close to being
nonstationary or noninvertible.5

4More general ARIMA(p, d, q) models allowing for seasonality are discussed in chapter
27 of the S-PLUS Guide to Statistics, Vol. II.

5As pointed out by Venables and Ripley (1999) page 415, the maximum likelihood
estimates computed using the S-PLUS function arima.mle are conditional MLEs. Exact
MLEs may be easily computed using the S+FinMetrics state space modeling functions.
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For pure AR models, the conditional MLEs are equivalent to the least
squares estimates from the model

yt = c+ φ1yt−1 + · · ·+ φpyt−p + εt (3.14)

Notice, however, that c in (3.14) is not an estimate of E[yt] = µ. The least
squares estimate of µ is given by plugging in the least squares estimates of
c, φ1, . . . , φp into (3.13).

Model Selection Criteria

Before an ARMA(p, q) may be estimated for a time series yt, the AR and
MA orders p and q must be determined by visually inspecting the SACF
and SPACF for yt. Alternatively, statistical model selection criteria may
be used. The idea is to fit all ARMA(p, q) models with orders p ≤ pmax and
q ≤ qmax and choose the values of p and q which minimizes some model
selection criteria. Model selection criteria for ARMA(p, q) models have the
form

MSC(p, q) = ln(σ̃2(p, q)) + cT · ϕ(p, q)

where σ̃2(p, q) is the MLE of var(εt) = σ2 without a degrees of freedom cor-
rection from the ARMA(p, q) model, cT is a sequence indexed by the sample
size T , and ϕ(p, q) is a penalty function which penalizes large ARMA(p, q)
models. The two most common information criteria are the Akaike (AIC)
and Schwarz-Bayesian (BIC):

AIC(p, q) = ln(σ̃2(p, q)) +
2

T
(p+ q)

BIC(p, q) = ln(σ̃2(p, q)) +
lnT

T
(p+ q)

The AIC criterion asymptotically overestimates the order with positive
probability, whereas the BIC estimate the order consistently under fairly
general conditions if the true orders p and q are less than or equal to pmax
and qmax. However, in finite samples the BIC generally shares no particular
advantage over the AIC.

Forecasting Algorithm

Forecasts from an ARIMA(p, d, q) model are straightforward. The model
is put in state space form, and optimal h-step ahead forecasts along with
forecast standard errors (not adjusted for parameter uncertainty) are pro-
duced using the Kalman filter algorithm. Details of the method are given
in Harvey (1993).
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Estimation and Forecasting ARIMA(p, d, q) Models Using the S-PLUS
Function arima.mle

Conditional MLEs may be computed using the S-PLUS function arima.mle.
The form of the ARIMA(p, d, q) assumed by arima.mle is

yt = φ1yt−1 + · · ·+ φpyt−p
+εt − θ1εt−1 − · · ·− θqεt−q
+β0xt

where xt represents additional explanatory variables. It is assumed that
yt has been differenced d times to remove any trends and that the uncon-
ditional mean µ has been subtracted out so that yt is demeaned. Notice
that arima.mle assumes that the signs on the MA coefficients θj are the
opposite to those in (3.7).
The arguments expected by arima.mle are

> args(arima.mle)

function(x, model = NULL, n.cond = 0, xreg = NULL, ...)

where x is a univariate “timeSeries” or vector, model is a list ob-
ject describing the specification of the ARMA model, n.cond sets the
number of initial observations on which to condition in the formation of
the log-likelihood, and xreg is a “timeSeries”, vector or matrix of ad-
ditional explanatory variables. By default, arima.mle assumes that the
ARIMA(p, d, q) model is stationary and in mean-adjusted form with an es-
timate of µ subtracted from the observed data yt. To estimate the regression
form (3.12) of the ARIMA(p, q) model, simply set xreg=1. ARIMA(p, d, q)
models are specified using list variables the form

> mod.list = list(order=c(1,0,1))

> mod.list = list(order=c(1,0,1),ar=0.75,ma=0)

> mod.list = list(ar=c(0.75,-0.25),ma=c(0,0))

The first list simply specifies an ARMA(1,0,1)/ARMA(1,1) model. The
second list specifies an ARIMA(1,0,1) as well as starting values for the
AR and MA parameters φ and θ. The third list implicitly determines an
ARMA(2,2) model by giving the starting values for the AR and MA pa-
rameters. The function arima.mle produces an object of class “arima” for
which there are print and plot methods. Diagnostics from the fit can
be created with the S-PLUS function arima.diag, and forecasts may be
produced using arima.forecast.

Example 7 Estimation of ARMA model for US/CA interest rate differ-
ential

Consider estimating an ARMA(p, q) for the monthly US/CA interest
rate differential data in the “timeSeries” uscn.id used in a previous
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example. To estimate an ARMA(1,1) model for the demeaned interest rate
differential with starting values φ = 0.75 and θ = 0 use

> uscn.id.dm = uscn.id - mean(uscn.id)

> arma11.mod = list(ar=0.75,ma=0)

> arma11.fit = arima.mle(uscn.id.dm,model=arma11.mod)

> class(arma11.fit)

[1] "arima"

The components of arma11.fit are

> names(arma11.fit)

[1] "model" "var.coef" "method" "series"

[5] "aic" "loglik" "sigma2" "n.used"

[9] "n.cond" "converged" "conv.type" "call"

To see the basic fit simply type

> arma11.fit

Call: arima.mle(x = uscn.id.dm, model = arma11.mod)

Method: Maximum Likelihood

Model : 1 0 1

Coefficients:

AR : 0.82913

MA : 0.11008

Variance-Covariance Matrix:

ar(1) ma(1)

ar(1) 0.002046 0.002224

ma(1) 0.002224 0.006467

Optimizer has converged

Convergence Type: relative function convergence

AIC: -476.25563

The conditional MLEs are φ̂cmle = 0.829 and θ̂cmle = −0.110. Standard
errors for these parameters are given by the square roots of the diagonal
elements of variance-covariance matrix

> std.errs = sqrt(diag(arma11.fit$var.coef))

> names(std.errs) = colIds(arma11.fit$var.coef)

> std.errs

ar(1) ma(1)

0.04523 0.08041

It appears that the θ̂cmle is not statistically different from zero.
To estimate the ARMA(1,1) for the interest rate differential data in

regression form (3.12) with an intercept use
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> arma11.fit2 = arima.mle(uscn.id,model=arma11.mod,xreg=1)

> arma11.fit2

Call: arima.mle(x = uscn.id, model = arma11.mod, xreg = 1)

Method: Maximum Likelihood

Model : 1 0 1

Coefficients:

AR : 0.82934

MA : 0.11065

Variance-Covariance Matrix:

ar(1) ma(1)

ar(1) 0.002043 0.002222

ma(1) 0.002222 0.006465

Coeffficients for regressor(s): intercept

[1] -0.1347

Optimizer has converged

Convergence Type: relative function convergence

AIC: -474.30852

The conditional MLEs for φ and θ are essentially the same as before, and
the MLE for c is ĉcmle = −0.1347. Notice that the reported variance-
covariance matrix only gives values for the estimated ARMA coefficients
φ̂cmle and θ̂cmle.
Graphical diagnostics of the fit produced using the plot method

> plot(arma11.fit)

are illustrated in Figure 3.9. There appears to be some high order serial
correlation in the errors as well as heteroskedasticity.
The h-step ahead forecasts of future values may be produced with the

S-PLUS function arima.forecast. For example, to produce monthly fore-
casts for the demeaned interest rate differential from July 1996 through
June 1997 use

> fcst.dates = timeSeq("7/1/1996", "6/1/1997",

+ by="months", format="%b %Y")

> uscn.id.dm.fcst = arima.forecast(uscn.id.dm, n=12,

+ model=arma11.fit$model, future.positions=fcst.dates)

> names(uscn.id.dm.fcst)

[1] "mean" "std.err"

The object uscn.id.dm.fcst is a list whose first component is a
“timeSeries” containing the h-step forecasts, and the second component
is a “timeSeries” containing the forecast standard errors:

> uscn.id.dm.fcst[[1]]
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FIGURE 3.9. Residual diagnostics from ARMA(1,1) fit to US/CA interest rate
differentials.

Positions 1

Jul 1996 0.09973

Aug 1996 0.08269

Sep 1996 0.06856

Oct 1996 0.05684

Nov 1996 0.04713

Dec 1996 0.03908

Jan 1997 0.03240

Feb 1997 0.02686

Mar 1997 0.02227

Apr 1997 0.01847

May 1997 0.01531

Jun 1997 0.01270

The data, forecasts and 95% forecast confidence intervals shown in Figure
3.10 are produced by

> smpl = positions(uscn.id.dm) >= timeDate("6/1/1995")

> plot(uscn.id.dm[smpl,],uscn.id.dm.fcst$mean,

+ uscn.id.dm.fcst$mean+2*uscn.id.dm.fcst$std.err,

+ uscn.id.dm.fcst$mean-2*uscn.id.dm.fcst$std.err,

+ plot.args=list(lty=c(1,4,3,3)))
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US/CA 30 day interest rate differential
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FIGURE 3.10. Forecasts for 12 months for the series uscn.id.dm.

Estimating AR(p) by Least Squares Using the S+FinMetrics Function
OLS

As previously mentioned, the conditional MLEs for an AR(p) model may
be computed using least squares. The S+FinMetrics function OLS, which
extends the S-PLUS function lm to handle general time series regression,
may be used to estimate an AR(p) in a particularly convenient way. The
general use of OLS is discussed in Chapter 6, and its use for estimating an
AR(p) is only mentioned here. For example, to estimate an AR(2) model
for the US/CA interest rate differential use

> ar2.fit = OLS(USCNID~ar(2), data=uscn.id)

> ar2.fit

Call:

OLS(formula = USCNID ~ar(2), data = uscn.id)

Coefficients:

(Intercept) lag1 lag2

-0.0265 0.7259 0.0758

Degrees of freedom: 243 total; 240 residual

Time period: from Apr 1976 to Jun 1996

Residual standard error: 0.09105
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The least squares estimates of the AR coefficients are φ̂1 = 0.7259 and

φ̂2 = 0.0758. Since φ̂1 + φ̂2 < 1 the estimated AR(2) model is stationary.

To be sure, the roots of φ(z) = 1− φ̂1z − φ̂2z
2 = 0 are

> abs(polyroot(c(1,-ar2.fit$coef[2:3])))

[1] 1.222 10.798

are outside the complex unit circle.

3.2.7 Martingales and Martingale Difference Sequences

Let {yt} denote a sequence of random variables and let It = {yt,yt−1, . . .}
denote a set of conditioning information or information set based on the
past history of yt. The sequence {yt, It} is called a martingale if
• It−1 ⊂ It (It is a filtration)

• E[|yt|] <∞
• E[yt|It−1] = yt−1 (martingale property)

The most common example of a martingale is the random walk model

yt = yt−1 + εt, εt ∼WN(0, σ2)

where y0 is a fixed initial value. Letting It = {yt, . . . , y0} implies E[yt|It−1] =
yt−1 since E[εt|It−1] = 0.
Let {εt} be a sequence of random variables with an associated informa-

tion set It. The sequence {εt, It} is called a martingale difference sequence
(MDS) if

• It−1 ⊂ It

• E[εt|It−1] = 0 (MDS property)
If {yt, It} is a martingale, a MDS {εt, It} may be constructed by defining

εt = yt − E[yt|It−1]
By construction, a MDS is an uncorrelated process. This follows from the
law of iterated expectations. To see this, for any k > 0

E[εtεt−k] = E[E[εtεt−k|It−1]]
= E[εt−kE[εt|It−1]]
= 0

In fact, if zn is any function of the past history of εt so that zn ∈ It−1 then

E[εtzn] = 0
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Although a MDS is an uncorrelated process, it does not have to be an
independent process. That is, there can be dependencies in the higher order
moments of εt. The autoregressive conditional heteroskedasticity (ARCH)
process in the following example is a leading example in finance.
MDSs are particularly nice to work with because there are many useful

convergence results (laws of large numbers, central limit theorems etc.).
White (1984), Hamilton (1994) and Hayashi (2000) describe the most useful
of these results for the analysis of financial time series.

Example 8 ARCH process

A well known stylized fact about high frequency financial asset returns
is that volatility appears to be autocorrelated. A simple model to capture
such volatility autocorrelation is the ARCH process due to Engle (1982).
To illustrate, let rt denote the daily return on an asset and assume that
E[rt] = 0. An ARCH(1) model for rt is

rt = σtzt (3.15)

zt ∼ iid N(0, 1)

σ2t = ω + αr2t−1 (3.16)

where ω > 0 and 0 < α < 1. Let It = {rt, . . .}. The S+FinMetrics function
simulate.garchmay be used to generate simulations from above ARCH(1)
model. For example, to simulate 250 observations on rt with ω = 0.1 and
α = 0.8 use

> rt = simulate.garch(model=list(a.value=0.1, arch=0.8),

+ n=250, rseed=196)

> class(rt)

[1] "structure"

> names(rt)

[1] "et" "sigma.t"

Notice that the function simulate.garch produces simulated values of
both rt and σt. These values are shown in Figure 3.11.
To see that {rt, It} is a MDS, note that

E[rt|It−1] = E[ztσt|It−1]
= σtE[zt|It−1]
= 0

Since rt is a MDS, it is an uncorrelated process. Provided |α| < 1, rt is a
mean zero covariance stationary process. The unconditional variance of rt
is given by

var(rt) = E[r2t ] = E[E[z2t σ
2
t |It−1]]

= E[σ2tE[z
2
t |It−1] = E[σ2t ]
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FIGURE 3.11. Simulated values from ARCH(1) process with ω = 1 and α = 0.8.

since E[z2t |It−1] = 1. Utilizing (3.16) and the stationarity of rt, E[σ2t ] may
be expressed as

E[σ2t ] =
ω

1− α

Furthermore, by adding ε2t to both sides of (3.16) and rearranging it follows
that r2t has an AR(1) representation of the form

ε2t = ω + αε2t−1 + vt

where vt = ε2t − σ2t is a MDS.

3.2.8 Long-run Variance

Let yt be a stationary and ergodic time series. Anderson’s central limit
theorem for stationary and ergodic processes (c.f. Hamilton (1994) pg. 195)
states

√
T (ȳ − µ)

d→ N(0,
∞X

j=−∞
γj)

or

ȳ
A∼ N

µ,
1

T

∞X
j=−∞

γj


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The sample size, T , times the asymptotic variance of the sample mean is
often called the long-run variance of yt

6 :

lrv(yt) = T · avar(ȳ) =
∞X

j=−∞
γj .

Since γ−j = γj , lrv(yt) may be alternatively expressed as

lrv(yt) = γ0 + 2
∞X
j=1

γj .

Using the long-run variance, an asymptotic 95% confidence interval for
µ takes the form

ȳ ± 1.96 ·
q
T−1clrv(yt)

where clrv(yt) is a consistent estimate of lrv(yt).
Estimating the Long-Run Variance

If yt is a linear process, it may be shown that

∞X
j=−∞

γj = σ2

 ∞X
j=0

ψj

2

= σ2ψ(1)2

and so
lrv(yt) = σ2ψ(1)2 (3.17)

Further, if yt ∼ ARMA(p, q) then

ψ(1) =
1 + θ1 + · · ·+ θq
1− φ1 − · · ·− φp

=
θ(1)

φ(1)

so that

lrv(yt) =
σ2θ(1)2

φ(1)2
. (3.18)

A consistent estimate of lrv(yt) may then be computed by estimating the
parameters of the appropriate ARMA(p, q) model and substituting these
estimates into (3.18). Alternatively, the ARMA(p, q) process may be ap-
proximated by a high order AR(p∗) process

yt = c+ φ1yt−1 + · · ·+ φp∗yt−p∗ + εt

6Using spectral methods, lrv(ȳ) has the alternative representation

lrv(ȳ) =
1

T
2πf(0)

where f(0) denotes the spectral density of yt evaluated at frequency 0.
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where the lag length p∗ is chosen such that εt is uncorrelated. This gives
rise to the autoregressive long-run variance estimate

lrvAR(yt) =
σ2

φ∗(1)2
. (3.19)

A consistent estimate of lrv(yt) may also be computed using some non-
parametric methods. An estimator made popular by Newey and West
(1987) is the weighted autocovariance estimator

clrvNW (yt) = γ̂0 + 2

MTX
j=1

wj,T · γ̂j (3.20)

where wj,T are weights which sum to unity and MT is a truncation lag
parameter that satisfies MT = O(T 1/3). For MA(q) processes, γj = 0 for
j > q and Newey and West suggest using the rectangular weights wj,T = 1
for j ≤MT = q; 0 otherwise. For general linear processes, Newey and West
suggest using the Bartlett weights wj,T = 1− j

MT+1
with MT equal to the

integer part of 4(T/100)2/9.

Example 9 Long-run variance of AR(1)

Let yt be an AR(1) process created using

> set.seed(101)

> e = rnorm(100,sd=1)

> y.ar1 = 1 + arima.sim(model=list(ar=0.75),innov=e)

Here ψ(1) = 1
φ(1) =

1
1−φ and

lrv(yt) =
σ2

(1− φ)2
.

For φ = 0.75, σ2 = 1, lrv(yt) = 16 implies for T = 100 an asymptotic
standard error for ȳ equal to SE(ȳ) = 0.40. If yt ∼ WN(0, 1), then the
asymptotic standard error for ȳ is SE(ȳ) = 0.10.
lrvAR(yt) may be easily computed in S-PLUS using OLS to estimate the

AR(1) parameters:

> ar1.fit = OLS(y.ar1~ar(1))

> rho.hat = coef(ar1.fit)[2]

> sig2.hat = sum(residuals(ar1.fit)^2)/ar1.fit$df.resid

> lrv.ar1 = sig2.hat/(1-rho.hat)^2

> as.numeric(lrv.ar1)

[1] 13.75

Here lrvAR(yt) = 13.75, and an estimate for SE(ȳ) isdSEAR(ȳ) = 0.371.
The S+FinMetrics function asymp.var may be used to compute the

nonparameteric Newey-West estimate lrvNW (yt). The arguments expected
by asymp.var are
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> args(asymp.var)

function(x, bandwidth, window = "bartlett", na.rm = F)

where x is a “timeSeries”, bandwidth sets the truncation lag MT in
(3.20) and window specifies the weight function. Newey and West suggest
setting the bandwidth using the sample size dependent rule

MT = 4(T/100)
2/9

which is equal to 4 in the present case. The Newey-West long-run variance
estimate is then

> lrv.nw = asymp.var(y.ar1, bandwidth=4)

> lrv.nw

[1] 7.238

and the Newey-West estimate of SE(ȳ) isdSENW (ȳ) = 0.269.

3.2.9 Variance Ratios

There has been considerable interest in testing the so-called random walk
(RW) model for log stock prices (see chapter 2 in Campbell, Lo andMacKin-
lay (1997) for an extensive review). The RW model for log prices pt has the
form

pt = µ+ pt−1 + εt, t = 1, . . . , T

where εt is a random error term. Using rt = ∆pt, the RW model may be
rewritten as

rt = µ+ εt

Campbell, Lo and MacKinlay distinguish three forms of the random walk
model:

RW1 εt ∼ iid(0, σ2)

RW2 εt is an independent process (allows for heteroskedasticity)

RW3 εt is an uncorrelated process (allows for dependence in higher order
moments)

For asset returns, RW1 and RW2 are not very realistic and, therefore, most
attention has been placed on testing the model RW3.
Some commonly used tests for RW3 are based on constructing variance

ratios. To illustrate, consider the simple two-period variance ratio

V R(2) =
var(rt(2))

2 · var(rt)
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The numerator of the variance ratio is the variance of the two-period return,
rt(2) = rt−1 + rt, and the deminator is two times the variance of the one-
period return, rt. Under RW1, is easy to see that V R (2) = 1. If {rt} is an
ergodic-stationary process then

V R(2) =
var(rt−1) + var(rt) + 2 · cov(rt, rt−1)

2 · var(rt)
=

2γ0 + 2γ1
2γ0

= 1 + ρ1

There are three cases of interest depending on the value of ρ1. If ρ1 = 0
then V R(2) = 1; if ρ1 > 1 then V R(2) > 1; if ρ1 < 1 then V R(2) < 1.
The general q−period variance ratio is

V R(q) =
var(rt(q))

q · var(rt) (3.21)

where rt(q) = rt−q+1 + · · · + rt. Under RW1, V R(q) = 1. For ergodic
stationary returns, some algebra shows that

V R(q) = 1 + 2 ·
qX

k=1

µ
1− k

q

¶
ρk

When the variance ratio is greater than one, returns are called mean avert-
ing due to the dominating presence of positive autocorrelations. When the
variance ratio is less than one, returns are called mean reverting due to the
dominating presence of negative autocorrelations. Using the Wold repre-
sentation (3.6), it can be shown that

lim
q→∞V R(q) =

σ2ψ(1)2

γ0
=

lrv(rt)

var(rt)

That is, as q becomes large the variance ratio approaches the ratio of the
long-run variance to the short-run variance. Furthermore, Under RW2 and
RW3 it can be shown that V R(q)→ 1 as q →∞ provided

1

T

TX
t=1

var(rt)→ σ̄2 > 0

Test Statistics

Let {p0, p1, . . . , pTq} denote a sample of Tq + 1 log prices, which produces
a sample of Tq one-period returns {r1, . . . , rTq}. Lo and MacKinlay (1988,
1989) develop a number of test statistics for testing the random walk hy-
pothesis based on the estimated variance ratio

dV R(q) = dvar(rt(q))
q ·dvar(rt) (3.22)
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The form of the statistic depends on the particular random walk model
(RW1, RW2 or RW3) assumed under the null hypothesis.
Under RW1, (3.22) is computed using

dV R(q) = σ̂2(q)

σ̂2

where

σ̂2 =
1

Tq

TqX
k=1

(rk − µ̂)2

σ̂2(q) =
1

Tq2

TqX
k=q

(rk(q)− qµ̂)2

µ̂ =
1

Tq

TqX
k=1

rk =
1

Tq
(pTq − p0)

Lo and MacKinlay show that, under RW1,p
Tq(dV R(q)− 1) A∼ N(0, 2(q − 1))

Therefore, the variance ratio test statistic

ψ̂(q) =

µ
Tq

2(q − 1)
¶1/2

(dV R(q)− 1) (3.23)

has a limiting standard normal distribution under RW1.
Lo and MacKinlay also derive a modified version of (3.23) based on the

following bias corrected estimates of σ2 and σ2(q) :

σ̄2 =
1

Tq − 1
TqX
k=1

(rk − µ̂)2

σ̄2(q) =
1

m

TqX
k=q

(rk(q)− qµ̂)2

m = q(Tq − q + 1)

µ
1− q

Tq

¶
Defining V R(q) = σ̄2(q)/σ̄2, the biased corrected version of (3.23) has the
form

ψ̄(q) =

µ
3Tq2

2(2q − 1)(q − 1)
¶1/2

(V R(q)− 1) (3.24)

which has a limiting standard normal distribution under RW1.
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The variance ratio statistics (3.23) and (3.24) are not valid under the em-
pirically relevant RW3 and RW3 models. For this model, Lo and MacKinlay
derived the heteroskedasticity robust variance ratio statistic

ψ∗(q) = Ω̂(q)−1/2(V R(q)− 1) (3.25)

where

Ω̂(q) =

q−1X
j=1

µ
2(q − j)

j

¶
δ̂j

δ̂j =

PTq
t=j+1 α̂0tα̂jt³PTq

j=1 α̂0t

´2
α̂jt = (rt−j − rt−j−1 − µ̂)

Under RW2 or RW3, Lo and MacKinlay show that (3.25) has a limiting
stardard normal distribution.

Example 10 Testing the random walk hypothesis using variance ratios

The variance ratio statistics (3.23), (3.24) and (3.25) may be computed
using the S+FinMetrics function varRatioTest. The arguments for
varRatioTest are

> args(varRatioTest)

function(x, n.periods, unbiased = T, hetero = F)

where x is the log return series (which may contain more than one series)
and n.periods denotes the number of periods q in the variance ratio. If
unbiased=T and hetero=F the bias corrected test statistic (3.24) is com-
puted. If unbiased=T and hetero=T then the heteroskedasticity robust
statistic (3.25) is computed. The function varRatioTest returns an object
of class “varRatioTest” for which there are print and plot methods.
Consider testing the model RW3 for the daily log closing prices of the

Dow Jones Industrial Average over the period 1/1/1960 through 1/1/1990.
To compute the variance ratio (3.21) and the heteroskedasticity robust test
(3.25) for q = 1, . . . , 60 use

> VR.djia = varRatioTest(djia[timeEvent("1/1/1960","1/1/1990"),

+ "close"], n.periods=60, unbiased=T, hetero=T)

> class(VR.djia)

[1] "varRatioTest"

> names(VR.djia)

[1] "varRatio" "std.err" "stat" "hetero"

> VR.djia

Variance Ratio Test
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FIGURE 3.12. Variance ratios for the daily log prices of the Dow Jones Industrial
Average.

Null Hypothesis: random walk with heteroskedastic errors

Variable: close

var.ratio std.err stat

2 1.0403 0.06728 0.5994871

3 1.0183 0.10527 0.1738146

...

60 1.0312 0.36227 0.0861747

* : significant at 5% level

** : significant at 1% level

None of the variance ratios are statistically different from unity at the 5%
level.
Figure 3.12 shows the results of the variance ratio tests based on plot

method

> plot(VR.djia)

The variance ratios computed for different values of q hover around unity,
and the ± 2 × standard error bands indicate that the model RW3 is not
rejected at the 5% level.
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FIGURE 3.13. Variance ratio statistics for daily log prices on individual Dow
Jones index stocks.

The RW3 model appears to hold for the Dow Jones index. To test the
RW3 model for the top thirty stocks in the index individually, based on
q = 1, . . . , 5, use

> VR.DJ30 = varRatioTest(DowJones30, n.periods=5, unbiased=T,

+ hetero=T)

> plot(VR.DJ30)

The results, illustrated in Figure 3.13, indicate that the RW3 model may
not hold for some individual stocks.

3.3 Univariate Nonstationary Time Series

A univariate time series process {yt} is called nonstationary if it is not
stationary. Since a stationary process has time invariant moments, a non-
stationary process must have some time dependent moments. The most
common forms of nonstationarity are caused by time dependence in the
mean and variance.
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Trend Stationary Process

{yt} is a trend stationary process if it has the form

yt = TDt + xt

where TDt are deterministic trend terms (constant, trend, seasonal dum-
mies etc) that depend on t and {xt} is stationary. The series yt is nonsta-
tionary because E[TDt] = TDt which depends on t. Since xt is stationary,
yt never deviates too far away from the deterministic trend TDt. Hence, yt
exhibits trend reversion. If TDt were known, yt may be transformed to a
stationary process by subtracting off the deterministic trend terms:

xt = yt − TDt

Example 11 Trend stationary AR(1)

A trend stationary AR(1) process with TDt = µ+ δt may be expressed
in three equivalent ways

yt = µ+ δt+ ut, ut = φut−1 + εt

yt − µ− δt = φ(yt−1 − µ− δ(t− 1)) + εt

yt = c+ βt+ φyt−1 + εt

where |φ| < 1, c = µ(1−φ)+ δ, β = δ(1−φ)t and εt ∼WN(0, σ2). Figure
3.14 shows T = 100 observations from a trend stationary AR(1) with µ = 1,
δ = 0.25, φ = 0.75 and σ2 = 1 created with the S-PLUS commands

> set.seed(101)

> y.tsar1 = 1 + 0.25*seq(100) +

+ arima.sim(model=list(ar=0.75),n=100)

> tsplot(y.tsar1,ylab="y")

> abline(a=1,b=0.25)

The simulated data show clear trend reversion.

Integrated Processes

{yt} is an integrated process of order 1, denoted yt ∼ I(1), if it has the form

yt = yt−1 + ut (3.26)

where ut is a stationary time series. Clearly, the first difference of yt is
stationary

∆yt = ut

Because of the above property, I(1) processes are sometimes called differ-
ence stationary processes. Starting at y0, by recursive substitution yt has
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FIGURE 3.14. Simulated trend stationary process.

the representation of an integrated sum of stationary innovations

yt = y0 +
tX

j=1

uj . (3.27)

The integrated sum
Pt

j=1 uj is called a stochastic trend and is denoted
TSt. Notice that

TSt = TSt−1 + ut

where TS0 = 0. In contrast to a deterministic trend, changes in a stochastic
trend are not perfectly predictable.
Since the stationary process ut does not need to be differenced, it is called

an integrated process of order zero and is denoted ut ∼ I(0). Recall, from
the Wold representation (3.6) a stationary process has an infinite order
moving average representation where the moving average weights decline
to zero at a geometric rate. From (3.27) it is seen that an I(1) process has
an infinite order moving average representation where all of the weights on
the innovations are equal to 1.
If ut ∼ IWN(0, σ2) in (3.26) then yt is called a random walk. In general,

an I(1) process can have serially correlated and heteroskedastic innovations
ut. If yt is a random walk and assuming y0 is fixed then it can be shown
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that

γ0 = σ2t

γj = (t− j)σ2

ρj =

r
t− j

t

which clearly shows that yt is nonstationary. Also, if t is large relative to
j then ρj ≈ 1. Hence, for an I(1) process, the ACF does not decay at a
geometric rate but at a linear rate as j increases.
An I(1) process with drift has the form

yt = µ+ yt−1 + ut, where ut ∼ I(0)

Starting at t = 0 an I(1) process with drift µ may be expressed as

yt = y0 + µt+
tX

j=1

ut

= TDt + TSt

so that it may be thought of as being composed of a deterministic linear
trend TDt = y0 + µt as well as a stochastic trend TSt =

Pt
j=1 uj .

An I(d) process {yt} is one in which ∆dyt ∼ I(0). In finance and eco-
nomics data series are rarely modeled as I(d) process with d > 2. Just as
an I(1) process with drift contains a linear deterministic trend, an I(2)
process with drift will contain a quadratic trend.

Example 12 Simulated I(1) processes

Consider the simulation of T = 100 observations from various I(1) pro-
cesses where the innovations ut follow an AR(1) process ut = 0.75ut−1+εt
with εt ∼ GWN(0, 1).

> set.seed(101)

> u.ar1 = arima.sim(model=list(ar=0.75), n=100)

> y1 = cumsum(u.ar1)

> y1.d = 1 + 0.25*seq(100)+ y1

> y2 = rep(0,100)

> for (i in 3:100) {

+ y2[i] = 2*y2[i-1] - y2[i-2] + u.ar1[i]

+ }

The simulated data are illustrated in Figure 3.15 .

Example 13 Financial time series
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FIGURE 3.15. Simulated I(d) processes for d = 0, 1 and 2.

Many financial time series are well characterized by I(1) processes. The
leading example of an I(1) process with drift is the logarithm of an asset
price. Common examples of I(1) processes without drifts are the logarithms
of exchange rates, nominal interest rates, and inflation rates. Notice that
if inflation is constructed as the the difference in the logarithm of a price
index and is an I(1) process, then the logarithm of the price index is an
I(2) process. Examples of these data are illustrated in Figure 3.16. The
exchange rate is the monthly log of the US/CA spot exchange rate taken
from the S+FinMetrics “timeSeries” lexrates.dat, the asset price of
the monthly S&P 500 index taken from the S+FinMetrics “timeSeries”
object singleIndex.dat, the nominal interest rate is the 30 day T-bill rate
taken from the S+FinMetrics “timeSeries” object rf.30day, and the
monthly consumer price index is taken from the S+FinMetrics “timeSeries”
object CPI.dat.

3.4 Long Memory Time Series

If a time series yt is I(0) then its ACF declines at a geometric rate. As a
result, I(0) process have short memory since observations far apart in time
are essentially independent. Conversely, if yt is I(1) then its ACF declines
at a linear rate and observations far apart in time are not independent. In
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FIGURE 3.16. Monthly financial time series.

between I(0) and I(1) processes are so-called fractionally integrated I(d)
process where 0 < d < 1. The ACF for a fractionally integrated processes
declines at a polynomial (hyperbolic) rate, which implies that observations
far apart in time may exhibit weak but non-zero correlation. This weak cor-
relation between observations far apart is often referred to as long memory.
A fractionally integrated white noise process yt has the form

(1− L)dyt = εt, εt ∼WN(0, σ2) (3.28)

where (1− L)d has the binomial series expansion representation (valid for
any d > −1)

(1− L)d =
∞X
k=0

µ
d
k

¶
(−L)k

= 1− dL+
d(d− 1)
2!

L2 − d(d− 1)(d− 2)
3!

L3 + · · ·
If d = 1 then yt is a random walk and if d = 0 then yt is white noise. For
0 < d < 1 it can be shown that

ρk ∝ k2d−1

as k →∞ so that the ACF for yt declines hyperbolically to zero at a speed
that depends on d. Further, it can be shown yt is stationary and ergodic
for 0 < d < 0.5 and that the variance of yt is infinite for 0.5 ≤ d < 1.
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FIGURE 3.17. Simulated values from a fractional white noise process with d = 0.3
and σ = 1.

Example 14 Simulated fractional white noise

The S+FinMetrics function simulate.FARIMA may be used to generate
simulated values from a fractional white noise process. To simulate 500
observations from (3.28) with d = 0.3 and σ2 = 1 use

> set.seed(394)

> y.fwn = simulate.FARIMA(list(d=0.3), 500)

Figure 3.17 shows the simulated data along with the sample ACF created
using

> par(mfrow=c(2,1))

> tsplot(y.fwn)

> tmp = acf(y.fwn,lag.max=50)

Notice how the sample ACF slowly decays to zero.
A fractionally integrated process with stationary and ergodic ARMA(p, q)

errors

(1− L)dyt = ut, ut ∼ ARMA(p, q)

is called an autoregressive fractionally integrated moving average (ARFIMA)
process. The modeling of long memory process is described in detail in
Chapter 8.
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FIGURE 3.18. SACFs for the absolute value of daily returns on Microsoft and
the monthly 30-day interest rate differential between U.S. bonds and Canadian
bonds.

Example 15 Long memory in financial time series

Long memory behavior has been observed in certain types of financial
time series. Ding, Granger and Engle (1993) find evidence of long memory
in the absolute value of daily stock returns. Baillie and Bollerslev (1994)
find evidence for long memory in the monthly interest rate differentials
between short term U.S. government bonds and short term foreign govern-
ment bonds. To illustrate, consider the absolute values of the daily returns
on Microsoft over the 10 year period 1/2/1991 - 1/2/2001 taken from the
S+FinMetrics “timeSeries” DowJones30

> msft.aret = abs(getReturns(DowJones30[,"MSFT"]))

Consider also the monthly US/CA 30-day interest rate differential over the
period February 1976 through June 1996 in the “timeSeries” uscn.id
constructed earlier and taken from the S+FinMetrics “timeSeries” object
lexrates.dat. Figure 3.18 shows the SACFs these series create by

> par(mfrow=c(2,1))

> tmp = acf(msft.aret, lag.max=100)

> tmp = acf(uscn.id, lag.max=50)

For the absolute return series, notice the large number of small but ap-
parently significant autocorrelations at very long lags. This is indicative of
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long memory. For the interest rate differential series, the ACF appears to
decay fairly quickly, so the evidence for long memory is not as strong.

3.5 Multivariate Time Series

Consider n time series variables {y1t}, . . . , {ynt}. A multivariate time se-
ries is the (n × 1) vector time series {Yt} where the ith row of {Yt} is
{yit}. That is, for any time t, Yt = (y1t, . . . , ynt)

0. Multivariate time series
analysis is used when one wants to model and explain the interactions and
co-movements among a group of time series variables. In finance, multi-
variate time series analysis is used to model systems of asset returns, asset
prices and exchange rates, the term structure of interest rates, asset re-
turns/prices, and economic variables etc. Many of the time series concepts
described previously for univariate time series carry over to multivariate
time series in a natural way. Additionally, there are some important time
series concepts that are particular to multivariate time series. The follow-
ing sections give the details of these extensions and provide examples using
S-PLUS and S+FinMetrics.

3.5.1 Stationary and Ergodic Multivariate Time Series

A multivariate time series Yt is covariance stationary and ergodic if all of
its component time series are stationary and ergodic. The mean of Yt is
defined as the (n× 1) vector

E[Yt] = µ = (µ1, . . . , µn)
0

where µi = E[yit] for i = 1, . . . , n. The variance/covariance matrix of Yt

is the (n× n) matrix

var(Yt) = Γ0 = E[(Yt−µ)(Yt−µ)0]

=


var(y1t) cov(y1t, y2t) · · · cov(y1t, ynt)

cov(y2t, y1t) var(y2t) · · · cov(y2t, ynt)
...

...
. . .

...
cov(ynt, y1t) cov(ynt, y2t) · · · var(ynt)


The matrix Γ0 has elements γ

0
ij = cov(yit, yjt). The correlation matrix of

Yt is the (n× n) matrix

corr(Yt) = R0 = D
−1Γ0D−1

where D is an (n×n) diagonal matrix with jth diagonal element (γ0jj)
1/2 =

SD(yjt). The parameters µ, Γ0 andR0 are estimated from data (Y1, . . . ,YT )
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using the sample moments

Ȳ =
1

T

TX
t=1

Yt

Γ̂0 =
1

T

TX
t=1

(Yt−Ȳ)(Yt−Ȳ)0

R̂0 = D̂−1Γ̂0D̂−1

whereD is the (n×n) diagonal matrix with the sample standard deviations
of yjt along the diagonal. In order for the sample variance matrix Γ̂0 and

correlation matrix R̂0 to be positive definite, the sample size T must be
greater than the number of component time series n.

Example 16 System of asset returns

The S+FinMetrics “timeSeries” object DowJones30 contains daily clos-
ing prices on the 30 assets in the Dow Jones index. An example of a station-
ary and ergodic multivariate time series is the continuously compounded
returns on the first four assets in this index:

> Y = getReturns(DowJones30[,1:4],type="continuous")

> colIds(Y)

[1] "AA" "AXP" "T" "BA"

The S-PLUS function colMeans may be used to efficiently compute the
mean vector of Y

> colMeans(seriesData(Y))

AA AXP T BA

0.0006661 0.0009478 -0.00002873 0.0004108

The function colMeans does not have a method for “timeSeries” ob-
jects so the extractor function seriesData is used to extract the data slot of
the variable Y. The S-PLUS functions var and cor, which do have methods
for “timeSeries” objects, may be used to compute Γ̂0 and R̂0

> var(Y)

AA AXP T BA

AA 0.00041096 0.00009260 0.00005040 0.00007301

AXP 0.00009260 0.00044336 0.00008947 0.00009546

T 0.00005040 0.00008947 0.00040441 0.00004548

BA 0.00007301 0.00009546 0.00004548 0.00036829

> cor(Y)

AA AXP T BA

AA 1.0000 0.2169 0.1236 0.1877

AXP 0.2169 1.0000 0.2113 0.2362

T 0.1236 0.2113 1.0000 0.1179
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BA 0.1877 0.2362 0.1179 1.0000

If only the variances or standard deviations of Yt are needed the S-PLUS
functions colVars and colStdevs may be used

> colVars(seriesData(Y))

AA AXP T BA

0.000411 0.0004434 0.0004044 0.0003683

> colStdevs(seriesData(Y))

AA AXP T BA

0.020272 0.021056 0.02011 0.019191

Cross Covariance and Correlation Matrices

For a univariate time series yt the autocovariances γk and autocorrelations
ρk summarize the linear time dependence in the data. With a multivariate
time series Yt each component has autocovariances and autocorrelations
but there are also cross lead-lag covariances and correlations between all
possible pairs of components. The autocovariances and autocorrelations of
yjt for j = 1, . . . , n are defined as

γkjj = cov(yjt, yjt−k),

ρkjj = corr(yjt, yjt−k) =
γkjj
γ0jj

and these are symmetric in k: γkjj = γ−kjj , ρ
k
jj = ρ−kjj . The cross lag covari-

ances and cross lag correlations between yit and yjt are defined as

γkij = cov(yit, yjt−k),

ρkij = corr(yjt, yjt−k) =
γkijq
γ0iiγ

0
jj

and they are not necessarily symmetric in k. In general,

γkij = cov(yit, yjt−k) 6= cov(yit, yjt+k) = cov(yjt, yit−k) = γ−kij

If γkij 6= 0 for some k > 0 then yjt is said to lead yit. Similarly, if γ
−k
ij 6= 0

for some k > 0 then yit is said to lead yjt. It is possible that yit leads yjt
and vice-versa. In this case, there is said to be feedback between the two
series.
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All of the lag k cross covariances and correlations are summarized in the
(n× n) lag k cross covariance and lag k cross correlation matrices

Γk = E[(Yt−µ)(Yt−k−µ)0]

=


cov(y1t, y1t−k) cov(y1t, y2t−k) · · · cov(y1t, ynt−k)
cov(y2t, y1t−k) cov(y2t, y2t−k) · · · cov(y2t, ynt−k)

...
...

. . .
...

cov(ynt, y1t−k) cov(ynt, y2t−k) · · · cov(ynt, ynt−k)


Rk = D−1ΓkD−1

The matrices Γk and Rk are not symmetric in k but it is easy to show that
Γ−k= Γ0k and R−k= R

0
k. The matrices Γk and Rk are estimated from data

(Y1, . . . ,YT ) using

Γ̂k =
1

T

TX
t=k+1

(Yt−Ȳ)(Yt−k−Ȳ)0

R̂k = D̂−1Γ̂kD̂−1

Example 17 Lead-lag covariances and correlations among asset returns

Consider computing the cross lag covariances and correlations for k =
0, . . . , 5 between the first two Dow Jones 30 asset returns in the “timeSeries”
Y. These covariances and correlations may be computed using the S-PLUS
function acf

> Ghat = acf(Y[,1:2],lag.max=5,type="covariance",plot=F)

> Rhat = acf(Y[,1:2],lag.max=5,plot=F)

Ghat and Rhat are objects of class “acf” for which there is only a print
method. For example, the estimated cross lag autocorrelations are

> Rhat

Call: acf(x = Y[, 1:2], lag.max = 5, plot = F)

Autocorrelation matrix:

lag AA.AA AA.AXP AXP.AXP

1 0 1.0000 0.2169 1.0000

2 1 0.0182 0.0604 -0.0101

3 2 -0.0556 -0.0080 -0.0710

4 3 0.0145 -0.0203 -0.0152

5 4 -0.0639 0.0090 -0.0235

6 5 0.0142 -0.0056 -0.0169

lag AXP.AA

1 0 0.2169



3.5 Multivariate Time Series 105

 AA  

A
C

F

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 AA and AXP

0 1 2 3 4 5

0.
0

0.
05

0.
10

0.
15

0.
20

 AXP and AA

Lag

A
C

F

-5 -4 -3 -2 -1 0

0.
0

0.
05

0.
10

0.
15

0.
20

 AXP  

Lag
0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Multivariate Series : Y[, 1:2]

FIGURE 3.19. Cross lag correlations between the first two Dow Jones 30 asset
returns.

2 -1 -0.0015

3 -2 -0.0187

4 -3 -0.0087

5 -4 -0.0233

6 -5 0.0003

The function acf.plot may be used to plot the cross lag covariances
and correlations produced by acf.

> acf.plot(Rhat)

Figure 3.19 shows these cross lag correlations. The matrices Γ̂k and R̂k

may be extracted from acf component of Ghat and Rhat, respectively. For
example,

> Ghat$acf[1,,]

[,1] [,2]

[1,] 0.00041079 0.00009256

[2,] 0.00009256 0.00044318

> Rhat$acf[1,,]

[,1] [,2]

[1,] 1.0000 0.2169

[2,] 0.2169 1.0000

> Ghat$acf[2,,]



106 3. Time Series Concepts

[,1] [,2]

[1,] 7.488e-006 2.578e-005

[2,] -6.537e-007 -4.486e-006

> Rhat$acf[2,,]

[,1] [,2]

[1,] 0.018229 0.06043

[2,] -0.001532 -0.01012

extracts Γ̂1, R̂1, Γ̂2 and R̂2.

3.5.2 Multivariate Wold Representation

Any (n× 1) covariance stationary multivariate time series Yt has a Wold
or linear process representation of the form

Yt = µ+ εt+Ψ1εt−1+Ψ2εt−2 + · · · (3.29)

= µ+
∞X
k=0

Ψkεt−k

where Ψ0 = In and εt is a multivariate white noise process with mean zero
and variance matrix E[εtε

0
t] = Σ. In (3.29), Ψk is an (n× n) matrix with

(i, j)th element ψkij . In lag operator notation, the Wold form is

Yt = µ+Ψ(L)εt

Ψ(L) =
∞X
k=0

ΨkL
k

The moments of Yt are given by

E[Yt] = µ

var(Yt) =
∞X
k=0

ΨkΣΨ
0
k

VAR Models

The most popular multivariate time series model is the vector autoregressive
(VAR) model. The VAR model is a multivariate extension of the univariate
autoregressive model. For example, a bivariate VAR(1) model has the formµ

y1t
y2t

¶
=

µ
c1
c2

¶
+

µ
π111 π112
π121 π122

¶µ
y1t−1
y2t−1

¶
+

µ
ε1t
ε2t

¶
or

y1t = c1 + π111y1t−1 + π112y2t−1 + ε1t

y2t = c2 + π121y1t−1 + π122y2t−1 + ε2t
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where µ
ε1t
ε2t

¶
∼ iid

µµ
0
0

¶
,

µ
σ11 σ12
σ12 σ22

¶¶
In the equations for y1 and y2, the lagged values of both y1 and y2 are
present.
The general VAR(p) model for Yt = (y1t, y2t, . . . , ynt)

0 has the form

Yt= c+Π1Yt−1+Π2Yt−2+ · · ·+ΠpYt−p + εt, t = 1, . . . , T (3.30)

where Πi are (n×n) coefficient matrices and εt is an (n× 1) unobservable
zero mean white noise vector process with covariance matrix Σ. VAR mod-
els are capable of capturing much of the complicated dynamics observed
in stationary multivariate time series. Details about estimation, inference,
and forecasting with VAR models are given in chapter eleven.

3.5.3 Long Run Variance

Let Yt be an (n× 1) stationary and ergodic multivariate time series with
E[Yt] = µ. Anderson’s central limit theorem for stationary and ergodic
process states

√
T (Ȳ − µ) d→ N

0, ∞X
j=−∞

Γj


or

Ȳ
A∼ N

µ, 1
T

∞X
j=−∞

Γj


Hence, the long-run variance of Yt is T times the asymptotic variance of
Ȳ:

lrv(Yt) = T · avar(Ȳ) =
∞X

j=−∞
Γj

Since Γ−j= Γ0j , lrv(Yt) may be alternatively expressed as

lrv(Yt) = Γ0 +
∞X
j=1

(Γj+Γ
0
j)

Using the Wold representation of Yt it can be shown that

lrv(Yt) = Ψ(1)ΣΨ(1)
0

where Ψ(1) =
P∞

k=0Ψk.
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VAR Estimate of the Long-Run Variance

TheWold representation (3.29) may be approximated by high order VAR(p∗)
model

Yt= c+Φ1Yt−1+ · · ·+Φp∗Yt−p∗+εt

where the lag length p∗ is chosen such p∗ = O(T 1/3). This gives rise to the
autoregressive long-run variance matrix estimate

clrvAR(Yt) = Ψ̂(1)Σ̂Ψ̂(1)
0

(3.31)

Ψ̂(1) = (In − Φ̂1 − · · ·− Φ̂p)
−1 (3.32)

Σ̂ =
1

T

TX
t=1

ε̂tε̂
0
t (3.33)

where Φ̂k (k = 1, . . . , p
∗) are estimates of the VAR parameter matrices.

Non-parametric Estimate of the Long-Run Variance

A consistent estimate of lrv(Yt) may be computed using non-parametric
methods. A popular estimator is the Newey-West weighted autocovariance
estimator

clrvNW (Yt) = Γ̂0 +

MTX
j=1

wj,T ·
³
Γ̂j + Γ̂

0
j

´
(3.34)

where wj,T are weights which sum to unity and MT is a truncation lag
parameter that satisfies MT = O(T 1/3).

Example 18 Newey-West estimate of long-run variance matrix for stock
returns

The S+FinMetrics function asymp.var may be used to compute the
Newey-West long-run variance estimate (3.34) for a multivariate time series.
The long-run variance matrix for the first four Dow Jones assets in the
“timeSeries” Y is

> M.T = floor(4*(nrow(Y)/100)^(2/9))

> lrv.nw = asymp.var(Y,bandwidth=M.T)

> lrv.nw

AA AXP T BA

AA 0.00037313 0.00008526 3.754e-005 6.685e-005

AXP 0.00008526 0.00034957 7.937e-005 1.051e-004

T 0.00003754 0.00007937 3.707e-004 7.415e-006

BA 0.00006685 0.00010506 7.415e-006 3.087e-004
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