State Space Models and the Kalman Filter

Eric Zivot

April 9, 2006

1 State Space Models

A state space model for an N-dimensional time series \mathbf{y}_t consists of a measurement equation relating the observed data to an m- dimensional state vector $\boldsymbol{\alpha}_t$, and a Markovian transition equation that describes the evolution of the state vector over time. The measurement equation has the form

$$\mathbf{y}_t = \mathbf{Z}_t \boldsymbol{\alpha}_t + \mathbf{d}_t + \boldsymbol{\varepsilon}_t, \ t = 1, \dots, T$$

where \mathbf{Z}_t is an $N \times m$ matrix, \mathbf{d}_t is an $N \times 1$ vector and $\boldsymbol{\varepsilon}_t$ is an $N \times 1$ error vector such that

$$\varepsilon_t \sim \text{iid } N(\mathbf{0}, \mathbf{H}_t)$$

The transition equation for the state vector α_t is the first order Markov process

$$\alpha_t = \mathbf{T}_t \alpha_{t-1} + \mathbf{c}_t + \mathbf{R}_t \boldsymbol{\eta}_t \ t = 1, \dots, T$$

where \mathbf{T}_t is an $m \times m$ transition matrix, \mathbf{c}_t is an $m \times 1$ vector, \mathbf{R}_t is a $m \times g$ matrix, and $\boldsymbol{\eta}_t$ is a $g \times 1$ error vector satisfying

$$\eta_t \sim \text{iid } N(\mathbf{0}, \mathbf{Q}_t)$$

For most applications, it is assumed that the measurement equation errors ε_t are independent of the transition equation errors

$$E[\boldsymbol{\varepsilon}_t \boldsymbol{\eta}_s'] = \mathbf{0} \text{ for all } s, t = 1, \dots, T$$

However, this assumption is not required. The state space representation is completed by specifying the behavior of the initial state

$$\boldsymbol{\alpha}_0 \sim N(\mathbf{a}_0, \mathbf{P}_0)$$
 $E[\boldsymbol{\varepsilon}_t \mathbf{a}_0'] = \mathbf{0}, \ E[\boldsymbol{\eta}_t \mathbf{a}_0'] = \mathbf{0} \text{ for } t = 1, \dots, T$

The matrices $\mathbf{Z}_t, \mathbf{d}_t, \mathbf{H}_t, \mathbf{T}_t, \mathbf{c}_t, \mathbf{R}_t$ and \mathbf{Q}_t are called the *system matrices*, and contain non-random elements. If these matrices do not depend deterministically on

t the state space system is called *time invariant*. Note: If \mathbf{y}_t is covariance stationary, then the state space system will be time invariant.

If the state space model is covariance stationary, then the state vector α_t is covariance stationary. The unconditional mean of α_t , \mathbf{a}_0 , may be determined using

$$E[\boldsymbol{\alpha}_t] = \mathbf{T}E[\boldsymbol{\alpha}_{t-1}] + \mathbf{c} = \mathbf{T}E[\boldsymbol{\alpha}_t] + \mathbf{c}$$

Solving for $E[\alpha_t]$, assuming T is invertible, gives

$$\mathbf{a}_0 = E[\boldsymbol{\alpha}_t] = (\mathbf{I}_m - \mathbf{T})^{-1}\mathbf{c}$$

Similarly, $var(\alpha_0)$ may be determined analytically using

$$\mathbf{P}_0 = \operatorname{var}(\boldsymbol{\alpha}_t) = \mathbf{T} \operatorname{var}(\boldsymbol{\alpha}_t) \mathbf{T}' + \mathbf{R} \operatorname{var}(\boldsymbol{\eta}_t) \mathbf{R}'$$

= $\mathbf{T} \mathbf{P}_0 \mathbf{T}' + \mathbf{R} \mathbf{Q} \mathbf{R}'$

Then, using $vec(\mathbf{ABC}) = \mathbf{C}' \otimes \mathbf{A}vec(\mathbf{B})$, where vec is the column stacking operator,

$$vec(\mathbf{P}_0) = vec(\mathbf{TP}_0\mathbf{T}') + vec(\mathbf{RQR}')$$
$$= (\mathbf{T} \otimes \mathbf{T})vec(\mathbf{P}_0) + vec(\mathbf{RQR}')$$

which implies that

$$\operatorname{vec}(\mathbf{P}_0) = (\mathbf{I}_{m^2} - \mathbf{T} \otimes \mathbf{T})^{-1} \operatorname{vec}(\mathbf{RQR'})$$

Here $\operatorname{vec}(\mathbf{P}_0)$ is an $m^2 \times 1$ column vector. It can be easily reshaped to form the $m \times m$ matrix \mathbf{P}_0 .

Example 1 AR(2) model

Consider the AR(2) model

$$y_t = \alpha + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \eta_t$$
$$\eta_t \sim \text{iid } N(0, \sigma^2)$$

One way to represent the AR(2) in state space form is as follows. Define $\alpha_t = (y_t, y_{t-1})'$ so that the transition equation for α_t becomes

$$\begin{pmatrix} y_t \\ y_{t-1} \end{pmatrix} = \begin{pmatrix} \phi_1 & \phi_2 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} y_{t-1} \\ y_{t-2} \end{pmatrix} + \begin{pmatrix} \alpha \\ 0 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \end{pmatrix} \eta_t$$

The transition equation system matrices are

$$\mathbf{T} = \begin{pmatrix} \phi_1 & \phi_2 \\ 1 & 0 \end{pmatrix}, \mathbf{R} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \mathbf{c} = \begin{pmatrix} \alpha \\ 0 \end{pmatrix}, Q = \sigma^2$$

The measurement equation is

$$y_t = (1,0)\boldsymbol{\alpha}_t$$

which implies that

$$\mathbf{Z}_t = (1,0), d_t = 0, \varepsilon_t = 0, H_t = 0$$

The distribution of the initial state vector is

$$\alpha_0 \sim N(\mathbf{a}_0, \mathbf{P}_0)$$

Since $\alpha_t = (y_t, y_{t-1})'$ is stationary

$$\mathbf{a}_{0} = E[\boldsymbol{\alpha}_{t}] = (\mathbf{I}_{2} - \mathbf{T})^{-1} \mathbf{c}$$

$$= \begin{pmatrix} 1 - \phi_{1} & -\phi_{2} \\ -1 & 1 \end{pmatrix}^{-1} \begin{pmatrix} \alpha \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} \alpha/(1 - \phi_{1} - \phi_{2}) \\ \alpha/(1 - \phi_{1} - \phi_{2}) \end{pmatrix}$$

The variance of the initial state vector satisfies

$$\operatorname{vec}(\mathbf{P}_0) = (\mathbf{I}_4 - \mathbf{T} \otimes \mathbf{T})^{-1} \operatorname{vec}(\mathbf{RQR'})$$

Here, simple algebra gives

$$\mathbf{I}_{4} - \mathbf{T} \otimes \mathbf{T} = \begin{pmatrix} 1 - \phi_{2}^{2} & -\phi_{1}\phi_{2} & -\phi_{1}\phi_{2} & -\phi_{2}^{2} \\ -\phi_{1} & 1 & -\phi_{2} & 0 \\ -\phi_{1} & -\phi_{2} & 1 & 0 \\ -1 & 0 & 0 & 1 \end{pmatrix}$$

$$\operatorname{vec}(\mathbf{RQR'}) = \begin{pmatrix} \sigma^{2} \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

and so

$$\operatorname{vec}(\mathbf{P}_0) = \begin{pmatrix} 1 - \phi_2^2 & -\phi_1 \phi_2 & -\phi_1 \phi_2 & -\phi_2^2 \\ -\phi_1 & 1 & -\phi_2 & 0 \\ -\phi_1 & -\phi_2 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} \sigma^2 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Example 2 AR(2) model again

Another state space representation of the AR(2) is

$$y_t = \mu + c_t c_t = \phi_1 c_{t-1} + \phi_2 c_{t-2} + \eta_t$$

The state vector is $\alpha_t = (c_t, c_{t-1})'$, which is unobservable, and the transition equation is

$$\left(\begin{array}{c} c_t \\ c_{t-1} \end{array}\right) = \left(\begin{array}{cc} \phi_1 & \phi_2 \\ 1 & 0 \end{array}\right) \left(\begin{array}{c} c_{t-1} \\ c_{t-2} \end{array}\right) + \left(\begin{array}{c} 1 \\ 0 \end{array}\right) \eta_t$$

This representation has measurement equation matrices

$$\mathbf{Z}_{t} = (1,0), \ \mathbf{d}_{t} = \mu, \varepsilon_{t} = 0, H_{t} = 0$$

 $\mu = \alpha/(1 - \phi_{1} - \phi_{2})$

The initial state vector has mean zero, and the initial covariance matrix is the same as that derived above.

Example 3 AR(2) model yet again

Yet another state space representation of the AR(2) model is

$$y_t = (1 \ 0)\alpha_t$$

$$\alpha_t = \begin{pmatrix} y_t \\ \phi_2 y_{t-1} \end{pmatrix} = \begin{pmatrix} \phi_1 & 1 \\ \phi_2 & 0 \end{pmatrix} \begin{pmatrix} y_{t-1} \\ \phi_2 y_{t-2} \end{pmatrix} + \begin{pmatrix} \alpha \\ 0 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \end{pmatrix} \eta_t$$

Example 4 MA(1) model

The MA(1) model

$$y_t = \mu + \eta_t + \theta \eta_{t-1}$$

can be put in state space form in a number of ways. Define $\alpha_t = (y_t - \mu, \theta \eta_t)$ and write

$$y_t = (1 \ 0)\alpha_t + \mu$$

$$\alpha_t = \begin{pmatrix} 0 \ 1 \\ 0 \ 0 \end{pmatrix} \alpha_{t-1} + \begin{pmatrix} 1 \\ \theta \end{pmatrix} \eta_t$$

The first element of α_t is then $\theta \eta_{t-1} + \eta_t$ which is indeed $y_t - \mu$.

Example 5 ARMA(1,1) model

The ARMA(1,1) model

$$y_t = \mu + \phi(y_{t-1} - \mu) + \eta_t + \theta \eta_{t-1}$$

can be put in a state space form similar to the state space form for the MA(1). Define $\alpha_t = (y_t - \mu, \theta \eta_t)$ and write

$$y_t = (1 \ 0)\alpha_t + \mu$$

$$\alpha_t = \begin{pmatrix} \phi & 1 \\ 0 & 0 \end{pmatrix} \alpha_{t-1} + \begin{pmatrix} 1 \\ \theta \end{pmatrix} \eta_t$$

The first element of α_t is then $\phi(y_{t-1} - \mu) + \theta \eta_{t-1} + \eta_t$ which is indeed $y_t - \mu$.

Example 6 ARMA(p,q) model

The general ARMA(p,q) model

$$y_t = \phi y_{t-1} + \dots + \phi_p y_{t-p} + \eta_t + \theta_1 \eta_{t-1} + \dots + \theta_q \eta_{t-q}$$

may be put in state space form in the following way. Let $m = \max(p, q + 1)$ and re-write the ARMA(p,q) model as

$$y_t = \phi y_{t-1} + \dots + \phi_p y_{t-m} + \eta_t + \theta_1 \eta_{t-1} + \dots + \theta_{m-1} \eta_{t-m+1}$$

where some of the AR or MA coefficients will be zero unless p = q + 1. Define

$$\boldsymbol{\alpha}_t = \begin{pmatrix} y_t \\ \phi_2 y_{t-1} + \dots + \phi_p y_{t-m+1} + \theta_1 \eta_t + \dots + \theta_{m-1} \eta_{t-m+2} \\ \vdots \\ \phi_m y_{t-1} + \theta_m \eta_t \end{pmatrix}$$

and set

$$\alpha_{t} = \begin{pmatrix}
0_{m-1} & 0 & \cdots & 0 \\
\phi_{1} & 1 & 0 & \cdots & 0 \\
\phi_{2} & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\phi_{m-1} & 0 & 0 & \cdots & 1 \\
\phi_{m} & 0 & 0 & \cdots & 0
\end{pmatrix}
\alpha_{t-1} + \begin{pmatrix}
1 \\
\theta_{1} \\
\vdots \\
\theta_{m-2} \\
\theta_{m-1}
\end{pmatrix}
\eta_{t}$$

1.1 The Kalman Filter

The Kalman filter is a set of recursion equations for determining the optimal estimates of the state vector $\boldsymbol{\alpha}_t$ given information available at time t, I_t . The filter consists of two sets of equations:

- 1. Prediction equations
- 2. Updating equations

To describe the filter, let

$$\mathbf{a}_t = E[\boldsymbol{\alpha}_t | I_t] = \text{ optimal estimator of } \boldsymbol{\alpha}_t \text{ based on } I_t$$

$$\mathbf{P}_t = E[(\boldsymbol{\alpha}_t - \mathbf{a}_t)(\boldsymbol{\alpha}_t - \mathbf{a}_t)' | I_t] = \text{MSE matrix of } \mathbf{a}_t$$

1.1.1 Prediction Equations

Given \mathbf{a}_{t-1} and \mathbf{P}_{t-1} at time t-1, the optimal predictor of $\boldsymbol{\alpha}_t$ and its associated MSE matrix are

$$\mathbf{a}_{t|t-1} = E[\boldsymbol{\alpha}_t | I_{t-1}] = \mathbf{T}_t \mathbf{a}_{t-1} + \mathbf{c}_t$$

$$\mathbf{P}_{t|t-1} = E[(\boldsymbol{\alpha}_t - \mathbf{a}_{t-1})(\boldsymbol{\alpha}_t - \mathbf{a}_{t-1})' | I_{t-1}]$$

$$= \mathbf{T}_t \mathbf{P}_{t-1} \mathbf{T}'_{t-1} + \mathbf{R}_t \mathbf{Q}_t \mathbf{R}'_t$$

The corresponding optimal predictor of \mathbf{y}_t give information at t-1 is

$$\mathbf{y}_{t|t-1} = \mathbf{Z}_t \mathbf{a}_{t|t-1} + \mathbf{d}_t$$

The prediction error and its MSE matrix are

$$\mathbf{v}_t = \mathbf{y}_t - \mathbf{y}_{t|t-1} = \mathbf{y}_t - \mathbf{Z}_t \mathbf{a}_{t|t-1} - \mathbf{d}_t = \mathbf{Z}_t (\boldsymbol{\alpha}_t - \mathbf{a}_{t|t-1}) + \boldsymbol{\varepsilon}_t$$

$$E[\mathbf{v}_t \mathbf{v}_t'] = \mathbf{F}_t = \mathbf{Z}_t \mathbf{P}_{t|t-1} \mathbf{Z}_t' + \mathbf{H}_t$$

These are the components that are required to form the prediction error decomposition of the log-likelihood function.

1.1.2 Updating Equations

When new observations \mathbf{y}_t become available, the optimal predictor $\mathbf{a}_{t|t-1}$ and its MSE matrix are updated using

$$egin{array}{lll} \mathbf{a}_t &=& \mathbf{a}_{t|t-1} + \mathbf{P}_{t|t-1} \mathbf{Z}_t' \mathbf{F}_t^{-1} (\mathbf{y}_t - \mathbf{Z}_t \mathbf{a}_{t|t-1} - \mathbf{d}_t) \ &=& \mathbf{a}_{t|t-1} + \mathbf{P}_{t|t-1} \mathbf{Z}_t' \mathbf{F}_t^{-1} \mathbf{v}_t \ \mathbf{P}_t &=& \mathbf{P}_{t|t-1} - \mathbf{P}_{t|t-1} \mathbf{Z}_t \mathbf{F}_t^{-1} \mathbf{Z}_t \mathbf{P}_{t|t-1} \end{array}$$

The value \mathbf{a}_t is referred to as the *filtered estimate* of $\boldsymbol{\alpha}_t$ and P_t is the MSE matrix of this estimate. It is the optimal estimate of $\boldsymbol{\alpha}_t$ given information available at time t.

1.2 Prediction Error Decomposition

Let $\boldsymbol{\theta}$ denote the parameters of the state space model. These parameters are embedded in the system matrices. For the state space model with a fixed value of $\boldsymbol{\theta}$, the Kalman Filter produces the prediction errors, $\mathbf{v}_t(\boldsymbol{\theta})$, and the prediction error variances, $\mathbf{F}_t(\boldsymbol{\theta})$, from the prediction equations. The prediction error decomposition of the log-likelihood function follows immediately:

$$\ln L(\boldsymbol{\theta}|\mathbf{y}) = -\frac{NT}{2}\ln(2\pi) - \frac{1}{2}\sum_{t=1}^{T}\ln|\mathbf{F}_{t}(\boldsymbol{\theta})| - \frac{1}{2}\sum_{t=1}^{T}\mathbf{v}_{t}'(\boldsymbol{\theta})\mathbf{F}_{t}^{-1}(\boldsymbol{\theta})\mathbf{v}_{t}(\boldsymbol{\theta})$$

1.3 Derivation of the Kalman Filter

The derivation of the Kalman filter equations relies on the following result: **Result 1**: Suppose

$$\begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix} \sim N \begin{pmatrix} \begin{pmatrix} \boldsymbol{\mu}_x \\ \boldsymbol{\mu}_y \end{pmatrix}, \begin{pmatrix} \boldsymbol{\Sigma}_{xx} & \boldsymbol{\Sigma}_{xy} \\ \boldsymbol{\Sigma}_{yx} & \boldsymbol{\Sigma}_{yy} \end{pmatrix} \end{pmatrix}$$

Then, the distribution of x given y is observed is normal with

$$E[\mathbf{x}|\mathbf{y}] = \boldsymbol{\mu}_{x|y} = \boldsymbol{\mu}_x + \boldsymbol{\Sigma}_{xy} \boldsymbol{\Sigma}_{yy}^{-1} (\mathbf{y} - \boldsymbol{\mu}_y)$$
$$\operatorname{var}(\mathbf{x}|\mathbf{y}) = \boldsymbol{\Sigma}_{xx} - \boldsymbol{\Sigma}_{xy} \boldsymbol{\Sigma}_{yy}^{-1} \boldsymbol{\Sigma}_{yx}$$

In the linear Gaussian state-space model, the disturbances ε_t , and η_t are normally distributed and the initial state vector α_0 is also normally distributed. From the transition equation, the state vector at time 1 is

$$oldsymbol{lpha}_1 = \mathbf{T}_1 oldsymbol{lpha}_0 + \mathbf{c}_1 + \mathbf{R}_1 oldsymbol{\eta}_1$$

Since $\alpha_0 \sim N(\mathbf{a}_0, \mathbf{P}_0)$, $\eta_1 \sim N(\mathbf{0}, \mathbf{Q}_1)$ and α_0 and η_1 are independent it follows that

$$E[\boldsymbol{\alpha}_1] = \mathbf{a}_{1|0} = \mathbf{T}_1 \mathbf{a}_0 + \mathbf{c}_1$$

$$\operatorname{var}(\boldsymbol{\alpha}_1) = E[(\boldsymbol{\alpha}_1 - \mathbf{a}_{1|0})(\boldsymbol{\alpha}_1 - \mathbf{a}_{1|0})'] = \mathbf{P}_{1|0} = \mathbf{T}_1 \mathbf{P}_0 \mathbf{T}_1 + \mathbf{R}_1 \mathbf{Q}_1 \mathbf{R}_1'$$

$$\boldsymbol{\alpha}_1 \sim N(\mathbf{a}_{1|0}, \mathbf{P}_{1|0})$$

Notice that the expression for $\mathbf{a}_{1|0}$ is the prediction equation for $\boldsymbol{\alpha}_1$ at t=0. Next, from the measurement equation

$$\mathbf{y}_1 = \mathbf{Z}_1 \boldsymbol{lpha}_1 + \mathbf{d}_1 + \boldsymbol{arepsilon}_1$$

Since $\alpha_1 \sim N(\mathbf{a}_{1|0}, \mathbf{P}_{1|0})$, $\varepsilon_1 \sim N(\mathbf{0}, \mathbf{H}_1)$ and α_1 and ε_1 are independent it follows that \mathbf{y}_1 is normally distributed with

$$E[\mathbf{y}_1] = \mathbf{y}_{1|0} = \mathbf{Z}_1 \mathbf{a}_{1|0} + \mathbf{d}_1$$

$$var(\mathbf{y}_1) = E[(\mathbf{y}_1 - \mathbf{y}_{1|0})(\mathbf{y}_1 - \mathbf{y}_{1|0})']$$

$$= E[(\mathbf{Z}_1(\boldsymbol{\alpha}_1 - \mathbf{a}_{1|0}) + \boldsymbol{\varepsilon}_1)(\mathbf{Z}_1(\boldsymbol{\alpha}_1 - \mathbf{a}_{1|0}) + \boldsymbol{\varepsilon}_1)']$$

$$= \mathbf{Z}_1 \mathbf{P}_{1|0} \mathbf{Z}_1' + \mathbf{H}_1$$

Notice that the expression for $\mathbf{y}_{1|0}$ is the prediction equation for \mathbf{y}_1 at t=0.

For the updating equations, the goal is to find the distribution of α_1 conditional on \mathbf{y}_1 being observed. To do this, the joint normal distribution of $(\alpha'_1, \mathbf{y}'_1)'$ must be determined and then Result 1 can be applied. To determine the joint distribution of $(\alpha'_1, \mathbf{y}'_1)'$ use

$$egin{array}{lcl} oldsymbol{lpha}_1 &=& \mathbf{a}_{1|0} + (oldsymbol{lpha}_1 - \mathbf{a}_{1|0}) \ oldsymbol{y}_1 &=& \mathbf{y}_{1|0} + \mathbf{y}_1 - \mathbf{y}_{1|0} \ &=& \mathbf{Z}_1 \mathbf{a}_{1|0} + \mathbf{d}_1 + \mathbf{Z}_1 (oldsymbol{lpha}_1 - \mathbf{a}_{1|0}) + oldsymbol{arepsilon}_1 \end{array}$$

and note that

$$cov(\boldsymbol{\alpha}_{1}, \mathbf{y}_{1}) = E[(\boldsymbol{\alpha}_{1} - \mathbf{a}_{1|0})(\mathbf{y}_{1} - \mathbf{y}_{1|0})']$$

$$= E[(\boldsymbol{\alpha}_{1} - \mathbf{a}_{1|0})((\mathbf{Z}_{1}(\boldsymbol{\alpha}_{1} - \mathbf{a}_{1|0}) + \boldsymbol{\varepsilon}_{1})']$$

$$= E[(\boldsymbol{\alpha}_{1} - \mathbf{a}_{1|0})((\boldsymbol{\alpha}_{1} - \mathbf{a}_{1|0})\mathbf{Z}'_{1} + \boldsymbol{\varepsilon}'_{1})]$$

$$= E[(\boldsymbol{\alpha}_{1} - \mathbf{a}_{1|0})(\boldsymbol{\alpha}_{1} - \mathbf{a}_{1|0})\mathbf{Z}'_{1}] + E[(\boldsymbol{\alpha}_{1} - \mathbf{a}_{1|0})\boldsymbol{\varepsilon}'_{1}]$$

$$= \mathbf{P}_{1|0}\mathbf{Z}'_{1}$$

Therefore,

$$\begin{pmatrix} \alpha_1 \\ \mathbf{y}_1 \end{pmatrix} \sim N \begin{pmatrix} \mathbf{a}_{1|0} \\ \mathbf{Z}_1 \mathbf{a}_{1|0} + \mathbf{d}_1 \end{pmatrix}, \begin{pmatrix} \mathbf{P}_{1|0} & \mathbf{P}_{1|0} \mathbf{Z}_1' \\ \mathbf{Z}_1 \mathbf{P}_{1|0} & \mathbf{Z}_1 \mathbf{P}_{1|0} \mathbf{Z}_1' + \mathbf{H}_1 \end{pmatrix} \end{pmatrix}$$

Now, use Result 1 to determine the mean and variance of the distribution of α_1 conditional on \mathbf{y}_1 being observed:

$$\begin{aligned} & \boldsymbol{\alpha}_{1}|\mathbf{y}_{1} \sim N(\mathbf{a}_{1}, \mathbf{P}_{1}) \\ \mathbf{a}_{1} &= E[\boldsymbol{\alpha}_{1}|\mathbf{y}_{1}] = \mathbf{a}_{1|0} + \mathbf{P}_{1|0}\mathbf{Z}_{1}' \left(\mathbf{Z}_{1}\mathbf{P}_{1|0}\mathbf{Z}_{1}' + \mathbf{H}_{1}\right)^{-1} (\mathbf{y}_{1} - \mathbf{Z}_{1}\mathbf{a}_{1|0} - \mathbf{d}_{1}) \\ &= \mathbf{a}_{1|0} + \mathbf{P}_{1|0}\mathbf{Z}_{1}'\mathbf{F}_{1}^{-1}\mathbf{v}_{1} \\ \mathbf{P}_{1} &= var(\boldsymbol{\alpha}_{1}|\mathbf{y}_{1}) = \mathbf{P}_{1|0} - \mathbf{P}_{1|0}\mathbf{Z}_{1}' \left(\mathbf{Z}_{1}\mathbf{P}_{1|0}\mathbf{Z}_{1}' + \mathbf{H}_{1}\right)^{-1}\mathbf{Z}_{1}\mathbf{P}_{1|0} \\ &= \mathbf{P}_{1|0} - \mathbf{P}_{1|0}\mathbf{Z}_{1}'\mathbf{F}_{1}^{-1}\mathbf{Z}_{1}\mathbf{P}_{1|0} \end{aligned}$$

where

$$\mathbf{v}_1 = \mathbf{y}_1 - \mathbf{y}_{1|0} = (\mathbf{y}_1 - \mathbf{Z}_1 \mathbf{a}_{1|0} - \mathbf{d}_1)$$

 $\mathbf{F}_1 = E[\mathbf{v}_1 \mathbf{v}_1'] = \mathbf{Z}_1 \mathbf{P}_{1|0} \mathbf{Z}_1' + \mathbf{H}_1$

Notice that the expressions for \mathbf{a}_1 and \mathbf{P}_1 are exactly the Kalman filter updating equations for t = 1. Repeating the above prediction and updating steps for $t = 2, \ldots, T$ gives the Kalman filter recursion equations.