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1 State Space Models

A state space model for an N—dimensional time series y; consists of a measurement
equation relating the observed data to an m— dimensional state vector a;, and a
Markovian transition equation that describes the evolution of the state vector over
time. The measurement equation has the form

vi=2Zioy+di e, t=1,...,T

where Z; is an N X m matrix, d; is an N x 1 vector and &; is an N X 1 error vector
such that
Ep ~ iid N(O, Ht>

The transition equation for the state vector oy is the first order Markov process
Oy :Ttat_1+ct+Rtntt: 1,...,T

where T, is an m x m transition matrix, c; is an m x 1 vector, R; is a m X g matrix,
and m, is a g X 1 error vector satisfying

n, ~ iid N(0,Qy)

For most applications, it is assumed that the measurement equation errors &; are
independent of the transition equation errors

Elem,]=0foral s,;t=1,...,T

However, this assumption is not required. The state space representation is completed
by specifying the behavior of the initial state

oy N(aO,PO)
Eleiag] = 0, Elnag) =0fort=1,...,T

The matrices Z;,d;, H;, T;,c;, R, and Q; are called the system matrices, and
contain non-random elements. If these matrices do not depend deterministically on



t the state space system is called time invariant. Note: If y; is covariance stationary,
then the state space system will be time invariant.

If the state space model is covariance stationary, then the state vector oy is co-
variance stationary. The unconditional mean of o, ag, may be determined using

FEloy) = TE[oy_1]+c=TE[ay] + ¢
Solving for F[ay|, assuming T is invertible, gives
ag = Elay] = (I, — T) 'c
Similarly, var(ayp) may be determined analytically using

Py, = var(ay) = Tvar(ay) T + Rvar(n,) R’
TP, T + RQR/

Then, using vec(ABC) = C' ® Avec(B), where vec is the column stacking operator,

vec(Pg) = vec(TPyT’) + vec(RQR/)
= (T ® T)vec(Py) + vec(RQR/)

which implies that
vec(Pg) = (I, — T® T) 'vec(RQR’)

Here vec(Pg) is an m? x 1 column vector. It can be easily reshaped to form the m xm
matrix Py.

Example 1 AR(2) model
Consider the AR(2) model

Y = a+ QY1+ OoYi2 + 1y
n, ~ iid N(0,0?)

One way to represent the AR(2) in state space form is as follows. Define a; =
(4, y+—1)" so that the transition equation for a; becomes

()= (1 8) () (5)+(0)

The transition equation system matrices are

(3 5)ne(3) ()
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The measurement equation is
Y = (1,0) ey

which implies that
0

Zt: (130)7dt:075t:07Ht:

The distribution of the initial state vector is

Qo N(ao, P())

Since o = (yr, y1—1)" is stationary
ag = FElag)=1,—-T) 'c
()
-1 1 0
( af(1— ¢ — ¢,) >
af(1— ¢ — ¢,)

The variance of the initial state vector satisfies

vec(Pg) = (Iy — T ® T) 'vec(RQR/)

Here, simple algebra gives

1— ¢ —¢1y —10y —5
B _ —¢ 1 —¢y 0
hetet =1 6 o 1 0
—1 0 0 1
o2
, 0
vec(RQR') = 0
0
and so .
1- ¢g — 0109 — P10 _Cbg o’
B —¢ 1 - 0 0
R R 0
-1 0 0 1 0

Example 2 AR(2) model again

Another state space representation of the AR(2) is

Yy = pt+c
Ct = Q101+ GoCto + 1
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The state vector is a; = (¢4, ¢;—1)’, which is unobservable, and the transition equation

Ct _( 9 P Ct—1 1
() () () (o)
This representation has measurement equation matrices

Zt = (170)7 dt:/'l’vgt:()th:O
po= o/l == ¢)

The initial state vector has mean zero, and the initial covariance matrix is the same
as that derived above.

Example 3 AR(2) model yet again
Yet another state space representation of the AR(2) model is
Y = ( 10 )at
Ye ¢ 1 Y1 o 1
= = - -
= (o) = (4 o) (el )+(5) = (5)n
Example 4 MA(1) model

The MA(1) model
Yo = pt g+ 0

can be put in state space form in a number of ways. Define o, = (y; — 1, 6n,) and
write

yo = (1 0)ou+p
01 1
o (3o (3
The first element of o is then 0n,_; + n, which is indeed y; — p.
Example 5 ARMA(1,1) model
The ARMA(1,1) model

Ye = oA S(ye—1 — p) + 0y +0n;_4

can be put in a state space form similar to the state space form for the MA(1). Define
o = (yy — p, 0n,) and write

Y = (]. O)at‘i‘ﬂ

o (2 ) (1)

The first element of a is then ¢(y;—1 — pu) + 0n,_, + 1, which is indeed y; — p.

4



Example 6 ARMA (p,q) model
The general ARMA(p, ¢) model
Ye=OY1t - QpYp t 1+ 01y + -+ 0y,

may be put in state space form in the following way. Let m = max(p,q + 1) and
re-write the ARMA (p,q) model as

Yo = QY1+ - ¢pyt*m R/ U/ R ol S

where some of the AR or MA coefficients will be zero unless p = ¢ + 1. Define

Yt
o — GolYp—1 + -+ ¢pyt—m+1 + 01+ A O 1M n
t = )
¢myt71 + emnt
and set
ye = (1 0, oy
o, 10 0 1
oy, 0 1 0 0,
o = : Lo Dol o+ : ur
Oy 0 0 - 1 0,2
¢m 00 - 0 em_l

1.1 The Kalman Filter

The Kalman filter is a set of recursion equations for determining the optimal estimates
of the state vector a; given information available at time ¢, I;. The filter consists of
two sets of equations:

1. Prediction equations
2. Updating equations
To describe the filter, let

a; = FElou|l;] = optimal estimator of a; based on I;
Pt = E[(Oﬁt - at)(at - at)'|ft] = MSE matrix of ai



1.1.1 Prediction Equations

Given a;_; and P;_; at time ¢ — 1, the optimal predictor of a; and its associated
MSE matrix are

A1 = Eloy|l;1] = Tiay1 + ¢
Pt\tfl = E[(at - at71)<at - atfl)/’[tfl]
— TtPt—lT:‘/fl + RtQth

The corresponding optimal predictor of y; give information at ¢ — 1 is
Yiji-1 = Leag; 1 +dy
The prediction error and its MSE matrix are

Vi = Y= Y1 =Yt — Leag 1 — dy = Zy(oy — ay—1) + &
E[VtVQ] = Ft = ZtPt\t—IZ; + Ht

These are the components that are required to form the prediction error decomposi-
tion of the log-likelihood function.

1.1.2 Updating Equations

When new observations y; become available, the optimal predictor a;;_; and its MSE
matrix are updated using

ay = a1+ Pt|t71Z::Ft_1(Yt — Ziay; 1 — dy)
ay¢—1 + Pt|t—1Z:th_1Vt
P, = Py — Pt\tflth;lthﬂtfl

The value a; is referred to as the filtered estimate of a; and P, is the MSE matrix of
this estimate. It is the optimal estimate of a; given information available at time t¢.

1.2 Prediction Error Decomposition

Let @ denote the parameters of the state space model. These parameters are embed-
ded in the system matrices. For the state space model with a fixed value of 8, the
Kalman Filter produces the prediction errors, v,(8), and the prediction error vari-
ances, F(0), from the prediction equations. The prediction error decomposition of
the log-likelihood function follows immediately:

NT
In L(8]y) = ——— In(2n) Zln F,(0
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1.3 Derivation of the Kalman Filter

The derivation of the Kalman filter equations relies on the following result:

Result 1: Suppose
~ N 7
(3= () (5 =

Then, the distribution of x given y is observed is normal with

Exly] = My = pe+ 20,2, (v — 1)
var(x|y) = X, — nyZ;yl I
In the linear Gaussian state-space model, the disturbances €;, and 1, are normally

distributed and the initial state vector ay is also normally distributed. From the
transition equation, the state vector at time 1 is

a; =Tiag+c; +Rim,
Since ag ~ N(ag, Py), 1y ~ N(0,Q;) and a and n, are independent it follows that
Elay] = ajo=Tas+c
Val‘(Oél) = E[(Oq - al\o)(al - al\o)/] = Pl\o = TP T, + RlQlR/1
Qg ~ N(auo, P1|0)

Notice that the expression for a;|o is the prediction equation for a; at ¢ = 0. Next,
from the measurement equation

yi=2io; +d; + &

Since oy ~ N(ay0, P1p), €1 ~ N(0,H;) and ayand &, are independent it follows
that y; is normally distributed with

Ely\] = yio =220+ dy
var(y1) = E[(y1 —y10)(y1 — ¥10)]
= E[(Z1(oq — ayp) +€1)(Zi(ar — ayp) +€1)']
= Z1PyZ; + H,
Notice that the expression for y,|o is the prediction equation for y; at ¢t = 0.
For the updating equations , the goal is to find the distribution of a; conditional

on y; being observed. To do this, the joint normal distribution of (a,y}) must be
determined and then Result 1 can be applied. To determine the joint distribution of

(ay,y) use
a; = ay+ (a1 —ay))
Yi = YiotY1—Yip
= Zqayo+di +Zi(ag —ayp) + &1
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and note that

cov(an,y1) = El(oq — 31\0>(Y1 - Y1\0)/]
= El(oy — 31\0) ((Zl(al - 31\0) + 81)/]
= E[(oq — ay) (a1 — ayp)Z} + €})]
= Ellou —ayp)(ou —aip)Zi] + Ef(ar — ai)e]]
= PHOZ’l

Therefore,

agq ~N aijo P1|0 P1|0Z/1
y1 Ziayo+d; )\ ZiPy Z,PyZ) +H,

Now, use Result 1 to determine the mean and variance of the distribution of oy
conditional on y; being observed:

auly, ~ N(ai, Py)
a; = FElayly,] =ayo+ PyoZ) (Z1P1|0Z11 + H1)_1 (y1 — Zya;0 — dy)
= Qo + Pl‘OZ’lFl_lvl

P, = Var(a1|y1) = Pl\o - Pl\ozll (Z1P1|OZI1 + Hl)_1 ZlPl\o
Py — P1|0Z/1F1_121P1|0

where

Vi = Y1 —Yio = (y1— Zlal\o —d)
F1 = E[Vlvll] = ZlP1|OZ/1 + H1

Notice that the expressions for a; and P; are exactly the Kalman filter updating
equations for ¢ = 1. Repeating the above prediction and updating steps for ¢t =
2,...,T gives the Kalman filter recursion equations.



