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18
Nonlinear Time Series Models

18.1 Introduction

Most of the time series models discussed in the previous chapters are lin-
ear time series models. Although they remain at the forefront of academic
and applied research, it has often been found that simple linear time series
models usually leave certain aspects of economic and financial data un-
explained. Since economic and financial systems are known to go through
both structural and behavioral changes, it is reasonable to assume that dif-
ferent time series models may be required to explain the empirical data at
different times. This chapter introduces some popular nonlinear time series
models that have been found to be effective at modeling nonlinear behavior
in economic and financial time series data.
To model nonlinear behavior in economic and financial time series, it

seems natural to allow for the existence of different states of the world or
regimes and to allow the dynamics to be different in different regimes. This
chapter focuses on models that assume in each regime the dynamic be-
havior of the time series is determined by an autoregressive (AR) model,
such as threshold AR, self-exciting threshold AR and smooth transition AR
models. This is because simple AR models are arguably the most popular
time series model and are easily estimated using regression methods. By ex-
tending AR models to allow for nonlinear behavior, the resulting nonlinear
models are easy to understand and interpret. In addition, this chapter also
covers more general Markov switching models using state space represen-
tations. The types of models that can be cast into this form are enormous.
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However, there are many other types of nonlinear time series models that
are not covered in this chapter, such as bilinear models, k nearest neighbor
methods and neural network models1. Book length treatment of nonlinear
time series models can be found in Tong (1990), Granger and Teräsvirta
(1993) and Franses and van Dijk (2000). Kim and Nelson (1999) provides
a comprehensive account of different Markov switching models that have
been used in economic and financial research.
Given the wide range of nonlinear time series models available and the

inherent flexibility of these models, the possibility of getting a spuriously
good fit to any time series data set is very high. Therefore it is usually rec-
ommended to perform a test of linearity against nonlinearity before building
a possibly complex nonlinear model. Section 18.2 first introduces a popular
test for nonlinearity, the BDS test, which has been found to have power
against a wide range of nonlinear time series models. There are many other
types of nonlinearity tests that are developed to test against specific non-
linear models. Some of these tests will be introduced together with the
nonlinear models in later sections. For example, Section 18.3 introduces
threshold AR models and two tests for threshold nonlinearity, and Sec-
tion 18.4 introduces smooth transition AR (STAR) models and a test for
STAR nonlinearity. Finally Section 18.5 describes the Markov switching
state space models and Section 18.6 gives an extended example of how to
estimate Markov switching models in S+FinMetrics.

18.2 BDS Test for Nonlinearity

The BDS test developed by Brock, Dechert and Scheinkman (1987) (and
later published as Brock, Dechert, Scheinkman and LeBaron, 1996) is ar-
guably the most popular test for nonlinearity. It was originally designed
to test for the null hypothesis of independent and identical distribution
(iid) for the purpose of detecting non-random chaotic dynamics.2 How-
ever, many studies have shown that BDS test has power against a wide
range of linear and nonlinear alternatives, for example, see Brock, Hsieh
and LeBaron (1991) and Barnett, Gallant, Hinich, Jungeilges, Kaplan and
Jensen (1997). In addition, it can also be used as a portmanteau test or
mis-specification test when applied to the residuals from a fitted model.
In particular, when applied to the residuals from a fitted linear time se-
ries model, the BDS test can be used to detect remaining dependence and
the presence of omitted nonlinear structure. If the null hypothesis cannot
be rejected, then the original linear model cannot be rejected; if the null

1A function to estimate single-hidden-layer neural network models is in the nnet
library provided with S-PLUS.

2Loosely speaking, a time series is said to be “chaotic” if it follows a nonlinear de-
terministic process but looks random.
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hypothesis is rejected, the fitted linear model is mis-specified, and in this
sense, it can also be treated as a test for nonlinearity.

18.2.1 BDS Test Statistic

The main concept behind the BDS test is the correlation integral, which
is a measure of the frequency with which temporal patterns are repeated
in the data. Consider a time series xt for t = 1, 2, · · · , T and define its
m-history as xmt = (xt, xt−1, · · · , xt−m+1). The correlation integral at em-
bedding dimension m can be estimated by:

Cm,� =
2

Tm(Tm − 1)
XX
m≤s<t≤T

I(xmt , x
m
s ; �) (18.1)

where Tm = T −m + 1 and I(xmt , x
m
s ; �) is an indicator function which is

equal to one if |xt−i − xs−i| < � for i = 0, 1, · · · ,m− 1 and zero otherwise.
Intuitively the correlation integral estimates the probability that any two
m-dimensional points are within a distance of � of each other. That is, it
estimates the joint probability:

Pr(|xt − xs| < �, |xt−1 − xs−1| < �, · · · , |xt−m+1 < xs−m+1| < �)

If xt are iid, this probability should be equal to the following in the limiting
case:

Cm
1,� = Pr(|xt − xs| < �)m

Brock, Dechert, Scheinkman and LeBaron (1996) define the BDS statistic
as follows:

Vm,� =
√
T
Cm,� − Cm

1,�

sm,�
(18.2)

where sm,� is the standard deviation of
√
T (Cm,� − Cm

1,�) and can be esti-
mated consistently as documented by Brock, Dechert, Scheinkman and
LeBaron (1997). Under fairly moderate regularity conditions, the BDS
statistic converges in distribution to N(0, 1):

Vm,�
d→ N(0, 1) (18.3)

so the null hypothesis of iid is rejected at the 5% significance level whenever
|Vm,�| > 1.96.

18.2.2 Size of BDS Test

S+FinMetrics provides the BDSTest function for performing the BDS test.3

The arguments expected by BDSTest function are:

3The BDSTest function is implemented using the C source file provided by LeBaron
(1997). The same test can also be performed by calling nonlinearTest function with
the optional argument method set to "BDS".
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FIGURE 18.1. Size of BDS test statistics using t distribution.

> args(BDSTest)

function(x, m = 3, eps = NULL, variable.removal = T)

where x specifies the time series to be tested, m instructs the test to
use the embedding dimensions from 2 to m, and eps specifies in units of
sample standard deviations the distance threshold � in (18.1). By default,
BDSTest computes the BDS statistics with � set to 0.5, 1, 1.5 and 2 standard
deviations of the data set. When the optional argument variable.removal
is set to TRUE, different numbers of points in the sample are removed for
different values of m such that the test is always computed using all the
sample observations available; if it is set to FALSE, the same points are
removed for different values of m such that the test is always computed
using the same sample observations.

Example 116 Size of BDS test

The following script illustrates how to use the BDSTest function in a
Monte Carlo experiment to investigate the size of the BDS test:

set.seed(10)

size.mat = matrix(0, 1000, 4)

for (i in 1:1000) {

if (i %% 100 == 0) {

cat("i =", i, "\n")

}
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test.dat = rt(500, df=8)

size.mat[i,] = BDSTest(test.dat, m=5, eps=1)$stat[,1]

}

One advantage of the BDS test is that it is a statistic which requires no
distributional assumption on the data to be tested. In fact, in the above
Monte Carlo experiment, the data are simulated from a t distribution with
8 degrees of freedom. Each simulated sample has 500 observations, which
is usually thought to be the minimal sample size for the BDS test to have
reliable performance. The data are simulated 1000 times and BDS statistics
using embedding dimensions from 2 to 5 are computed by setting � to one
standard deviation of the sample observations. The following commands
plot the size of the “one-sided” test against its nominal value:4

> size.p = seq(0.05, 0.95, by=0.05)

> size.q = qnorm(size.p)

> size.bds = apply(size.mat, 2,

+ function(x) colMeans(outer(x, size.q, FUN="<=")))

> par(fty="s")

> matplot(matrix(size.p, nrow=length(size.p), ncol=4),

+ size.bds, type="l",

+ xlab="Nominal Size", ylab="Monte Carlo Size")

> legend(0.6, 0.3, paste("m=",2:5,sep=""), type="l", lty=1:4)

and the result is shown in Figure 18.1. Considering the Monte Carlo
experiment is conducted using only 1000 replications, the plot shows the
test has very good size behavior for all the chosen embedding dimensions.

18.2.3 BDS Test As a Nonlinearity Test and a
Mis-specification Test

Another advantage of the BDS test is that when applied to model residu-
als, the first order asymptotic distribution of BDS statistic given in (18.3)
is independent of estimation errors under certain sufficient conditions. In
general, de Lima (1996) shows that for linear additive models, or models
that can be transformed into that format, the BDS test is nuisance param-
eter free and does not require any adjustment when applied to fitted model
residuals. Thus the BDS test can be used as a test for nonlinearity, or as a
test for model mis-specification.

Example 117 Nonlinearity in weekly returns of Dutch Guilder foreign ex-
change rates

4The BDS test is actually a two-sided test. However, for the purpose of illustrating
distributional properties of BDS statistics, the plots are generated using the “incorrect”
one-sided test.
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The "timeSeries" data set DFX.ts in S+FinMetrics contains weekly
returns on the Dutch Guilder spot exchange rate from January 1980 to
December 1998. To test for the existence of nonlinearity in this data set,
use the following command:

> BDSTest(DFX.ts, m=5)

BDS Test for Independence and Identical Distribution

Null Hypothesis: DFX.ts is independently and identically

distributed.

Embedding dimension = 2 3 4 5

Epsilon for close points = 0.0073 0.0146 0.0219 0.0291

Test Statistics =

[ 0.01 ] [ 0.01 ] [ 0.02 ] [ 0.03 ]

[ 2 ] 1.0802 1.5908 1.9991 2.6097

[ 3 ] 3.1661 3.0984 3.5817 4.1536

[ 4 ] 4.0523 3.9006 4.4871 5.1613

[ 5 ] 5.2798 4.7189 5.3238 5.9882

p-value =

[ 0.01 ] [ 0.01 ] [ 0.02 ] [ 0.03 ]

[ 2 ] 0.2801 0.1117 0.0456 0.0091

[ 3 ] 0.0015 0.0019 0.0003 0.0000

[ 4 ] 0.0001 0.0001 0.0000 0.0000

[ 5 ] 0.0000 0.0000 0.0000 0.0000

In the above output, the default values of � = (0.5, 1.0, 1.5, 2.0) used in
the test are converted back to the units of the original data, and the null
hypothesis that the data is iid is rejected for most combinations of m and
� at conventional significance levels. Since there is almost no discernible
linear structure in the levels of DFX.ts, the results from the BDS test
suggest that there may be nonlinear structure in the data.
One possibility to model the nonlinear structure in DFX.ts is to use a

GARCH(1,1) model:

> DFX.garch = garch(DFX.ts~1, ~garch(1,1), trace=F)

> summary(DFX.garch)$coef

Value Std.Error t value Pr(>|t|)

C 0.00021084425 3.939145e-004 0.5352539 5.925817e-001

A 0.00001942582 5.508377e-006 3.5265964 4.381551e-004

ARCH(1) 0.10297320531 2.096693e-002 4.9112210 1.041116e-006

GARCH(1) 0.80686268689 3.798031e-002 21.2442379 0.000000e+000
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All the estimated parameters in DFX.garch are highly significant ex-
cept for the conditional mean parameter C. To evaluate if the GARCH(1,1)
model adequately captures the nonlinear structure in DFX.ts, the BDS test
can be used again on the standardized residuals of DFX.garch as a mis-
specification test. There are two ways to apply the BDS test to GARCH
standardized residuals: one is to apply the BDS test directly to the stan-
dardized residuals:

> BDSTest(residuals(DFX.garch, standard=T), m=5,

+ eps=c(0.5, 1, 1.5))

BDS Test for Independence and Identical Distribution

Null Hypothesis: residuals(DFX.garch, standard = T) is

independently and identically distributed.

Embedding dimension = 2 3 4 5

Epsilon for close points = 0.5002 1.0004 1.5006

Test Statistics =

[ 0.5 ] [ 1 ] [ 1.5 ]

[ 2 ] -1.9487 -1.5430 -1.6035

[ 3 ] -1.4581 -1.1172 -1.2687

[ 4 ] -1.2832 -0.9735 -1.1355

[ 5 ] -0.8634 -0.6079 -0.8305

p-value =

[ 0.5 ] [ 1 ] [ 1.5 ]

[ 2 ] 0.0513 0.1228 0.1088

[ 3 ] 0.1448 0.2639 0.2045

[ 4 ] 0.1994 0.3303 0.2561

[ 5 ] 0.3879 0.5432 0.4062

and the other is to apply it to the logarithms of squared standardized
residuals:5

> BDSTest(log(residuals(DFX.garch, standard=T)^2),

+ m=5, eps=c(0.5, 1, 1.5))

BDS Test for Independence and Identical Distribution

5When BDSTest function is applied to a fitted model object, it is currently always
applied to the residuals of the fittd model, instead of standardized residuals or logarithms
of squared standardized residuals.
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Null Hypothesis: log(residuals(DFX.garch, standard = T)^2)

is independently and identically distributed.

Embedding dimension = 2 3 4 5

Epsilon for close points = 1.1218 2.2435 3.3653

Test Statistics =

[ 1.12 ] [ 2.24 ] [ 3.37 ]

[ 2 ] -0.6461 -0.5538 -0.5463

[ 3 ] -0.8508 -0.9030 -0.9175

[ 4 ] -0.7540 -0.9977 -1.0821

[ 5 ] -0.9397 -0.8581 -1.0252

p-value =

[ 1.12 ] [ 2.24 ] [ 3.37 ]

[ 2 ] 0.5182 0.5797 0.5849

[ 3 ] 0.3949 0.3665 0.3589

[ 4 ] 0.4509 0.3184 0.2792

[ 5 ] 0.3474 0.3909 0.3052

Here, both ways of applying the BDS test suggest that the GARCH(1,1)
model provides an adequate fit to the original data and successfully removes
the nonlinearity in the data. In general, when applied to standardized resid-
uals from a fitted GARCH model, earlier studies (for example, see Brock,
Hsieh and LeBaron, 1991) suggest that the BDS statistic needs to be ad-
justed to have the right size and Monte Carlo simulations are usually relied
upon to derive the adjustment factor for specific GARCH models. How-
ever, following suggestions in Brock and Potter (1993) and de Lima (1996),
recent studies (for example, see Caporale, Ntantamis, Pantelidis and Pittis,
2004 and Fernandes and Preumont, 2004) show that if applied to the loga-
rithms of squared standardized residuals from a fitted GARCH model, the
BDS test actually has correct size, because the logarithmic transformation
casts the GARCH model into a linear additive model which satisfies the
conditions in de Lima (1996) for the BDS test to be nuisance parameter
free.6

Example 118 Size of BDS mis-specification test for GARCH models

The following script performs a Monte Carlo experiment to illustrate the
different size behavior of the BDS test when applied to standardized resid-
uals and logarithms of squared standardized residuals for the GARCH(1,1)
model. The data sets are simulated using the GARCH fit in DFX.garch with

6Since GARCH models with leverage effects cannot be transformed into a linear
additive model, BDS test may not have good size behavior for those models.
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FIGURE 18.2. Size of BDS test when applied to logarithms of squared standard-
ized GARCH residuals.
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FIGURE 18.3. Size of BDS test when applied to standardized GARCH residuals.
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1000 observations. The GARCH estimation and BDS test are repeated 1000
times.

set.seed(10)

sim.garch.dat = simulate(DFX.garch, sigma=F, n.start=500,

n=1000, n.rep=1000)

size.garch.res = matrix(0, 1000, 4)

size.garch.log = matrix(0, 1000, 4)

for (i in 1:1000) {

tmp = garch(sim.garch.dat[,i]~1, ~garch(1,1), trace=F)

if (i %% 10 == 0)

cat("Simulation No.", i, "\n")

tmp.res = residuals(tmp, standardized=T)

size.garch.res[i,] = BDSTest(tmp.res, m=5, eps=1)$stat[,1]

size.garch.log[i,] = BDSTest(log(tmp.res^2), m=5,

eps=1)$stat[,1]

}

size.p = seq(0.05, 0.95, by=0.05)

size.q = qnorm(size.p)

size.garch.res = apply(size.garch.res, 2,

function(x) colMeans(outer(x, size.q, FUN="<=")))

size.garch.log = apply(size.garch.log, 2,

function(x) colMeans(outer(x, size.q, FUN="<=")))

As in Example 116, the sizes of the “one-sided” test applied to the stan-
dardized residuals and the logarithms of squared standardized residuals are
plotted against the nominal sizes in Figure 18.3 and Figure 18.2, respec-
tively. Obviously the sizes of the BDS test computed using standardized
residuals are off and become more conservative for larger values of m, but
those using logarithms of squared standardized residuals are reliable.

18.3 Threshold Autoregressive Models

As discussed in the previous section, when there is no prior knowledge
about the type of nonlinearity a time series may have, the BDS test can be
used to test for the existence of nonlinearity in either the time series itself
or the residuals from a fitted linear time series model. However, sometimes
economic or financial theory, or even stylized empirical facts, may suggest
a specific form of nonlinearity for a time series. In these cases, it is usually
preferred to perform the test for the specific form of nonlinearity and build
a nonlinear time series model for the form of nonlinearity detected.
One popular class of nonlinear time series models is the threshold autore-

gressive (TAR) models, which is probably first proposed by Tong (1978)
and discussed in detail in Tong (1990). The TAR models are simple and
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easy to understand, but rich enough to generate complex nonlinear dy-
namics. For example, it can be shown that the TAR models can have limit
cycles and thus be used to model periodic time series, or produce asymme-
tries and jump phenomena that cannot be captured by a linear time series
model.
In spite of the simplicity of the TAR model form, there are many free

parameters to estimate and variables to choose when building a TARmodel,
and this has hindered its early use. Recently, however, much progress has
been made with regard to specification and estimation of TAR models.
The next section introduces the general form of TAR models and a special
class called SETAR models, and then illustrates how to perform tests for
threshold nonlinearity and estimate unknown parameters in TAR models
using ready-to-use functions in S+FinMetrics.

18.3.1 TAR and SETAR Models

Consider a simple AR(p) model for a time series yt:
7

yt = µ+ φ1yt−1 + φ2yt−2 + · · ·+ φpyt−p + σ�t (18.4)

where φi (i = 1, 2, · · · , p) are the AR coefficients, �t ∼WN(0, 1) and σ > 0
is the standard deviation of disturbance term. The model parameters φ =
(µ, φ1, φ2, · · · , φp) and σ are independent of time t and remain constant.
To capture nonlinear dynamics, TAR models allow the model parameters
to change according to the value of a weakly exogenous threshold variable
zt:

yt = Xtφ
(j) + σ(j)�t if rj−1 < zt ≤ rj (18.5)

where Xt = (1, yt−1, yt−2, · · · , yt−p), j = 1, 2, · · · , k, and −∞ = r0 < r1 <
· · · < rk =∞. In essence, the k− 1 non-trivial thresholds (r1, r2, · · · , rk−1)
divide the domain of the threshold variable zt into k different regimes. In
each different regime, the time series yt follows a different AR(p) model.

8

When the threshold variable zt = yt−d, with the delay parameter d being
a positive integer, the dynamics or regime of yt is determined by its own
lagged value yt−d and the TAR model is called a self-exciting TAR or
SETAR model. For the ease of notation, let SETAR(1) denote the one-
regime linear AR model with k = 1, SETAR(2) denote the two-regime
TAR model with k = 2, etc. For the one-regime SETAR(1) model, −∞ =

r0 < r1 = ∞ and the unknown parameters are Θ = (φ(1), σ(1)); for the

7See Chapter 3 and the references therein for basic concepts in linear time series
analysis.

8Although the AR order p is assumed to be the same in different regimes throughout
this chapter and in the related S+FinMetrics functions for the ease of illustration and
programming, in theory the AR order can be different for different regimes.
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two-regime SETAR(2) model, the unknown parameters include the single

threshold −∞ < r1 <∞ and Θ = (φ(1),φ(2), σ(1), σ(2)).
The next section introduces two approaches for testing threshold nonlin-

earity and estimating the unknown parameters in the associated SETAR
models, following Tsay (1989) and Hansen (1997), respectively. Although
the illustrations and examples focus on SETAR models, the theory and
procedures can also be applied to TAR models in general. Finally, note
that if only the intercept terms µ(j) are different in different regimes, SE-
TAR models can be used to capture level shifts in yt; if only the variance
terms σ(j) are different in different regimes, SETAR models can be used to
capture additive outliers or innovation outliers in yt. Chapter 17 provides
a more comprehensive approach for analyzing time series models that are
robust to level shifts and outliers.

18.3.2 Tsay’s Approach

Before developing a SETAR model, it is preferred to test for the existence
of threshold-type nonlinearity in the time series first. The null hypothesis is
usually the time series yt follows the SETAR(1) model, while the alternative
hypothesis is that yt follows a SETAR(j) model with j > 1. One compli-
cating issue in testing for threshold nonlinearity is that the thresholds ri
for i = 1, 2, · · · , k − 1 are only identified under the alternative hypothe-
sis. To avoid dealing with the thresholds directly, Tsay (1989) proposes a
conventional F test based on an auxiliary regression.

Arranged Autoregression and Tsay’s F Test

Tsay’s approach centers on the use of an arranged autoregression with
recursive least squares (RLS) estimation. Consider the SETAR model in
(18.5) with zt = yt−d. Since the threshold values ri are usually unknown,
Tsay suggests to arrange the equations in (18.5) for t = max(d, p)+1, · · · , n,
where n is the sample size, such that the equations are sorted accord-
ing to the threshold variable yt−d which may take any value in Yd =
(yh, · · · , yn−d) with h = max(1, p+ 1− d):

yπi = Xπiφ̂+ σ̂�πi (18.6)

where i = 1, 2, · · · , n0, n0 = n − d − h + 1 is the effective sample size
for the above arranged autoregression, and πi corresponds to the index in
the original sample such that yπi−d is the i-th smallest value in Yd. For
example, if y10 is the smallest value in Yd, then π1 = 10 + d; if y20 is the
second smallest value in Yd, then π2 = 20 + d, etc. So if the original time
series is generated by a SETAR(2) model and there are m < n values in Yd

that are smaller than the threshold r1, then the first m equations in (18.6)
correspond to the first regime and the remaining equations correspond to
the second regime.
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To test for the existence of threshold-type nonlinearity, Tsay suggests to
compute RLS estimates of φ̂ in (18.6). If there is no threshold nonlinearity,
the standardized predictive residuals êπi from RLS of (18.6) should be white
noise asymptotically and orthogonal to Xπi . However, if yt is a SETAR(j)

process with j > 1, the RLS estimates of φ̂ are biased and Ψ̂ in the following
auxiliary regression will be statistically significant:

êπi = X
0
πiΨ+ uπi (18.7)

Thus the conventional F statistic for testing Ψ = 0 the above regression
can be used as a test for threshold nonlinearity.

Example 119 SETAR nonlinearity in NASDAQ realized volatility

To illustrate the usage of Tsay’s F test for threshold nonlinearity, consider
the weekly realized volatility of NASDAQ 100 index constructed as follows
from the S+FinMetrics data set ndx.dat:

> ndx.ret2 = getReturns(ndx.dat[,"Close"])^2

> ndx.rvol = sqrt(aggregate(ndx.ret2, FUN=sum, by="weeks",

+ week.align=1))

> colIds(ndx.rvol) = "RVOL"

> par(mfrow=c(2,2))

> plot(ndx.rvol, reference.grid=F, main="RVOL")

> plot(log(ndx.rvol), reference.grid=F, main="Log RVOL")

The levels and the logarithms of the weekly realized volatility series are
shown in the top half of Figure ??. The time series plots suggest that the
volatility may have switched to a different regime after the first quarter of
2000. Before testing for threshold nonlinearity, the ACF and PACF plots
can be used to help identify the autoregressive order to use:

> ndx.acf = acf(log(ndx.rvol))

> ndx.pacf = acf(log(ndx.rvol), type="partial")

The resulting plots are shown in the bottom half of Figure 18.4. The ACF
function decays very slowly and remains significant even after 30 lags, while
the PACF function is significant for the first six lags. This suggests that
an AR model with order from 2 to 6 may be considered as a starting point
for modeling the logarithms of realized volatility log(ndx.rvol).9

The S+FinMetrics function nonlinearTest can now be used to test for
threshold nonlinearity:

> nonlinearTest(log(ndx.rvol), method="threshold", p=6, d=1:6)

9Hereinafter the logarithms of ndx.rvol are used because usually the logarithms of
realized volatility tend to be normally distributed. See Andersen, Bollerslev, Diebold and
Ebens (2001) for a detailed analysis of properties of realized volatility for stock returns.
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FIGURE 18.4. Weekly realized volatility of NASDAQ 100 index.

Nonlinearity Test: Threshold Nonlinearity

Null Hypothesis: no threshold nonlinearity

F-stat dof P-val

d=1 1.2568 (7,253) 0.2724

d=2 1.4203 (7,253) 0.1974

d=3 1.2586 (7,253) 0.2714

d=4 0.5104 (7,253) 0.8264

d=5 0.5224 (7,253) 0.8173

d=6 0.1179 (7,253) 0.9971

Note that the optional argument p specifies the AR order to use in the
arranged autoregression, and the optional argument d is used to select the
delay parameters from 1 to 6. The output gives the F statistics and their
corresponding p-values for all chosen values of delay parameter d, and shows
that the evidence for threshold nonlinearity is not strong with the AR(6)
specification. Since a high order AR model may actually approximate non-
linear dynamics relatively well, a lower order AR(2) specification may also
be tried:

> nonlinearTest(log(ndx.rvol), method="threshold", p=2, d=1:2)
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Nonlinearity Test: Threshold Nonlinearity

Null Hypothesis: no threshold nonlinearity

F-stat dof P-val

d=1 4.4468 (3,265) 0.0046

d=2 4.0010 (3,265) 0.0082

Now the null hypothesis of no threshold nonlinearity is actually rejected
for both d = 1 and d = 2 with an AR(2) specification!

Choice of Delay Parameter and Thresholds

After rejecting the null hypothesis of no threshold nonlinearity, one pro-
ceeds to the next stage of estimating a SETAR model. Tsay (1989) suggests
to identify the delay parameter d and the thresholds ri for i = 1, · · · , k− 1
first, and then use least squares (LS) to estimate the unknown parameters
Θ in (18.5) with given values of d and thresholds. As long as there are
enough observations in each regime, the LS estimates are consistent.
For a given AR order p, Tsay suggests to choose the delay parameter d

such that
d = argmax

v∈S
F (p, v)

where F (p, v) is the F statistic of the auxiliary regression (18.7) with AR
order p and the delay parameter equal to v, and S is a set of values of d
to consider. For the NASDAQ realized volatility series, d can be set to 1
according to the nonlinearity test output using this rule.
Tsay (1989) also proposes to use two graphical tools for identifying the

threshold values: (1) the scatter plot of standardized predictive residuals
êπi from the arranged autoregression versus the ordered threshold variable;

(2) the scatter plot of the t-statistics of the RLS estimates of φ̂ from the
arranged autoregression versus the ordered threshold variable. Both plots
may exhibit structural breaks at the threshold values. To produce such
plots for the nonlinearity test, set the optional argument save.RLS to TRUE
when calling nonlinearTest:

> ndx.test = nonlinearTest(log(ndx.rvol), method="threshold",

+ p=2, d=1, save.RLS=T)

> names(ndx.test)

[1] "stat" "df" "threshold" "residuals"

[4] "tRatios" "yd" "method"

The returned object ndx.test includes the following components: yd
is the ordered threshold variable, residuals is the standardized predic-
tive residuals and tRatios is the t-statistics of RLS estimates of the AR
coefficients. To produce the scatter plot of t-statistics versus the ordered
threshold variable, for example, use the following commands:
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FIGURE 18.5. Scatter plot of t-statistics of RLS estimates of AR coefficients
versus ordered threshold variable.

> par(mfrow=c(2,1))

> plot(ndx.test$yd, ndx.test$tRatio[,1], xlab="Y_{t-1}",

+ ylab="t-ratio of AR(1)")

> plot(ndx.test$yd, ndx.test$tRatio[,2], xlab="Y_{t-1}",

+ ylab="t-ratio of AR(2)")

The plots in Figure 18.5 show that both estimates are significant with
t-statistics greater than 2 in absolute values in most cases. In addition, the
trend in the t-statistics seems to have two breaks: one occurs when the
threshold variable is around −2.8; and the other occurs when the threshold
variable is around −2.4. This suggests a SETAR(3) model with two non-
trivial threshold values: r1 = −2.8 and r2 = −2.4.

LS Estimates of SETAR Model

After choosing the delay parameter d and the thresholds, other unknown
parameters inΘ of the SETAR model may be simply estimated by LS using
the S+FinMetrics function SETAR, which takes the following arguments:

> args(SETAR)

function(x, threshold, p = 1, d = NULL)

where the first argument specifies the data to be used, the second ar-
gument gives the vector of threshold values, and the optional arguments
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p and d specify the AR order and delay parameter, respectively. To esti-
mate the SETAR(3) model with thresholds (−2.8,−2.4), use the following
command:

> ndx.setar = SETAR(log(ndx.rvol), c(-2.8, -2.4), p=2, d=1)

> summary(ndx.setar)

Call:

SETAR(x = log(ndx.rvol), threshold = c(-2.8, -2.4), p = 2,

d = 1)

Coefficients:

regime.1 regime.2 regime.3

Intercept -1.5043 -2.4463 -3.2661

(std.err) 0.2778 1.1323 0.8676

(t.stat) -5.4157 -2.1605 -3.7643

lag1 0.2866 -0.0373 -0.6283

(std.err) 0.0776 0.4400 0.3795

(t.stat) 3.6942 -0.0848 -1.6555

lag2 0.2573 0.1381 0.2191

(std.err) 0.0687 0.1305 0.1279

(t.stat) 3.7449 1.0577 1.7138

Std. Errors of Residuals:

regime.1 regime.2 regime.3

0.4291 0.3794 0.3583

Information Criteria:

logL AIC BIC HQ

-157.5830 333.1659 366.5000 346.5063

total regime.1 regime.2 regime.3

Degree of freedom: 300 228 44 19

Time period: from 01/15/1996 to 10/08/2001

Note that the AR coefficients for the first regime are estimated to be
(0.29, 0.26) which appear to be significant, while the AR coefficients for the
second and third regimes are estimated to be (−0.03, 0.14) and (−0.63, 0.22),
respectively, and are not very significant. The estimated regime indices can
be plotted as follows:

> plot(timeSeries(ndx.setar$regime,

+ pos=positions(ndx.rvol)[-(1:2)]), reference.grid=F,
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FIGURE 18.6. Estimated regime indices of ndx.setar.

+ ylab="Regime Index", plot.args=list(type="h"))

and the plot is shown in Figure 18.6. It can be seen that most of the
observations prior to 2000 fall into the first regime, and the third regime
observations usually follow the second regime observations.

Predictions from SETAR Models

After estimating a SETAR model, sometimes a more important task is
to generate forecasts of future values of the time series that is of interest.
Predictions from SETAR models can be easily computed using Monte Carlo
simulations, by following the same principle used for VAR forecasting (see
Section 11.3 for details). For example, to generate 1-step-ahead to 100-
step-ahead forecasts from the fitted model ndx.setar, use the following
command:

> class(ndx.setar)

[1] "SETAR"

> ndx.pred = predict(ndx.setar, n.predict=100, CI.alpha=0.6,

+ n.sim=10000)

Note that the fitted object ndx.setar has class "SETAR". By calling the
generic predict function on "SETAR" objects, the simulation-based fore-
casting method implemented in predict.SETAR is automatically applied
on the "SETAR" objects. The optional argument n.predict is used to spec-
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FIGURE 18.7. Predicted realized volatility (in logarithm scale) from ndx.setar.

ify the number of forecasts to obtain in the future, the argument CI.alpha
is used to specify 60% pointwise confidence intervals for the forecasts based
on Monte Carlo simulations, and the argument n.sim is used to specify the
number of simulations to be used for computing the forecasts. The forecasts
and their pointwise confidence intervals can be plotted as follows:

> tsplot(cbind(ndx.pred$values, ndx.pred$CI), lty=c(1,6,6))

and the plot is shown Figure 18.7. After less than 20 steps, the forecasts
settle down to the asymptotic mean of the SETAR process.

18.3.3 Hansen’s Approach

Although the procedure introduced in the above subsection for identifying
and estimating SETAR models is easy to perform, it requires some human
decisions especially for choosing the threshold values. This subsection in-
troduces another test for threshold nonlinearity and another procedure for
estimating SETAR models as proposed by Hansen (1997). The advantage
of this procedure is that the thresholds can be estimated together with
other model parameters and valid confidence intervals can be constructed
for the estimated thresholds. The disadvantage is that the current imple-
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mentation only supports the two-regime SETAR model and thus only one
threshold can be estimated.10

Hansen’s sup-LR Test

Hansen (1997) considers the following two-regime variant of (18.5):

yt = Xtφ
(1)(1− I(yt−d > r1)) +Xtφ

(2)I(yt−d > r1) + �t (18.8)

where I(A) is the indicator function that is equal to 1 if A is true and 0
otherwise, �t ∼ iid(0, σ2), and there is only one non-trivial threshold r1.
As discussed in the previous subsection, if d and r1 are known, then the
model parameters Θ = (φ(1),φ(2), σ2) can be estimated by least squares:

Θ̂ = argmin
φ(1),φ(2)

σ̂2(r1) = argmin
φ(1),φ(2)

1

n0

nX
t=h

�̂2t (18.9)

where h = max(1, p+ 1− d) and n0 = n− d− h+ 1 is the effective sample
size after adjusting for starting values and the delay parameter.
To test the null hypothesis of SETAR(1) against the alternative hypoth-

esis of SETAR(2), the likelihood ratio test assuming normally distributed
errors can be used:

F (r1) =
RSS0 −RSS1

σ̂21(r1)
= n0

σ̂20 − σ̂21(r1)

σ̂21(r1)
(18.10)

where RSS0 is the residual sum of squares from SETAR(1), RSS1 is the
residual sum of squares from SETAR(2) given the threshold r1, and σ̂20 is
the residual variance of SETAR(1). The above test is also the standard F
test since (18.8) is a linear regression. However, since the threshold r1 is
usually unknown, Hansen (1997) suggests to compute the following sup-LR
test :

Fs = sup
r1∈Yd

F (r1) (18.11)

by searching over all the possible values of the threshold variable yt−d. In
practice, to ensure each regime has a non-trivial proportion of observations,
a certain percentage of Yd at both ends are usually trimmed and not used.
The sup-LR test has near-optimal power as long as the error term �t is

iid. If �t is not iid, the F test needs to be replaced by heteroskedasticity-
consistent Wald or Lagrange multiplier test. One complicating issue is that
since r1 is only identified under the alternative, the asymptotic distribution
of Fs is not χ

2 and non-standard. Hansen (1996) shows that the asymptotic
distribution may be approximated by a bootstrap procedure in general, and

10Hansen (1999) has generalized this procedure to SETAR models with more than
two regimes.
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Hansen (1997) gives the analytic form of the asymptotic distribution for
testing against SETAR(2) models.
The nonlinearTest function in S+FinMetrics can also be used to pro-

duce Hansen’s sup-LR test, simply by setting the optional argument method
to "sup-LR". For example, to test for threshold nonlinearity in weekly re-
alized volatility of NASDAQ 100 index using the same AR(2) specification
and choosing the threshold variable to be zt = yt−1 as in Tsay’s F test, use
the following command:11

> nonlinearTest(log(ndx.rvol), method="sup-LR", p=2, d=1,

+ trim.pct=0.1, n.boot=1000)

Nonlinearity Test: Hansen sup-LR Nonlinearity

Null Hypothesis: no threshold with the specified threshold

variable

Under Maintained Assumption of Homoskedastic Errors --

Number of Bootstrap Replications 1000

Trimming percentage 0.1

Threshold Estimate -2.8768

F-test for no threshold 22.9687

Bootstrap P-Value 0

Note that the optional argument trim.pct is used to trim 10% observa-
tions at both ends ofYd, and n.boot is used to set the number of bootstrap
simulations for computing the p-value of the test. Again, the null hypoth-
esis of no threshold nonlinearity is strongly rejected. To produce the test
robust to heteroskedastic errors, simply set the optional argument hetero
to TRUE:

> nonlinearTest(log(ndx.rvol), method="sup-LR", p=2, d=1,

+ trim.pct=0.1, n.boot=1000, hetero=T)

Nonlinearity Test: Hansen sup-LR Nonlinearity

Null Hypothesis: no threshold with the specified threshold

variable

Allowing Heteroskedastic Errors using White Correction --

Number of Bootstrap Replications 1000

Trimming percentage 0.1

Threshold Estimate -2.8768

11General TAR alternatives with arbitrary threshold variable can also be tested by
using setting the optional argument q instead of d.
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F-test for no threshold 18.7357

Bootstrap P-Value 0

Sequential Estimation of SETAR Models

After confirming the existence of threshold nonlinearity, Hansen (1997)
suggests to estimate the threshold value r1 together with φ using least
squares methods:

r̂1 = argmin
r1∈Yd

σ̂2(r1, d) (18.12)

where σ̂2(r1, d) is the residual variance of the LS estimate of (18.8) given
the threshold r1 and the delay parameter d. So the threshold value r1 can
be estimated sequentially by searching over the possible values of r1. If the
delay parameter is not known, it can be estimated similarly by expanding
the search to another dimension:

(r̂1, d̂) = argmin
r1,d

σ̂2(r1, d) (18.13)

One thing to note is that for the asymptotic inference on SETAR models
to work correctly, each regime must have a non-trivial proportion of obser-
vations in the limit. Therefore, just as in computing Hansen’s sup-LR test,
a certain percentage of Yd at both ends are usually trimmed and not used
when searching for the value of r1.
The TAR function in S+FinMetrics implements the above sequential es-

timation approach.12 For example, to estimate a two-regime SETAR model
with d = 1 and AR(2) components, use the following command:

> ndx.setar.r = TAR(log(ndx.rvol), p=2, d=1, trim.pct=0.1)

> ndx.setar.r

Call:

TAR(x = log(ndx.rvol), p = 2, d = 1, trim.pct = 0.1)

Coefficients:

regime.1 regime.2

intercept -2.0356 -1.4614

lag1 0.1903 0.2183

lag2 0.2056 0.2435

Std. Errors of Residuals:

12As its name suggests, TAR function actually supports general TAR models, in ad-
dition to SETAR models. A general threshold variable can be used by specifying the
optional argument q. In addition, TAR function also allows for the use of some popular
functions of a variable as the threshold variable. See the online help file for TAR for
details.



18.3 Threshold Autoregressive Models 673

regime.1 regime.2

0.4233 0.3828

Information Criteria:

logL AIC BIC HQ

-155.7369 323.4739 345.6966 332.3674

total regime.1 regime.2

Degree of freedom: 300 207 87

Time period: from 01/15/1996 to 10/08/2001

Note that the optional argument trim.pct is used to set the trimming
percentage for Yd to 10%. Compared with the three-regime SETAR fit
in the previous subsection, this two-regime SETAR model actually gives
a better fit in terms of log-likelihood value and BIC, which is probably
due to the fact the threshold value is also optimized in this fit. The es-
timated threshold value is given as a component in the returned object
ndx.setar.r:

> ndx.setar.r$qhat

[1] -2.876807

which is quite close to the first threshold identified using Tsay’s t-statistics
plot in the previous subsection.

Confidence Interval for the Threshold

Using the generic summary function on the fitted model object ndx.setar.r
displays more details of the model fit:

> summary(ndx.setar.r)

Call:

TAR(x = log(ndx.rvol), p = 2, d = 1, trim.pct = 0.1)

Minimized SSE for all threshold variable candidates:

RVOL.lag1

49.84288

Threshold estimate for the threshold variable chosen with

smallest minimized SSE:

CI.lower point CI.upper

-3.826435 -2.876807 -2.828314

Coefficients and standard errors:

regime.1 (se) regime.2 (se)

intercept -2.036 0.325 -1.461 0.372
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lag1 0.190 0.103 0.218 0.150

lag2 0.206 0.073 0.244 0.099

Coefficient confidence intervals:

regime.1.lower regime.1.upper

intercept -2.700 -1.075

lag1 -0.020 0.417

lag2 0.055 0.412

regime.2.lower regime.2.upper

intercept -2.435 -0.454

lag1 -0.093 0.600

lag2 -0.003 0.472

Std. Errors of Residuals:

regime.1 regime.2

0.423 0.383

Information Criteria:

logL AIC BIC HQ

-155.737 323.474 345.697 332.367

total regime.1 regime.2

Degree of freedom: 300 207 87

Time period: from 01/15/1996 to 10/08/2001

Note that standard inference statistics as well as confidence intervals
for both the coefficients and the threshold are given. In particular, as pro-
posed by Hansen (1997), an asymptotically valid confidence interval for the
threshold is constructed by inverting the likelihood ratio test for testing the
null hypothesis that the threshold is equal to a given value r:

LR(r) = n0
σ̂2(r)− σ̂2(r̂1)

σ̂2(r̂1)
(18.14)

The 100 · α% confidence interval for the threshold r1 is given by the set of
values of r for which the above LR test cannot be rejected at significance
level 1− α:

CI(α) = {r : LR(r) ≤ Zα} (18.15)

where Zα is the 100 ·α% quantile of the asymptotic distribution of the LR
statistic given in Hansen (1997). A graphical tool to help locate the confi-
dence interval for the threshold is to plot the above LR statistics against
different values of r, and choose the region of r close to r1 where the LR
statistics are smaller than the critical value Zα. The necessary information
to generate such a plot is contained in the LR.q component of the fitted
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FIGURE 18.8. Confidence interval for threshold value by inverting likelihood
ratio statistics.

model object. For example, to produce the plot using the fitted model
object ndx.setar.r, use the following commands:

> names(ndx.setar.r$LR.q)

[1] "LR" "Threshold" "Critical"

> plot(ndx.setar.r$LR.q$Threshold, ndx.setar.r$LR.q$LR,

+ type="b", xlab="Threshold", ylab="LR stat")

> abline(h=ndx.setar.r$LR.q$Critical)

and the plot is shown in Figure 18.8. This plot can also be generated
directly and applying the generic plot function on the fitted model object
ndx.setar.r.

Predictions From TAR Models

Just like with SETAR models, predictions from general TAR models can
be computed using Monte Carlo simulations, as long as the future values
of the threshold variable are known. In fact, the objects returned by the
TAR function have class "TAR", which inherits from the "SETAR" class. For
example,

> class(ndx.setar.r)

[1] "TAR"

> inherits(ndx.setar.r, "SETAR")
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[1] T

Thus, when the generic predict function is called on "TAR" objects, the
simulation-based forecasting procedure in predict.SETAR is also used to
produce the forecasts. For example, to generate forecasts from the fitted
model object ndx.setar.r, use the following command:

> ndx.pred.2 = predict(ndx.setar.r, n.predict=100,

+ CI.alpha=0.6, n.sim=10000)

which are very similar to the forecasts produced earlier using a three-
regime model.

18.4 Smooth Transition Autoregressive Models

In the TAR models introduced in the previous section, a regime switch
happens when the threshold variable crosses a certain threshold. Although
the model can capture many nonlinear features usually observed in eco-
nomic and financial time series, sometimes it is counter-intuitive to sug-
gest that the regime switch is abrupt or discontinuous. Instead, in some
cases it is reasonable to assume that the regime switch happens gradually
in a smooth fashion. If the discontinuity of the thresholds is replaced by
a smooth transition function, TAR models can be generalized to smooth
transition autoregressive (STAR) models.
In this section two main STAR models — logistic STAR and exponential

STAR — are introduced. After illustrating how to test for STAR nonlin-
earity, examples will be given to show how to estimate STAR models in
S+FinMetrics. A systematic modeling cycle approach for STAR models is
proposed by Teräsvirta (1994), and van Dijk, Teräsvirta and Franses (2002)
provides a survey of recent development for STAR models.

18.4.1 Logistic and Exponential STAR Models

In the SETAR model (18.8) considered in the previous section, the obser-
vations yt are generated either from the first regime when yt−d is smaller
than the threshold, or from the second regime when yt−d is greater than
the threshold. If the binary indicator function is replaced by a smooth tran-
sition function 0 < G(zt) < 1 which depends on a transition variable zt
(like the threshold variable in TAR models), the model becomes a smooth
transition autoregressive (STAR) model :

yt = Xtφ
(1)(1−G(zt)) +Xtφ

(2)G(zt) + �t (18.16)

Now the observations yt switch between two regimes smoothly in the sense
that the dynamics of yt may be determined by both regimes, with one
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FIGURE 18.9. Logistic and exponential transition functions.

regime having more impacts in some times and the other regime having
more impacts in other times. Another interpretation is that STAR models
actually allow for a “continuum” of regimes, each associated with a different
value of G(zt).
Two popular choices for the smooth transition function are the logis-

tic function and the exponential function. Using the logistic function, the
transition function can be specified as:

G(zt; γ, c) =
1

1 + e−γ(zt−c)
, γ > 0 (18.17)

and the resulting model is referred to as logistic STAR or LSTAR model.
The parameter c can be interpreted as the threshold, as in TARmodels, and
γ determines the speed and smoothness of transition. Using the exponential
function, the transition function can be specified as:

G(zt; γ, c) = 1− e−γ(zt−c)
2

, γ > 0 (18.18)

and the resulting model is referred to as exponential STAR or ESTAR
model. As in LSTAR models, c can be interpreted as the threshold, and γ
determines the speed and smoothness of transition.
In spite of the similarity between LSTAR and ESTAR models, they ac-

tually allow for different types of transitional behavior. To illustrate this
point, Figure ?? plots the logistic and exponential transition functions with
c = 0 and γ = 1 and 5. The following properties can be readily observed:
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1. If γ is small, both transition functions switch between 0 and 1 very
smoothly and slowly; if γ is large, both transition functions switch
between 0 and 1 more quickly.

2. As γ → ∞, both transition functions become binary. However, the
logistic function approaches the indicator function I(zt > c) and the
LSTAR model reduces to a TAR model; while the exponential func-
tion approaches the indicator function I(zt = c) and the model does
not nest the TAR model as a special case.

3. The logistic function is monotonic and the LSTAR model switches
between two regimes smoothly depending on how much the transi-
tion variable zt is smaller than or greater than the threshold c. The
exponential function is symmetrical and the ESTAR model switches
between two regimes smoothly depending on how far the transition
variable zt is from the threshold c. For the LSTAR model, both the
distance between zt and c and its sign matter; for the ESTAR model,
only the distance between zt and c matters, but not the sign.

18.4.2 Test for STAR Nonlinearity

Testing for the existence of STAR-type nonlinearity is usually the first step
toward building a STAR model. However, just like the test for threshold
type nonlinearity, tests for the null hypothesis of a simple AR model against
the alternative of a STAR model have non-standard asymptotic distribu-
tions, because some parameters in the STAR model are not identified under
the null hypothesis, such as the AR coefficients φ(2) in the second regime,
the transition parameter γ and the threshold c.

STAR Nonlinearity Test with Homoskedastic Errors

To avoid complicated issues caused by the unidentified STAR model param-
eters under the null hypothesis of a linear AR model, Luukkonen, Saikkonen
and Teräsvirta (1988) propose to replace the transition function G(zt; γ, c)
by a suitable Taylor series approximation around γ = 0. It turns out that
if the transition function G(zt; γ, c) in the LSTAR model is replaced by its
third order Taylor series approximation, the LSTAR model in (18.16) can
be written as:13

yt = Xtβ0 +Xtztβ1 +Xtz
2
tβ2 +Xtz

3
tβ3 + et (18.19)

where the coefficient vectors βi for i = 0, 1, 2, 3, 4 are functions of original
model parameter φ. Similarly, if the transition function G(zt; γ, c) in the

13See Franses and van Dijk (2002) for details.
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ESTAR model is replaced by its second order Taylor series approximation,
the ESTAR model in (18.16) can be written as:

yt = Xtβ0 +Xtztβ1 +Xtz
2
tβ2 +Xtz

3
tβ3 +Xtz

4
tβ4 + et (18.20)

Now testing the null hypothesis of a linear AR model against a nonlinear
STAR model is equivalent to testing the null hypothesis H0 : βj = 0 for
j = 1, 2, 3, 4 in the above auxiliary regressions, which is a conventional
Lagrange multiplier (LM) test with an asymptotic χ2 distribution.
In practice, it has been found that the LM test based on (18.19) for

LSTAR models also has power against ESTAR alternatives. Thus, for rea-
sons of parsimony, usually only the LM test based on (18.19) is computed
for testing STAR-type nonlinearity in general. Also, instead of using the
asymptotic χ2 distribution, in small samples it is usually preferred to use
the F version of the LM test which tends to have better size and power
properties. Finally, since TAR models are special cases of LSTAR models
when the transition parameter γ → ∞, it can be shown that the LM test
also has power against threshold type nonlinearity. Granger and Teräsvirta
(1993) discuss these issues in more details.
The LM test for STAR nonlinearity can be performed in S+FinMetrics

using the nonlinearTest function, by setting the optional argument method
to "STAR-LM". For example, to test for STAR-type nonlinearity in NAS-
DAQ realized volatility ndx.rvol, use the command:

> nonlinearTest(log(ndx.rvol), method="STAR-LM", p=2, d=1:2)

Nonlinearity Test: STAR Nonlinearity

Null Hypothesis: no smooth threshold nonlinearity

Under Maintained Assumption of Homoskedastic Errors --

ChiSq-stat ChiSq-dof ChiSq.pv-val

RVOL.lag1 21.3008 6 0.0016

RVOL.lag2 13.6974 6 0.0332

F-stat F-dof F.pv-val

RVOL.lag1 3.7068 (6,291) 0.0014

RVOL.lag2 2.3204 (6,291) 0.0333

In the above example, the transition variable is set to yt−d by specifying
the optional argument d.14 More than one value of d can be specified and
nonlinearTest automatically computes the LM test for all the given val-
ues of d. If the null hypothesis of a linear AR model is rejected, the test

14A weakly exogenous variable can also be used as the transition variable by setting
the optional argument q instead of d. See the online help file for nonlinearTest for
details.
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statistics based on different values of d can be used to choose the appro-
priate value of d in the final STAR model. In the output shown above, the
null hypothesis of no STAR-type nonlinearity is rejected at 5% significance
level for both d = 1 and d = 2. In addition, the p-values from both the
χ2 test and F test prefer d = 1, which is consistent with the results of
threshold-type nonlinearity tests presented in the previous section.

STAR Nonlinearity Test with Heteroskedastic Errors

The LM test presented above assumes the error term in (18.16) has con-
stant variance. However, economic and financial time series are often het-
eroskedastic, and neglected heteroskedasticity may lead to spurious rejec-
tion of the null hypothesis. Based on Davidson and MacKinnon (1985),
Granger and Teräsvirta (1993) summarize the following LM test for non-
linearity which is robust toward heteroskedastic errors:

1. Regress yt on Xt to obtain the OLS residuals �̂t.

2. Regress Xtz
j
t for j = 1, 2, 3 on Xt to obtain the residuals R̂t.

3. Regress the unit vector on R̂t�̂t and compute the LM statistic as the
explained sum of squares from this regression.

This test can be performed just as before by setting the optional argu-
ment hetero to TRUE:

> nonlinearTest(log(ndx.rvol), method="STAR-LM", p=2, d=1:2,

+ hetero=T)

Nonlinearity Test: STAR Nonlinearity

Null Hypothesis: no smooth threshold nonlinearity

Allowing Heteroskedastic Errors using White Correction --

ChiSq-stat ChiSq-dof ChiSq.pv-val

RVOL.lag1 15.0731 6 0.0197

RVOL.lag2 10.8287 6 0.0938

F-stat F-dof F.pv-val

RVOL.lag1 2.5657 (6,291) 0.0195

RVOL.lag2 1.8162 (6,291) 0.0957

Now the null hypothesis cannot be rejected at 5% significance level when
d = 2, but it is still rejected at 5% level when d = 1. However, based on
some simulation evidence, Lundbergh and Teräsvirta (1998) suggest that
in some cases this robustification may not be desirable because it removes
most of the power of the test.
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18.4.3 Estimation of STAR Models

After confirming the existence of STAR-type nonlinearity in a time series,
one can proceed to the next stage of building a STAR model. This usu-
ally involves choosing the transition variable and the form of transition
function. As mentioned in the previous subsection, the test for STAR-type
nonlinearity can be computed for a range of transition variables, and the
p-values of the test statistics can be used to help choose the appropriate
transition variable. The choice between the LSTAR model and the ESTAR
model can usually be made by considering the specific transitional behav-
ior under investigation, or by comparing different information criteria. This
subsection first shows how to estimate LSTAR models using the STAR func-
tion in S+FinMetrics, and then walks through an example of estimating
an ESTAR model using the S-PLUS function nlregb.

LSTAR Model

Once the AR order and the transition variable have been chosen, LSTAR
models can be estimated by nonlinear least squares (NLS):

Θ̂ = argmin
γ,c

X
t

�̂2t (18.21)

where

�̂t = yt − X̃tφ̂

X̃t =

·
Xt(1−G(zt; γ, c))
XtG(zt; γ, c)

¸

φ̂ =

"
φ̂
(1)

φ̂
(2)

#
=

"X
t

(X̃0
tX̃t)

#−1 "X
t

X̃0
tyt

#

Note that the minimization of the NLS objective function is only performed

over γ and c because φ̂
(1)
and φ̂

(2)
can be estimated by least squares once

γ and c are known. Under the additional assumption that the errors are
normally distributed, NLS is equivalent to maximum likelihood estimation.
Otherwise, the NLS estimates can be interpreted as quasi maximum likeli-
hood estimates.

Example 120 LSTAR model for NASDAQ realized volatility

The following command fits an LSTAR model to the logarithms of weekly
realized volatility of NASDAQ 100 index, with the same AR order and delay
parameter used in the previous examples:

> ndx.lstar = STAR(log(ndx.rvol), p=2, d=1)

> summary(ndx.lstar)
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Call:

STAR(X = log(ndx.rvol), p = 2, d = 1)

Parameter estimates:

Values Std.Error Std.Error.white

gamma 1.608 1.113 1.282

threshold -2.845 0.398 0.309

Coefficient estimates and standard errors:

Lower regime:

Values Std.Error Std.Error.white

intercept(lower) -3.729 1.832 2.696

lag1(lower) -0.221 0.404 0.632

lag2(lower) 0.205 0.092 0.092

Upper regime:

Values Std.Error Std.Error.white

intercept(upper) -2.668 1.904 1.497

lag1(upper) -0.396 1.076 0.896

lag2(upper) 0.216 0.134 0.131

Std. Errors of Residuals:

[1] 0.415

Information Criteria:

logL AIC BIC HQ

-158.863 329.727 351.950 338.620

Degrees of freedom:

total residuals

300 294

Time period: from 01/15/1996 to 10/08/2001

Note that the threshold estimate −2.85 is very close to the SETAR es-
timate of −2.88 given by the TAR estimate ndx.setar.r. However, by
allowing for smooth transition between two regimes, the AR coefficients in
both regimes are quite different from those estimated by ndx.setar.r.

Predictions from LSTAR Model

Simulation based forecasts from the LSTAR model can be easily generated
using the same principle for generating forecasts from VAR models and
SETAR models. The fitted model objects returned by the STAR function
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FIGURE 18.10. Predicted realized volatility (in logarithmic scale) from
ndx.lstar.

have class "STAR". By calling the generic predict function on fitted model
objects, the method function predict.STAR is automatically invoked. For
example, the following command generates 100-step-ahead forecasts from
ndx.lstar:

> ndx.pred.3 = predict(ndx.lstar, n.predict=100,

+ CI.alpha=0.6, n.sim=10000)

> tsplot(cbind(ndx.pred.3$values, ndx.pred.3$CI),

+ lty=c(1,6,6))

and Figure 18.10 shows the forecasts with 60% pointwise confidence in-
tervals. The forecasts are very similar to those generated by the SETAR
model object ndx.setar, except they do not have the initial small peak
exhibited by the SETAR forecasts.

ESTAR Model

Currently the STAR function in S+FinMetrics only supports LSTAR mod-
els but not ESTAR models. However the estimation of ESTAR models fol-
lows essentially the same procedure in (18.21) with the transition function
given by (18.18). Here an example is given to show how to estimate ES-
TAR models using the S-Plus function nlregb for nonlinear least squares
estimation.
The arguments expected by nlregb are as follows:
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> args(nlregb)

function(nres, start, residuals, jacobian=NULL, scale=NULL,

control = NULL, lower = -Inf, upper = Inf, ...)

where the first argument nres specifies the number of observations or
residuals to be used, the second argument start specifies the starting val-
ues for the unknown parameters, and the third argument residuals is
an S-PLUS function which takes the parameter values and computes the
residual vector with length equal to nres. The optional arguments lower
and upper can be used to specify lower and upper bounds on the unknown
parameters.
One general issue in estimating STAR models is that the transition pa-

rameter γ can get large and cause numerical problems in the optimization
procedure. To alleviate the potential numerical problems in estimating ES-
TAR models, it is usually preferred to estimate the following transition
function instead of the original exponential function in (18.18):

G(zt; γ̃, c) = 1− exp{−eγ̃ (zt − c)2

σ2z
} (18.22)

where σ2z is the sample variance of the transition variable zt. The new
parameter γ̃ can be transformed to the original parameter γ as follows:

γ =
eγ̃

σ2z
(18.23)

This transformation has the following numerical properties:

1. The squared distance between zt and the threshold c is now scaled
by the variance of zt which makes it scale-free.

2. The original parameter γ lies in (0,∞) which requires a constrained
optimization in terms of γ. The new parameter γ̃ lies in (−∞,∞)
and is unconstrained.

3. The new parameter γ̃ is a linear function of the logarithm of γ which
is more dampened than γ.

Using the new formulation in (18.22), the following S-PLUS function takes
the unknown parameter values (γ̃, c) and returns the residual vector:

ESTAR.res = function(theta, g.scale, x, y, q)

{

k = ncol(x)

G = 1 - exp( - exp(theta[1])/g.scale * (q - theta[2])^2)

X = cbind(x * (1 - G), x * G)

m = crossprod(t(backsolve(chol(crossprod(X)), diag(2 * k))))

beta = m %*% t(X) %*% y

y - X %*% beta

}
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Now to estimate an ESTAR model with an AR(2) specification and tran-
sition variable zt = yt−1 using the NASDAQ realized volatility series, use
the following commands:

> ndx.LHS = log(ndx.rvol)[3:length(ndx.rvol)]@data

> ndx.RHS = cbind(1, tslag(log(ndx.rvol), 1:2, trim=T)@data)

> ndx.estar = nlregb(length(ndx.rvol)-2,

+ start=c(0,mean(ndx.RHS[,2])),

+ residuals=ESTAR.res,

+ lower=c(-Inf, min(ndx.RHS[,2])),

+ upper=c( Inf, max(ndx.RHS[,2])),

+ g.scale=var(ndx.RHS[,2]),

+ x=ndx.RHS, y=ndx.LHS, q=ndx.RHS[,2]))

Note that the regressors ndx.RHS include a constant term and two lagged
values of yt, and the transition variable yt−1 is given by the second column
of ndx.RHS. In the call to the nlregb function, the starting values of γ̃ is
set to zero, which corresponds to setting γ = 1, and the starting value of c
is simply set to the mean of the transition variable yt−1. Other arguments
g.scale, x, y and q to the residual function ESTAR.res are passed as
optional arguments to nlregb. The NLS estimates of (γ̃, c) are given by:

> ndx.estar$parameters

[1] -1.239878 -2.774638

Note that the threshold estimate of −2.77 is close to the threshold es-
timates obtained in earlier examples. The transition parameter γ in the
original exponential function can be obtained as follows:

> exp(ndx.estar$parameters[1])/var(ndx.RHS[,2])

[1] 1.013556

18.5 Markov Switching State Space Models

The nonlinear time series models introduced so far all allow for different
regimes, with each regime represented by a simple AR model. For TAR and
SETAR models, the regimes are solely determined by the magnitude of an
observable weakly exogenous variable, while for STAR models the regimes
are allowed to switch smoothly according to the magnitude of a weakly
exogenous variable relative to a threshold value. This section introduces
another type of regime switching model — the Markov switching model —
where the regimes are determined by an unobserved state or regime vari-
able that follows a discrete state Markov process. Discrete state Markov
processes, also called Markov chains, are very popular choices for modeling
state-dependent behavior. Since Hamilton (1989) proposed to use a sim-
ple Markov switching AR process to model the U.S. real GNP, Markov



686 18. Nonlinear Time Series Models

switching time series models have seen extraordinary growth and become
extremely popular for modeling economic and financial time series. They
have been applied to model and forecast business cycles, the term struc-
ture of interest rates, volatility in economic and financial variables, foreign
exchange rate dynamics, inflation rate dynamics, etc.
This section first introduces the discrete state Markov process which is

used to model the hidden state variable, then illustrates how the discrete
state Markov process can be combined with an AR model to produce the
Markov switching AR process. To allow for Markov switching dynamics
in a much broader context, Markov switching state space models are then
introduced and examples will be given to illustrate the estimation of these
models using S+FinMetrics functions.

18.5.1 Discrete State Markov Process

Discrete state Markov processes are very popular choices for modeling
state-dependent behavior in natural phenomena, and are natural candi-
dates for modeling the hidden state variables in Markov switching models.
A discrete state Markov process classifies the state of the world St at any
time t into a few discrete regimes. The state switches between different
regimes according to its previous value and transition probabilities given
by:15

Pr(St = j|St−1 = i) = Pij ≥ 0 (18.24)

where i, j = 1, 2, · · · , k with k different possible states or regimes, and

kX
j=1

Pr(St = j|St−1 = i) = 1 (18.25)

It is usually convenient to collect the transition probabilities into a transi-
tion matrix :

P =


P11 P12 · · · P1k
P21 P22 · · · P2k
...

...
. . .

...
Pk1 Pk2 · · · Pkk


where each row sums up to one. For example, at time t the state of the
economy St can be classified as either recessionary (St = 1) or expansionary
(St = 2). Using quarterly observations of the U.S. real GNP from 1952 to

15A discrete state Markov process which only depends on its most recent observation
is called the first order Markov process. Since higher order Markov processes can always
be rewritten as a first order Markov process, it usually suffices to consider only the first
order Markov process.
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1984, Kim (1994) estimates the transition matrix to be:

P =
·
47% 53%
5% 95%

¸
(18.26)

These transition probabilities imply that if the economy is in an expansion,
it tends to stay in expansion with a very high probability of 95%; if the
economy is in a recession, it has 47% chance of staying in recession and 53%
chance of getting out of recession. These numbers also reflect the common
observation that the transition from an expansion to a recession is usually
very quick, whereas the recovery from a recession is relatively slow.
Suppose at time t the probability of each state or regime is given by the

vector πt = (P1, P2, · · · , Pk), then the probability of each state at time
t+ 1 is given by:

πt+1 = P 0πt (18.27)

For a stationary discrete state Markov process, the ergodic probability vec-
tor π exists such that

π = P 0π (18.28)

The ergodic probability vector can also be treated as the steady state, or
the unconditional probability of each state of the world. S+FinMetrics
provides a convenience function mchain.p0 to compute the ergodic prob-
ability vector for a stationary Markov chain.16 For example, the following
command computes the ergodic probabilities for the state of the economy
using the transition matrix in (18.26):

> mchain.p0(matrix(c(0.47, 0.05, 0.53, 0.95), 2, 2))

[1] 0.0862069 0.9137931

So the unconditional probability of the economy being in a recession is
about 9%, and the unconditional probability of the economy being in an
expansion is about 91%.
The transition probabilities can also be used to infer the duration of each

state or regime. For example, using the transition matrix in (18.26), the
average duration of an economic expansion can be computed as:17

1

1− P22
= 20 quarters = 5 years

and the average duration of an economic recession can be computed as:

1

1− P11
= 2 quarters

which is consistent with the fact that a recession is usually defined as a
drop in real GDP for two consecutive quarters.

16See Hamilton (1994) for the analytic formula for computing the ergodic probabilities
for a stationary Markov chain.
17See Kim and Nelson (1999), for example, for the derivation of this result.
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18.5.2 Markov Switching AR Process

If the model parameters in the simple AR(p) model in (18.4) are relaxed
to be dependent on a latent or hidden state variable St, it becomes:

yt = µSt +XtφSt + ut for t = 1, 2, · · · , n (18.29)

whereXt = (yt−1, yt−2, · · · , yt−p), φSt is the p×1 vector of AR coefficients,
ut ∼ N(0, σ2St), and the hidden state variable St follows a k-regime Markov
chain given by (18.24)-(18.25). This is usually referred to as the Markov
switching AR(p) process. The Markov switching AR(p) model has proved to
be effective at modeling nonlinear dynamics usually observed in economic
and financial time series. For example, Hamilton (1989) uses a two-state
Markov switching AR(4) model with constant σ2 to capture the different
dynamics observed in the U.S. real GNP during economic recessions and
expansions.
In general, if the states S = (Sp+1, · · · , Sn) are known, the unknown pa-

rameters Θ of the Markov switching AR(p) model, which include the inter-
cept terms, the AR coefficients and the error variance in different regimes,
can be estimated by maximizing the following log-likelihood function:

L(Θ|S) =
nX

t=p+1

log f(yt|Yt−1, St)

where Yt−1 denotes all the information available at time t− 1 and includes
all the observations in Xj for j ≤ t, and

f(yt|Yt−1, St) ∝ exp{−1
2
log σ2St −

(yt − µSt −XtφSt)
2

2σ2St
} (18.30)

However, the states S are usually unobserved and must be inferred from
the data. When S are unknown, the parameters of the Markov switching
AR(p) model are expanded to include the transition probabilities P. By
applying the law of total probability, the log-likelihood function can now
be written as:

L(Θ) =
nX

t=p+1

log f(yt|Yt−1)

=
nX

t=p+1

log


kX

j=1

f(yt|Yt−1, St = j) Pr(St = j|Yt−1)
 (18.31)
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where f(yt|Yt−1, St = j) is given in (18.30), and by Bayes theorem the
predictive probability Pr(St = j|Yt−1) can be shown to be:

Pr(St = j|Yt−1) =
kX
i=1

Pr(St = j|St−1 = i,Yt−1) Pr(St−1 = i|Yt−1)

=
kX
i=1

Pij
f(yt−1|Yt−2, St−1 = i) Pr(St−1 = i|Yt−2)Pk

m=1 f(yt−1|Yt−2, St−1 = m) Pr(St−1 = m|Yt−2)
(18.32)

So given an estimate of the initial probability of each state Pr(Sp+1 = i|Yp)
for i = 1, 2, · · · , k, the log-likelihood function of the Markov switching
AR(p) model can be computed iteratively using (18.31)-(18.32) and the
unknown parameters Θ can be estimated by maximum likelihood estima-
tion (MLE).
The evaluation of the above log-likelihood function for the Markov switch-

ing AR(p) model can be easily programmed in S-PLUS. However, since it
involves an iterative process which prevents the use of vectorized operations
in S-PLUS, the optimization process of obtaining the MLE can be slow and
computationally inefficient. In order to be able to estimate a broad range
of Markov switching models using the same code, the following subsection
introduces Markov switching state space models which includes the Markov
switching AR(p) model as a special case. The Markov switching state space
models utilize optimized C code for fast calculation.

18.5.3 Markov Switching State Space Models

As shown in Chapter 14, most linear time series regression models can be
cast into a state space form, and the state space representation provides a
convenient framework for obtaining filtered and smoothed estimates of the
unobserved state variables. In this subsection the state space representation
in Chapter 14 is generalized to allow for Markov switching dynamics so that
a vast number of Markov switching models can be easily estimated using
the same framework.
Using the notation in Chapter 14, a state space model can be represented

as follows:

αt+1 = dt + Tt ·αt + Ht · ηt (18.33)

yt = ct + Zt ·αt + Gt · εt (18.34)

where αt+1 is the m × 1 state vector, yt is the N × 1 vector of observed
variables, ηt ∼ iid N(0, Ir) is the r × 1 vector of disturbance terms in the
transition equation governing the dynamics of the state vector αt+1, εt ∼
iid N(0, IN ) is the N × 1 vector of disturbance terms in the measurement
equation governing the dynamics of the observed variables yt, and dt, Tt,
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Ht, ct, Zt and Gt are conformable hyperparameter matrices or system
matrices. More compactly, the above representation can be rewritten as:µ

αt+1

yt

¶
= δt + Φt ·αt + ut, (18.35)

where ut ∼ iid N(0,Ωt) and

δt =

µ
dt
ct

¶
,Φt =

µ
Tt

Zt

¶
,ut =

µ
Htηt
Gtεt

¶
,Ωt =

µ
HtH

0
t 0

0 GtG
0
t

¶
For Markov switching state space models, the hyperparameter matrices

are assumed to be dependent on a latent or unobserved discrete state vari-
able St:

δt = δSt
Φt = ΦSt

Ωt = ΩSt

and the discrete state variable St follows a k-regime Markov chain given
in (18.24)-(18.25). For example, by setting the continuous state vector to
αt = (yt, yt−1), the Markov switching AR(2) model can be put into the
above state space representation with:

δt =

µSt+10
0

 , Φt =

·
φ0St+1
I2×2

¸
, I2×2 =

·
1 0
1 0

¸

and Ωt is a 3 × 3 matrix with σ2St+1 being the (1, 1) element and zero
elsewhere.

Example 121 State space representation of Markov switching AR(2) model

S+FinMetrics uses a "list" object with some required components to
represent a state space model in S-PLUS, and Chapter 14 has many ex-
amples showing how to create such objects for some popular time series
regression models. In order for Markov switching state space models to
be represented by an S-PLUS object, the "list" object is expanded to al-
low for the following components: mTrans, mDelta.other, mPhi.other and
mOmega.other. The mTrans component is required for a Markov switching
state space representation and specifies the transition matrix P for the
underlying Markov chain, and at least one of mDelta.other, mPhi.other
and mOmega.other must be specified so that at least some hyperparameter
of the model is Markov switching. The usual components mDelta, mPhi
and mOmega specify the hyperparameter matrices for the first regime, and
the new components mDelta.other, mPhi.other and mOmega.other spec-
ify the hyperparameter matrices for other regimes if necessary. If there



18.5 Markov Switching State Space Models 691

are k > 2 regimes for the discrete state variable St, the components
mDelta.other, mPhi.other and mOmega.other store the hyperparameter
matrices for regimes 2 to k stacked column-wise.
For example, the unknown parameters of a two-regime Markov switching

AR(2) model can be collected in the vector:

v = (µ1, µ2, φ11, φ12, φ21, φ22, σ1, σ2, P11, P22) (18.36)

where µ1, φ11, φ12 and σ1 are the intercept term, the AR coefficients and
error standard deviation for the first regime; µ2, φ21, φ22 and σ2 are the
counterparts for the second regime; P11 and P22 are the diagonal elements
of the transition matrix P. Note that since each row of P sums up to one,
only two transition probabilities are required to identify P. The following
S-PLUS function takes the vector (18.36) and returns a "list" object giving
the state space representation of the two-regime Markov switching AR(2)
model:

GetSsfMSAR = function(parm)

{

mDelta = mDelta.other = rep(0, 3)

mDelta[1] = parm[1]

mDelta.other[1] = parm[2]

#

mPhi = mPhi.other = matrix(0, 3, 2)

mPhi[1,] = c(parm[3], parm[4])

mPhi.other[1,] = c(parm[5], parm[6])

mPhi[2:3,1] = mPhi.other[2:3,1] = 1

#

mOmega = mOmega.other = matrix(0, 3, 3)

mOmega[1,1] = parm[7]

mOmega.other[1,1] = parm[8]

#

mSigma = matrix(0, 3, 2)

mSigma[1:2, 1:2] = diag(1e+6, 2)

#

mTrans = matrix(0, 2, 2)

mTrans[1,1] = parm[9]

mTrans[1,2] = 1 - mTrans[1,1]

mTrans[2,2] = parm[10]

mTrans[2,1] = 1 - mTrans[2,2]

#

list(mDelta=mDelta, mDelta.other=mDelta.other,

mPhi=mPhi, mPhi.other=mPhi.other,

mOmega=mOmega, mOmega.other=mOmega.other,

mSigma=mSigma, mTrans=mTrans)

}
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Note that a diffuse prior on the initial state vector is specified by setting
the first 2 × 2 block of mSigma to a diagonal matrix with large values on
the diagonal, and the last row of mSigma to zero.

Approximate MLE of Markov Switching State Space Models

Since Markov switching state space models allow for nonlinear dynamics,
the traditional Kalman filtering and smoothing algorithms for Gaussian
linear state space models can no longer be applied to obtain valid inference

on the unobserved state vector. In particular, given the initial estimate a
(i)
t|t

and P
(i)
t|t for St = i with i = 1, · · · , k, the prediction equations for the

Gaussian linear state space model in (14.39)-(14.40) now become:

a
(i,j)
t+1|t = Tta

(i)
t|t (18.37)

P
(i,j)
t+1|t = TtP

(i)
t|tT

0
t +HtH

0
t (18.38)

where the superscript (i, j) denotes the case of St = i and St+1 = j for
i, j = 1, · · · , k. The updating equations for the Gaussian linear state space
model in (14.34)-(14.35) now become:

a
(i,j)
t|t = a

(i,j)
t|t−1 +K

(i,j)
t v

(i,j)
t (18.39)

P
(i,j)
t|t = P

(i,j)
t|t−1 −P(i,j)t|t−1Z

0
t(K

(i,j)
t )0 (18.40)

where

v
(i,j)
t = yt − ct − Zta(i,j)t|t−1

F
(i,j)
t = ZtP

(i,j)
t|t−1Z

0
t +GtG

0
t

K
(i,j)
t = P

(i,j)
t|t−1Z

0
t(F

(i,j)
t )−1

So at each step the set of statistics that needs to be computed and stored
will increase by the order of k. Obviously, even for a relatively small sample,
the Kalman filtering algorithm will become computationally infeasible.
To make the filtering algorithm manageable, Kim (1994) proposes to

collapse the set of statistics in the updating equations (18.39)-(18.40) as
follows:

a
(j)
t|t =

Pk
i=1 Pr(St = j, St−1 = i|Yt)a(i,j)t|t

Pr(St = j|Yt) (18.41)

P
(j)
t|t =

Pk
i=1 Pr(St = j, St−1 = i|Yt)[P(i,j)t|t + (a

(j)
t|t − a(i,j)t|t )(a

(j)
t|t − a(i,j)t|t )

0]

Pr(St = j|Yt)
(18.42)
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where the filtered probability Pr(St = j|Yt) can be updated similarly as in
(18.32) given an initial estimate. Now at each step, only k sets of statistics
need to be stored, which can be fed into the prediction equations (18.37)-
(18.38) to complete the filtering algorithm. This algorithm is sometimes
referred to as Kim’s filtering algorithm.
Just like the Kalman filtering algorithm for Gaussian linear state space

models, Kim’s filtering algorithm can be used to provide the prediction
error decomposition for computing the log-likelihood function of Markov
switching state space models. However, the drawback of the above filtering

algorithm is that the filtered estimates a
(j)
t|t now follow normal mixture dis-

tributions instead of normal distributions as in Gaussian linear state space
models. As a result, the MLE estimates obtained using Kim’s algorithm
are only approximate and not optimal, but empirical evidence seems to
suggest that MLE estimates obtained using Kim’s filtering algorithm are
very reliable.18

The SsfLoglikeMS function in S+FinMetrics implements Kim’s filter-
ing algorithm to compute the log-likelihood function for arbitrary Markov
switching state space models, and the SsfFitMS function uses it to obtain
approximate MLE estimates of the unknown parameters in Markov switch-
ing state space models. However, Markov switching state space models can
be difficult to fit due to various numerical issues. Here, a few guidelines are
provided for using the SsfFitMS function for MLE estimation of Markov
switching state space models:

1. Make sure that the model to be fitted is actually identified. It can
be very easy to specify a Markov switching model which is not iden-
tified or poorly identified. Over-identification or poor identification
can cause the optimization procedure to fail.

2. Start from a small model. If the estimation of the small model does
not pose any problem, extend the model to allow for more features.

3. Provide good starting values to SsfFitMS. Good starting values can
be found by calling SsfLoglikeMS with different sets of parameter
values, and choosing the one with largest log-likelihood value.

4. Although the SsfFitMS function allows lower and upper bound con-
straints on the parameters, sometimes better convergence can be ob-
tained by transforming the parameters so that the parameters to be
estimated are unconstrained.

18In recent years more computationally-intensive Bayesian methods have also been
developed to analyze Markov switching state space models or non-Gaussian state space
models on a case-by-case basis, for example, see Kim and Nelson (1998), Kim, Shephard
and Chib (1998) and Aguilar and West (2000) for some examples.
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Example 122 Markov switching AR(2) model for NASDAQ realized volatil-
ity

Earlier examples in this chapter show that the logarithms of weekly real-
ized volatility of NASDAQ 100 index can be modeled by a switching AR(2)
process, with the switching determined by either a TAR model or a STAR
model. It is interesting to see if the Markov switching AR(2) model can
provide a better or equivalent characterization of the nonlinear dynamics
observed in the data.
Instead of directly estimating the unknown parameters for the Markov

switching AR(2) model as given in (18.36), it is usually better to transform
these parameters so that they are unconstrained. For example, the following
monotonic transformations are usually adopted:

1. If x lies within (0,∞), then y = log x is unconstrained and x = ey.

2. If x lies within (0, 1), then y = log[x/(1 − x)] is unconstrained and
x = 1/(1 + e−y).

3. If x lies within (−1, 1), then y = log[(1+x)/(1−x)] is unconstrained
and x = 2/(1 + e−y)− 1.

4. For the AR(2) process yt = φ1yt−1 + φ2yt−2 + ut to be stationary,
the roots z1 and z2 of the characteristic equation z2 − φ1z − φ2 = 0
must lie within the unit circle, with z1 + z2 = φ1 and z1 · z2 = −φ2.

The following S-PLUS function modifies the GetSsfMS function given ear-
lier in this subsection by employing the above transformations. It now takes
an unconstrained parameter vector and returns the state space representa-
tion of Markov switching AR(2) model:

GetSsfMSAR2 = function(parm)

{

parm = as.vector(parm)

#

mDelta = mDelta.other = rep(0, 3)

mDelta[1] = parm[1]

mDelta.other[1] = parm[1] + exp(parm[2])

#

AR11 = 2/(1+exp(-parm[3])) - 1

AR12 = 2/(1+exp(-(parm[3]+exp(parm[4])))) - 1

AR21 = 2/(1+exp(-parm[5])) - 1

AR22 = 2/(1+exp(-(parm[5]+exp(parm[6])))) - 1

#

mPhi = mPhi.other = matrix(0, 3, 2)

mPhi[1,] = c(AR11+AR12, -AR11*AR12)

mPhi.other[1,] = c(AR21+AR22, -AR21*AR22)
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mPhi[2:3,1] = mPhi.other[2:3,1] = 1

#

mOmega = matrix(0, 3, 3)

mOmega[1,1] = exp(parm[7])

#

mSigma = matrix(0, 3, 2)

mSigma[1:2, 1:2] = diag(1e+6, 2)

#

mTrans = matrix(0, 2, 2)

mTrans[1,2] = 1/(1+exp(-parm[8]))

mTrans[1,1] = 1 - mTrans[1,2]

mTrans[2,1] = 1/(1+exp(-parm[9]))

mTrans[2,2] = 1 - mTrans[2,1]

#

ssf = list(mDelta=mDelta, mDelta.other=mDelta.other,

mPhi=mPhi, mPhi.other=mPhi.other, mOmega=mOmega,

mTrans=mTrans, mSigma=mSigma)

CheckSsf(ssf)

}

A few comments on the function GetSsfMSAR2 are as follows:

1. The second parameter parm[2] is actually log(µ2−µ1). By employing
this transformation, µ2 is guaranteed to be greater than µ1, and thus
the first regime can be identified as the low volatility regime and the
second as the high volatility regime.

2. The fourth and sixth parameters parm[4] and parm[6] are actually
the logarithmic difference between two characteristic roots of their
respective AR(2) processes. By employing this transformation the
first roots are identified as the smaller roots while the second as the
larger ones.

3. Finally it is usually preferred to call the CheckSsf function before
returning the list with the state space representation, which makes
sure the returned list is a valid state space representation.

Now, to fit the Markov switching AR(2) model to log(ndx.rvol), use
the following commands:19

> ndx.start = c(-2, -0.7, -0.7, 0.7, -0.7, 0.7, -2, -2, -3)

> names(ndx.start) = c("mu1", "mu2", "phi11", "phi12",

19S+FinMetrics provides the function MSAR for estimating general Markov switching
AR(p) processes. The MSAR function returns an "MSAR" object, and methods for many
generic functions, such as summary, plot, residuals, vcov and simulate, are provided
for "MSAR" objects. See the online help file for MSAR for details.
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+ "phi21", "phi22", "sigma", "p", "q")

> ndx.msar = SsfFitMS(ndx.start, log(ndx.rvol), GetSsfMSAR2,

+ l.start=11)

Iteration 0 : objective = 0.5575044

Iteration 1 : objective = 0.9047186

Iteration 2 : objective = 0.555338

...

Iteration 98 : objective = 0.5161791

RELATIVE FUNCTION CONVERGENCE

Note that the first argument to SsfFitMS specifies the starting values, the
second argument specifies the data to be used, and the third argument spec-
ifies the S-PLUS function which takes a vector of model parameters and re-
turns a valid state space representation of a Markov switching model. Since
the filtering algorithm is started with diffuse priors on the state vector, the
optional argument l.start is used to start the log-likelihood function eval-
uation from the 11th observation, which allows the effects of diffuse priors
on the state vector to dissipate before log-likelihood values are computed.
The returned object is a "SsfFit" object, and applying the generic

summary function returns the standard errors of the estimated parameters
and associated t-statistics:

> class(ndx.msar)

[1] "SsfFit"

> summary(ndx.msar)

Log-likelihood: -150.724

302 observations

Parameters:

Value Std. Error t value

mu1 -1.8670 0.27600 -6.7640

mu2 -0.9385 1.08100 -0.8684

phi11 -0.3336 0.23730 -1.4060

phi12 0.4073 0.32060 1.2710

phi21 -0.8366 0.25960 -3.2230

phi22 0.8109 0.22670 3.5760

sigma -1.8310 0.08313 -22.0300

p -5.3150 1.00900 -5.2670

q -8.4870 6.00100 -1.4140

Convergence: RELATIVE FUNCTION CONVERGENCE

From the above output, most of the parameters are significant according
to the t-statistics. To transform the estimated parameters into the param-
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eters for the Markov switching AR(2) model, simply call GetSsfMSAR2 on
the ML estimates20:

> ndx.ssf = GetSsfMSAR2(ndx.msar$parameters)

> cbind(ndx.ssf$mDelta, ndx.ssf$mDelta.other)

[,1] [,2]

[1,] -1.86719 -1.475965

[2,] 0.00000 0.000000

[3,] 0.00000 0.000000

> ndx.ssf$mPhi

[,1] [,2]

[1,] 0.3606984 0.08693354

[2,] 1.0000000 0.00000000

[3,] 1.0000000 0.00000000

> ndx.ssf$mPhi.other

[,1] [,2]

[1,] 0.2130623 0.2406814

[2,] 1.0000000 0.0000000

[3,] 1.0000000 0.0000000

> ndx.ssf$mOmega

[,1] [,2] [,3]

[1,] 0.1601773 0 0

[2,] 0.0000000 0 0

[3,] 0.0000000 0 0

> ndx.ssf$mTrans

[,1] [,2]

[1,] 0.9951049274 0.004895073

[2,] 0.0002061726 0.999793827

Note that the intercept terms in both regimes and the AR coefficients
in the high volatility regime are similar to those estimated by the SE-
TAR model ndx.setar.r in Section 18.3. However, the AR coefficients in
the low volatility regime are somewhat different from those estimated by
ndx.setar.r. In addition, both the transition probabilities P11 and P22
are estimated to be very close to one, which suggests that once yt is in a
certain regime, it tends to stay in that regime.

Filtered and Smoothed Estimates of Regime Probabilities

Once the unknown parameters of Markov switching models are estimated,
it is usually of interest to obtain the filtered estimates of the latent discrete
state or regime probability Pr(St = j|Yt). However, this quantity is already
computed by Kim’s filtering algorithm and thus is a side product of the log-
likelihood function evaluation. In addition, it is also of interest to obtain the

20Standard errors for these parameters may be obtained using the delta method.
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Filtered Low Vol Regime Prob

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
1996 1997 1998 1999 2000 2001

0.
1

0.
3

0.
5

0.
7

0.
9

Smoothed Low Vol Regime Prob

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
1996 1997 1998 1999 2000 2001

0.
1

0.
3

0.
5

0.
7

0.
9

FIGURE 18.11. Filtered and smoothe regime probabilities of NASDAQ realized
volatility.

smoothed estimates of the latent discrete state probability Pr(St = j|Yn),
which is useful for retrospective analysis. To obtain the smoothed estimates
Pr(St = j|Yn), note that at time n:

Pr(Sn = j, Sn−1 = i|Yn) = Pr(Sn = j|In) Pr(Sn−1 = i|Sn = j,Yn)
≈ Pr(Sn = j|Yn) Pr(Sn−1 = i|Sn = j,Yn−1)

=
Pr(Sn = j|Yn) Pr(Sn−1 = i, Sn = j|Yn−1)

Pr(Sn = j|Yn−1)
=
Pr(Sn = j|Yn) Pr(Sn−1 = i|Yn−1) Pr(Sn = j|Sn−1 = i)

Pr(Sn = j|Yn−1)
and thus the smoothed estimate Pr(Sn−1 = j|Yn) can be obtained as:

Pr(Sn−1 = j|Yn) =
kX
i=1

Pr(Sn = j, Sn−1 = i|Yn)

This procedure can be repeated iteratively backwards from time n − 1 to
time 1 to obtain the smoothed estimates of regime probabilities.
In S+FinMetrics the filtered and smoothed regime probabilities can be

obtained using the SsfLoglikeMS function with the optional argument
save.regm set to TRUE. For example, the following commands plot the
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filtered and smoothed estimates of regime probabilities based on the fit
ndx.msar:

> ndx.f = SsfLoglikeMS(log(ndx.rvol), ndx.ssf, save.rgm=T)

> par(mfrow=c(2,1))

> plot(timeSeries(ndx.f$regimes[,1], pos=positions(ndx.rvol)),

+ reference.grid=F, main="Filtered Low Vol Regime Prob")

> plot(timeSeries(ndx.f$regimes[,3], pos=positions(ndx.rvol)),

+ reference.grid=F, main="Smoothed Low Vol Regime Prob")

and the plot is shown in Figure 18.11. The smoothed regime probabilities
suggest that there is actually an abrupt switch around the first quarter of
2000.

18.6 An Extended Example: Markov Switching
Coincident Index

The United States Department of Commerce periodically publishes the In-
dex of Coincident Economic Indicators (CEI) based on four macroeconomic
coincident variables, which provides a composite measure of the general
state of the economy. The method used for the construction of the coinci-
dent index is ad doc, and the coincident index is subject to revisions after
it is published. To provide a systematic probabilistic model for building an
alternative coincident index, Stock and Watson (1991) have developed a
dynamic factor model using a state space representation that models the
coincident index as a common factor driving the four macroeconomic co-
incident variables: industrial production (IP), total personal income less
transfer payments (PI), total manufacturing and trade sales (Sales) and
employees on nonagricultural payrolls (Payroll). Stock and Watson (1991)
show that their probabilistic coincident index matches very well with the
Index of CEI compiled by the Department of Commerce.
Stock andWatson’s dynamic factor model has been extended by Kim and

Yoo (1995), Chauvet (1998) and Kim and Nelson (1998) to allow for Markov
switching dynamics in the common factor which represents the coincident
index. In addition to matching very well with the Index of CEI compiled
by the Department of Commerce, the Markov switching coincident index
is also shown to capture the economic expansions and recessions in the
U.S. economy as classified by the National Bureau of Economic Research
(NBER). Chauvet and Potter (2000) have developed coincident indicators
for the U.S. stock market using the same methodology.
This section is provided to show how the Markov switching coincident

index model can be represented as a Markov switching state space model,
and estimated using the functions in S+FinMetrics.
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18.6.1 State Space Representation of Markov Switching
Coincident Index Model

Since the levels of most macroeconomic variables are usually found to be
non-stationary (for example, see Nelson and Plosser, 1982), it is reasonable
to assume that the coincident index representing the state of the economy
is also non-stationary. Thus in this example the growth rates of the four
macroeconomic variables ∆yt are modeled, and they are assumed to be
driven by a common factor ∆Ct interpreted as the change in the coincident
index:

∆yt = β + λ1∆Ct + λ2∆Ct−1 + et (18.43)

where ∆yt, β, λ1, λ2 and et are 4× 1 vectors with

λ1 =


λ1
λ2
λ3
λ41

 , λ2 =

0
0
0
λ42


So the four macroeconomic coincident variables are driven by the common
factor ∆Ct and idiosyncratic components et. Note that only the current
value of∆Ct affects the first three variables (IP, PI and Sales) in ∆yt, while
both ∆Ct and ∆Ct−1 affect the last variable (employees on nonagricultral
payroll) because the employment data tend to lag other coincident vari-
ables.
The idiosyncratic components are assumed to be independent of each

other, and are assumed to follow simple AR(1) models:

et = Ψet−1 + ²t, ²t ∼ N(0,σ2) (18.44)

where Ψ is a diagonal matrix with (ψ1, ψ2, ψ3, ψ4) on the diagonal, and
σ2 is a diagonal matrix with (σ21, σ

2
2, σ

2
3, σ

2
4) on the diagonal. The common

factor ∆Ct is assumed to follow a Markov switching AR(2) process:

∆Ct = δSt + φ1∆Ct−1 + φ2∆Ct−2 + ut, ut ∼ N(0, σ2C) (18.45)

where the unobserved discrete state variable St follows a two-regime Markov
chain, and only the intercept term δSt is Markov switching. When the econ-
omy is in a recession (St = 1), the coincident index Ct grows at a slower
rate δ1; and when the economy is in an expansion (St = 2), the coincident
index Ct grows at a faster rate δ2.
Note that in the above model the intercept term β and δSt are not

separately identified, and the variance term σ2C cannot be separated from
the coefficients λ1 and λ2. To make the model identifiable, the original data
∆yt are standardized to remove its mean and make it scale free so β can be
set to zero. In addition, the error variance σ2C for ∆Ct can be normalized
to one. Using αt = (∆Ct,∆Ct−1, et, Ct−1) as the continuous state vector,
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the Markov switching coincident index model in (18.43)-(18.45) can now
be written in a state space form with the following representation:

δt =



δSt+1
0
0
0
0
0
0
0
0
0
0


,ΦSt =



φ1 φ2 0 0 0 0 0
1 0 0 0 0 0 0
0 0 ψ1 0 0 0 0
0 0 0 ψ2 0 0 0
0 0 0 0 ψ3 0 0
0 0 0 0 0 ψ4 0
1 0 0 0 0 0 1
γ1 0 1 0 0 0 0
γ2 0 0 1 0 0 0
γ3 0 0 0 1 0 0
γ41 γ42 0 0 0 1 0


and

Ω =



1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 σ21 0 0 0 0 0 0 0 0
0 0 0 σ22 0 0 0 0 0 0 0
0 0 0 0 σ23 0 0 0 0 0 0
0 0 0 0 0 σ24 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0


Note that Ct = ∆Ct + Ct−1 is also included as one of the state variables,
but does not enter the measurement equation for the observables ∆yt. By
including Ct as one of the state variables, filtered estimates of Ct can be
readily obtained from Kim’s filtering algorithm.
By collecting the unknown model parameters in the vector Θ = (δ1, δ2,

φ1, φ2, ψ1, ψ2, ψ3, ψ4, λ1, λ2, λ3, λ41, λ42, σ
2
1, σ

2
2, σ

2
3, σ

2
4, P12, P21), the follow-

ing function takes such a vector and returns the state space representation
of the model in S-PLUS:

GetSsfCoinIndex = function(parm) {

parm = as.vector(parm)

mDelta = mDelta.other = rep(0, 11)

mDelta[1] = parm[1]

mDelta.other[1] = parm[1] + exp(parm[2])

#

AR.C1 = 2/(1+exp(-parm[3])) - 1

AR.C2 = 2/(1+exp(-(parm[3]+exp(parm[4])))) - 1

#

AR.e1 = 2/(1+exp(-parm[5])) - 1
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AR.e2 = 2/(1+exp(-parm[6])) - 1

AR.e3 = 2/(1+exp(-parm[7])) - 1

AR.e4 = 2/(1+exp(-parm[8])) - 1

#

mPhi = matrix(0, 11, 7)

mPhi[1,1:2] = c(AR.C1+AR.C2, -AR.C1*AR.C2)

mPhi[2,1] = 1

mPhi[3,3] = AR.e1

mPhi[4,4] = AR.e2

mPhi[5,5] = AR.e3

mPhi[6,6] = AR.e4

mPhi[7,1] = mPhi[7,7] = 1

#

mPhi[8:10,1] = parm[9:11]

mPhi[11,1:2] = parm[12:13]

mPhi[8,3] = mPhi[9,4] = mPhi[10,5] = mPhi[11,6] = 1

#

mOmega = matrix(0, 11, 11)

mOmega[1,1] = 1

mOmega[3,3] = exp(parm[14])

mOmega[4,4] = exp(parm[15])

mOmega[5,5] = exp(parm[16])

mOmega[6,6] = exp(parm[17])

#

mTrans = matrix(0, 2, 2)

mTrans[1,2] = 1/(1+exp(-parm[18]))

mTrans[1,1] = 1-mTrans[1,2]

mTrans[2,1] = 1/(1+exp(-parm[19]))

mTrans[2,2] = 1-mTrans[2,1]

#

mSigma = matrix(0, 8, 7)

mSigma[1:7, 1:7] = diag(1e+6, 7)

ans = list(mDelta=mDelta, mDelta.other=mDelta.other,

mSigma=mSigma, mOmega=mOmega,

mPhi=mPhi, mTrans=mTrans)

CheckSsf(ans)

}

A few comments on the function GetSsfCoinIndex are in order:

1. The second parameter parm[2] is actually log(δ2−δ1). By employing
this transformation, δ2 is guaranteed to be greater than δ1, and thus
the first regime can be identified as the recessionary regime and the
second as the expansionary regime.
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2. Like in the Markov switching AR(2) model for the NASDAQ realized
volatility, instead of directly estimating the AR(2) coefficients for
∆Ct, the two real characteristic roots are estimated and the first
root is constrained to be the smaller one. By constraining the real
characteristic roots to lie within the unit circle, the estimated AR(2)
process is guaranteed to be stationary and aperiodic.

3. The AR(1) coefficients for the idiosyncratic components are trans-
formed to guarantee that they lie within (−1, 1), and the correspond-
ing AR processes are stationary.

4. The logarithmic variances log σ2i (i = 1, 2, 3, 4) are estimated because
they are unbounded.

5. Like in the Markov switching AR(2) model for the NASDAQ realized
volatility, the transition probabilities P12 and P21 are transformed to
guarantee that they lie within (0, 1).

6. Finally, diffuse priors on the state vector αt are employed by setting
the top 7× 7 block of mSigma to a diagonal matrix with large values
on the diagonal and zero in the last row.

18.6.2 Approximate MLE of Markov Switching Coincident
Index

To fit the above Markov switching model to the four coincident variables,
the data are first standardized for model identification and better numerical
convergence:

> DOC.dat = getReturns(DOC.ts[,1:4], percentage=T)

> DOC.dat@data = t(t(DOC.dat@data) - colMeans(DOC.dat@data))

> DOC.dat@data = t(t(DOC.dat@data) / colStdevs(DOC.dat@data))

then the SsfFitMS function can be used to fit the model with the fol-
lowing starting values:

> DOC.start = c(-1.5, 0.6, 0.3, 0.1, .1, .1, .1, .1, 0.3,

+ 0.3, 0.3, 0.3, 0.1, -.5, -.5, -.5, -.5, -1.5, -3)

+ names(DOC.start) = c("mu1", "mu2", "phi1", "phi2", "psi1",

+ "psi2", "psi3", "psi4", "L1", "L2", "L3", "L41",

+ "L42", "s1", "s2", "s3", "s4", "p", "q")

> DOC.fit = SsfFitMS(DOC.start, DOC.dat, GetSsfCoinIndex,

+ l.start=13, trace=T)

> summary(DOC.fit)

Log-likelihood: -1998.11

432 observations

Parameters:



704 18. Nonlinear Time Series Models

Value Std. Error t value

mu1 -1.5650 0.30180 -5.187

mu2 0.6053 0.16900 3.582

phi1 -0.8171 0.20610 -3.965

phi2 0.7124 0.17010 4.187

psi1 0.3711 0.14940 2.484

psi2 -0.6070 0.10590 -5.731

psi3 -0.5169 0.10930 -4.729

psi4 -0.7584 0.18340 -4.135

L1 0.5059 0.03832 13.200

L2 0.2977 0.03193 9.322

L3 0.3480 0.03406 10.220

L41 0.4443 0.04013 11.070

L42 0.1966 0.03504 5.610

s1 -1.1590 0.12180 -9.517

s2 -0.2758 0.07225 -3.817

s3 -0.4155 0.07624 -5.449

s4 -1.3940 0.15220 -9.156

p -1.9560 0.52340 -3.738

q -3.7600 0.43460 -8.652

Convergence: RELATIVE FUNCTION CONVERGENCE

Note the optional argument l.start to SsfFitMS is used to start log-
likelihood evaluation from the 13th observation. From the summary output,
it can be seen that all the estimated model parameters are significantly
different from zero.
To transform the parameters into the original model form, simply call

the GetSsfCoinIndex function with the estimated parameters:

> DOC.ssf = GetSsfCoinIndex(DOC.fit$parameters)

> c(DOC.ssf$mDelta[1], DOC.ssf$mDelta.other[1])

[1] -1.565361 0.266435

> print(DOC.ssf$mPhi, digits=3)

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 0.158 0.211 0.000 0.000 0.000 0.000 0

[2,] 1.000 0.000 0.000 0.000 0.000 0.000 0

[3,] 0.000 0.000 0.183 0.000 0.000 0.000 0

[4,] 0.000 0.000 0.000 -0.295 0.000 0.000 0

[5,] 0.000 0.000 0.000 0.000 -0.253 0.000 0

[6,] 0.000 0.000 0.000 0.000 0.000 -0.362 0

[7,] 1.000 0.000 0.000 0.000 0.000 0.000 1

[8,] 0.506 0.000 1.000 0.000 0.000 0.000 0

[9,] 0.298 0.000 0.000 1.000 0.000 0.000 0

[10,] 0.348 0.000 0.000 0.000 1.000 0.000 0

[11,] 0.444 0.197 0.000 0.000 0.000 1.000 0
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FIGURE 18.12. Filtered and smoothed recession probabilities of Markov switch-
ing coincident index.

The growth rate of ∆Ct in a recession is estimated to be −1.57, and the
growth rate in an expansion is estimated to be 0.27. Although the growth
rates of the four macroeconomic variables are positively correlated with
the Markov switching coincident index, only the idiosyncractic component
of industrial production has a positive AR(1) coefficient and all other id-
iosyncratic components have a negative AR(1) coefficient.
To obtain the filtered and smoothed regime probabilities, simply call the

SsfLoglikeMS function with the estimated state space representation and
set the optional argument save.rgm to TRUE:

> DOC.f = SsfLoglikeMS(DOC.dat, DOC.ssf, save.rgm=T,

+ l.start=13)

> DOC.dates = positions(DOC.dat)[-(1:12)]

> filt.p = timeSeries(DOC.f$regimes[,1], pos=DOC.dates)

> smoo.p = timeSeries(DOC.f$regimes[,3], pos=DOC.dates)

> par(mfrow=c(2,1))

> plot(filt.p, reference.grid=F,

+ main="Filtered Recession Probability")

> plot(smoo.p, reference.grid=F,

+ main="Smoothed Recession Probability")

and Figure 18.12 shows the filtered and smoothed probabilities for the
recession regime.
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Filtered MS Coincident Index
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FIGURE 18.13. Filtered Markov switching coincident index and DOC coincident
index.

To visualize the estimated Markov switching coincident index, note that
the object DOC.f also has a states component:

> names(DOC.f)

[1] "loglike" "err" "regimes" "states"

which contains the filtered estimates of the states α
(j)
t|t for j = 1, 2.

Since there are seven state variables in the model, the first seven columns

correspond to α
(1)
t|t and the next seven columns correspond to α

(2)
t|t . The

following commands plot the weighted average of filtered estimates of Ct

and compare it with the coincident index compiled by the U.S. Department
of Commerce:

> DOC.index = lm(DOC.ts@data[,5]~I(1:433))$residuals[-(1:13)]

> filt.ci = rowSums(DOC.f$state[,c(7,14)]*DOC.f$regime[,1:2])

> filt.ci = timeSeries(filt.ci, pos=DOC.dates)

> plot(filt.ci, reference.grid=F,

+ main="Filtered MS Coincident Index")

> doc.ci = timeSeries(DOC.index, pos=DOC.dates)

> plot(doc.ci, reference.grid=F,

+ main="DOC Coincident Index")

and the plot is shown in Figure 18.13. Note that since the Markov switch-
ing coincident index is estimated with demeaned data, a time trend is also
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removed from the coincident index DOC.ts[,5] compiled by the U.S. De-
partment of Commerce. In general both series share the same pattern,
though the Markov switching coincident index seems to be smoother.
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[31] Teräsvirta, T. (1994). “Specification, Estimation, and Evaluation
of Smooth Transition Autoregressive Models”, Journal of the Amer-
ican Statistical Association, 89, 208—218.

[32] Stock, J.H. and M.W. Watson (1991). “A Probability Model of
the Coincident Economic Indicators”, in K. Lahiri and G.H. Moore
(eds.), Leading Economic Indicators: New Approaches and Forecast-
ing Records. Cambridge University Press.

[33] Tong, H. (1978). “On a Threshold Model”, in C.H. Chen (ed.), Pat-
tern Recognition and Signal Processing. Amsterdam: Sijhoff & No-
ordhoff.

[34] Tong, H. (1990). Non-Linear Time Series: A Dynamical System
Approach. Oxford University Press.

[35] Tsay, R.S. (1989). “Testing and Modeling Threshold Autoregressive
Processes”, Journal of the American Statistical Association, 84 (405),
231-240.
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