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1 State Space Models

A state space model for an N−dimensional time series yt consists of a measurement
equation relating the observed data to an m− dimensional state vector αt, and a
Markovian transition equation that describes the evolution of the state vector over
time. The measurement equation has the form

yt = Ztαt + dt + εt, t = 1, . . . , T

where Zt is an N ×m matrix, dt is an N × 1 vector and εt is an N × 1 error vector
such that

εt ∼ iid N(0,Ht)

The transition equation for the state vector αt is the first order Markov process

αt = Ttαt−1 + ct +Rtηt t = 1, . . . , T

where Tt is an m×m transition matrix, ct is an m× 1 vector, Rt is a m× g matrix,
and ηt is a g × 1 error vector satisfying

ηt ∼ iid N(0,Qt)

For most applications, it is assumed that the measurement equation errors εt are
independent of the transition equation errors

E[εtη
0
s] = 0 for all s, t = 1, . . . , T

However, this assumption is not required. The state space representation is completed
by specifying the behavior of the initial state

α0 ∼ N(a0,P0)

E[εta
0
0] = 0, E[ηta

0
0] = 0 for t = 1, . . . , T

The matrices Zt,dt,Ht,Tt, ct,Rt and Qt are called the system matrices, and
contain non-random elements. If these matrices do not depend deterministically on
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t the state space system is called time invariant. Note: If yt is covariance stationary,
then the state space system will be time invariant.
If the state space model is covariance stationary, then the state vector αt is co-

variance stationary. The unconditional mean of αt, a0, may be determined using

E[αt] = TE[αt−1] + c = TE[αt] + c

Solving for E[αt], assuming T is invertible, gives

a0 = E[αt] = (Im −T)−1c

Similarly, var(α0) may be determined analytically using

P0 = var(αt) = Tvar(αt)T
0 +Rvar(ηt)R

0

= TP0T
0 +RQR0

Then, using vec(ABC) = C0 ⊗Avec(B), where vec is the column stacking operator,

vec(P0) = vec(TP0T
0) + vec(RQR0)

= (T⊗T)vec(P0) + vec(RQR0)

which implies that

vec(P0) = (Im2 −T⊗T)−1vec(RQR0)

Here vec(P0) is anm2×1 column vector. It can be easily reshaped to form them×m
matrix P0.

Example 1 AR(2) model

Consider the AR(2) model

yt = α+ φ1yt−1 + φ2yt−2 + ηt
ηt ∼ iid N(0, σ2)

One way to represent the AR(2) in state space form is as follows. Define αt =
(yt, yt−1)

0 so that the transition equation for αt becomesµ
yt
yt−1

¶
=

µ
φ1 φ2
1 0

¶µ
yt−1
yt−2

¶
+

µ
α
0

¶
+

µ
1
0

¶
ηt

The transition equation system matrices are

T =

µ
φ1 φ2
1 0

¶
,R =

µ
1
0

¶
, c =

µ
α
0

¶
, Q = σ2
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The measurement equation is
yt = (1, 0)αt

which implies that
Zt = (1, 0), dt = 0, εt = 0,Ht = 0

The distribution of the initial state vector is

α0 ∼ N(a0,P0)

Since αt = (yt, yt−1)
0 is stationary

a0 = E[αt] = (I2 −T)−1c

=

µ
1− φ1 −φ2
−1 1

¶−1µ
α
0

¶
=

µ
α/(1− φ1 − φ2)
α/(1− φ1 − φ2)

¶
The variance of the initial state vector satisfies

vec(P0) = (I4 −T⊗T)−1vec(RQR0)

Here, simple algebra gives

I4 −T⊗T =

⎛⎜⎜⎝
1− φ22 −φ1φ2 −φ1φ2 −φ22
−φ1 1 −φ2 0
−φ1 −φ2 1 0
−1 0 0 1

⎞⎟⎟⎠

vec(RQR0) =

⎛⎜⎜⎝
σ2

0
0
0

⎞⎟⎟⎠
and so

vec(P0) =

⎛⎜⎜⎝
1− φ22 −φ1φ2 −φ1φ2 −φ22
−φ1 1 −φ2 0
−φ1 −φ2 1 0
−1 0 0 1

⎞⎟⎟⎠
−1⎛⎜⎜⎝

σ2

0
0
0

⎞⎟⎟⎠
Example 2 AR(2) model again

Another state space representation of the AR(2) is

yt = μ+ ct

ct = φ1ct−1 + φ2ct−2 + ηt
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The state vector is αt = (ct, ct−1)
0, which is unobservable, and the transition equation

is µ
ct
ct−1

¶
=

µ
φ1 φ2
1 0

¶µ
ct−1
ct−2

¶
+

µ
1
0

¶
ηt

This representation has measurement equation matrices

Zt = (1, 0), dt = μ, εt = 0,Ht = 0

μ = α/(1− φ1 − φ2)

The initial state vector has mean zero, and the initial covariance matrix is the same
as that derived above.

Example 3 AR(2) model yet again

Yet another state space representation of the AR(2) model is

yt = ( 1 0 )αt

αt =

µ
yt

φ2yt−1

¶
=

µ
φ1 1
φ2 0

¶µ
yt−1
φ2yt−2

¶
+

µ
α
0

¶
+

µ
1
0

¶
ηt

Example 4 MA(1) model

The MA(1) model
yt = μ+ ηt + θηt−1

can be put in state space form in a number of ways. Define αt = (yt − μ, θηt) and
write

yt = ( 1 0 )αt + μ

αt =

µ
0 1
0 0

¶
αt−1 +

µ
1
θ

¶
ηt

The first element of αt is then θηt−1 + ηt which is indeed yt − μ.

Example 5 ARMA(1,1) model

The ARMA(1,1) model

yt = μ+ φ(yt−1 − μ) + ηt + θηt−1

can be put in a state space form similar to the state space form for the MA(1). Define
αt = (yt − μ, θηt) and write

yt = ( 1 0 )αt + μ

αt =

µ
φ 1
0 0

¶
αt−1 +

µ
1
θ

¶
ηt

The first element of αt is then φ(yt−1 − μ) + θηt−1 + ηt which is indeed yt − μ.
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Example 6 ARMA(p,q) model

The general ARMA(p, q) model

yt = φyt−1 + · · ·φpyt−p + ηt + θ1ηt−1 + · · ·+ θqηt−q

may be put in state space form in the following way. Let m = max(p, q + 1) and
re-write the ARMA(p,q) model as

yt = φyt−1 + · · ·φpyt−m + ηt + θ1ηt−1 + · · ·+ θm−1ηt−m+1

where some of the AR or MA coefficients will be zero unless p = q + 1. Define

αt =

⎛⎜⎜⎜⎝
yt

φ2yt−1 + · · ·+ φpyt−m+1 + θ1ηt + · · ·+ θm−1ηt−m+2
...

φmyt−1 + θmηt

⎞⎟⎟⎟⎠
and set

yt = ( 1 00m−1 )αt

αt =

⎛⎜⎜⎜⎜⎜⎝
φ1 1 0 · · · 0
φ2 0 1 · · · 0
...

...
...
. . .

...
φm−1 0 0 · · · 1
φm 0 0 · · · 0

⎞⎟⎟⎟⎟⎟⎠αt−1 +

⎛⎜⎜⎜⎜⎜⎝
1
θ1
...

θm−2
θm−1

⎞⎟⎟⎟⎟⎟⎠ ηt

1.1 The Kalman Filter

TheKalman filter is a set of recursion equations for determining the optimal estimates
of the state vector αt given information available at time t, It. The filter consists of
two sets of equations:

1. Prediction equations

2. Updating equations

To describe the filter, let

at = E[αt|It] = optimal estimator of αt based on It

Pt = E[(αt − at)(αt − at)0|It] = MSE matrix of at

5



1.1.1 Prediction Equations

Given at−1 and Pt−1 at time t − 1, the optimal predictor of αt and its associated
MSE matrix are

at|t−1 = E[αt|It−1] = Ttat−1 + ct

Pt|t−1 = E[(αt − at−1)(αt − at−1)0|It−1]
= TtPt−1T

0
t−1 +RtQtR

0
t

The corresponding optimal predictor of yt give information at t− 1 is

yt|t−1 = Ztat|t−1 + dt

The prediction error and its MSE matrix are

vt = yt − yt|t−1 = yt − Ztat|t−1 − dt = Zt(αt − at|t−1) + εt
E[vtv

0
t] = Ft = ZtPt|t−1Z

0
t +Ht

These are the components that are required to form the prediction error decomposi-
tion of the log-likelihood function.

1.1.2 Updating Equations

When new observations yt become available, the optimal predictor at|t−1 and its MSE
matrix are updated using

at = at|t−1 +Pt|t−1Z
0
tF
−1
t (yt − Ztat|t−1 − dt)

= at|t−1 +Pt|t−1Z
0
tF
−1
t vt

Pt = Pt|t−1 −Pt|t−1ZtF
−1
t ZtPt|t−1

The value at is referred to as the filtered estimate of αt and Pt is the MSE matrix of
this estimate. It is the optimal estimate of αt given information available at time t.

1.2 Prediction Error Decomposition

Let θ denote the parameters of the state space model. These parameters are embed-
ded in the system matrices. For the state space model with a fixed value of θ, the
Kalman Filter produces the prediction errors, vt(θ), and the prediction error vari-
ances, Ft(θ), from the prediction equations. The prediction error decomposition of
the log-likelihood function follows immediately:

lnL(θ|y) = −NT

2
ln(2π)− 1

2

TX
t=1

ln |Ft(θ)|−
1

2

TX
t=1

v0t(θ)F
−1
t (θ)vt(θ)
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1.3 Derivation of the Kalman Filter

The derivation of the Kalman filter equations relies on the following result:
Result 1: Suppose µ

x
y

¶
∼ N

µµ
μx

μy

¶
,

µ
Σxx Σxy

Σyx Σyy

¶¶
Then, the distribution of x given y is observed is normal with

E[x|y] = μx|y = μx +ΣxyΣ
−1
yy (y− μy)

var(x|y) = Σxx −ΣxyΣ
−1
yyΣyx

In the linear Gaussian state-space model, the disturbances εt, and ηt are normally
distributed and the initial state vector α0 is also normally distributed. From the
transition equation, the state vector at time 1 is

α1 = T1α0 + c1 +R1η1

Since α0 ∼ N(a0,P0), η1 ∼ N(0,Q1) and α0 and η1 are independent it follows that

E[α1] = a1|0 = T1a0 + c1

var(α1) = E[(α1 − a1|0)(α1 − a1|0)0] = P1|0 = T1P0T1 +R1Q1R
0
1

α1 ∼ N(a1|0,P1|0)

Notice that the expression for a1|0 is the prediction equation for α1 at t = 0. Next,
from the measurement equation

y1 = Z1α1 + d1 + ε1

Since α1 ∼ N(a1|0,P1|0), ε1 ∼ N(0,H1) and α1and ε1 are independent it follows
that y1 is normally distributed with

E[y1] = y1|0 = Z1a1|0 + d1

var(y1) = E[(y1 − y1|0)(y1 − y1|0)0]
= E[(Z1(α1 − a1|0) + ε1)(Z1(α1 − a1|0) + ε1)0]
= Z1P1|0Z

0
1 +H1

Notice that the expression for y1|0 is the prediction equation for y1 at t = 0.
For the updating equations , the goal is to find the distribution of α1 conditional

on y1 being observed. To do this, the joint normal distribution of (α01,y
0
1)
0 must be

determined and then Result 1 can be applied. To determine the joint distribution of
(α01,y

0
1)
0 use

α1 = a1|0 + (α1 − a1|0)
y1 = y1|0 + y1 − y1|0

= Z1a1|0 + d1 + Z1(α1 − a1|0) + ε1
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and note that

cov(α1,y1) = E[(α1 − a1|0)(y1 − y1|0)0]
= E[(α1 − a1|0)

¡
(Z1(α1 − a1|0) + ε1

¢0
]

= E[(α1 − a1|0)
¡
(α1 − a1|0)Z01 + ε01

¢
]

= E[(α1 − a1|0)(α1 − a1|0)Z01] +E[(α1 − a1|0)ε01]
= P1|0Z

0
1

Therefore,µ
α1
y1

¶
∼ N

µµ
a1|0

Z1a1|0 + d1

¶
,

µ
P1|0 P1|0Z

0
1

Z1P1|0 Z1P1|0Z
0
1 +H1

¶¶
Now, use Result 1 to determine the mean and variance of the distribution of α1
conditional on y1 being observed:

α1|y1 ∼ N(a1,P1)

a1 = E[α1|y1] = a1|0 +P1|0Z01
¡
Z1P1|0Z

0
1 +H1

¢−1
(y1 − Z1a1|0 − d1)

= a1|0 +P1|0Z
0
1F
−1
1 v1

P1 = var(α1|y1) = P1|0 −P1|0Z01
¡
Z1P1|0Z

0
1 +H1

¢−1
Z1P1|0

= P1|0 −P1|0Z01F−11 Z1P1|0

where

v1 = y1 − y1|0 = (y1 − Z1a1|0 − d1)
F1 = E[v1v

0
1] = Z1P1|0Z

0
1 +H1

Notice that the expressions for a1 and P1 are exactly the Kalman filter updating
equations for t = 1. Repeating the above prediction and updating steps for t =
2, . . . , T gives the Kalman filter recursion equations.
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