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12
Cointegration

12.1 Introduction

The regression theory of Chapter 6 and the VAR models discussed in the
previous chapter are appropriate for modeling I(0) data, like asset returns
or growth rates of macroeconomic time series. Economic theory often im-
plies equilibrium relationships between the levels of time series variables
that are best described as being I(1). Similarly, arbitrage arguments imply
that the I(1) prices of certain financial time series are linked. This chapter
introduces the statistical concept of cointegration that is required to make
sense of regression models and VAR models with I(1) data.
The chapter is organized as follows. Section 12.2 gives an overview of

the concepts of spurious regression and cointegration, and introduces the
error correction model as a practical tool for utilizing cointegration with
financial time series. Section 12.3 discusses residual-based tests for coin-
tegration. Section 12.4 covers regression-based estimation of cointegrating
vectors and error correction models. In Section 12.5, the connection be-
tween VAR models and cointegration is made, and Johansen’s maximum
likelihood methodology for cointegration modeling is outlined. Some tech-
nical details of the Johansen methodology are provided in the appendix to
this chapter.
Excellent textbook treatments of the statistical theory of cointegration

are given in Hamilton (1994), Johansen (1995) and Hayashi (2000). Ap-
plications of cointegration to finance may be found in Campbell, Lo and
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MacKinlay (1997), Mills (1999), Alexander (2001), Cochrane (2001) and
Tsay (2001).

12.2 Spurious Regression and Cointegration

12.2.1 Spurious Regression

The time series regression model discussed in Chapter 6 required all vari-
ables to be I(0). In this case, the usual statistical results for the linear
regression model hold. If some or all of the variables in the regression are
I(1) then the usual statistical results may or may not hold1. One important
case in which the usual statistical results do not hold is spurious regres-
sion when all the regressors are I(1) and not cointegrated. The following
example illustrates.

Example 71 An illustration of spurious regression using simulated data

Consider two independent and not cointegrated I(1) processes y1t and
y2t such that

yit = yit−1 + εit, where εit ∼ GWN(0, 1), i = 1, 2

Following Granger and Newbold (1974), 250 observations for each series
are simulated and plotted in Figure 12.1 using

> set.seed(458)

> e1 = rnorm(250)

> e2 = rnorm(250)

> y1 = cumsum(e1)

> y2 = cumsum(e2)

> tsplot(y1, y2, lty=c(1,3))

> legend(0, 15, c("y1","y2"), lty=c(1,3))

The data in the graph resemble stock prices or exchange rates. A visual
inspection of the data suggests that the levels of the two series are positively
related. Regressing y1t on y2t reinforces this observation:

> summary(OLS(y1~y2))

Call:

OLS(formula = y1 ~y2)

1A systematic technical analysis of the linear regression model with I(1) and I(0) vari-
ables is given in Sims, Stock and Watson (1990). Hamilton (1994) gives a nice summary
of these results and Stock and Watson (1989) provides useful intuition and examples.
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FIGURE 12.1. Two simulated independent I(1) processes.

Residuals:

Min 1Q Median 3Q Max

-16.360 -4.352 -0.128 4.979 10.763

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) 6.7445 0.3943 17.1033 0.0000

y2 0.4083 0.0508 8.0352 0.0000

Regression Diagnostics:

R-Squared 0.2066

Adjusted R-Squared 0.2034

Durbin-Watson Stat 0.0328

Residual standard error: 6.217 on 248 degrees of freedom

F-statistic: 64.56 on 1 and 248 degrees of freedom, the

p-value is 3.797e-014

The estimated slope coefficient is 0.408 with a large t-statistic of 8.035
and the regression R2 is moderate at 0.201. The only suspicious statistic
is the very low Durbin-Watson statistic suggesting strong residual auto-
correlation. These statistics are representative of the spurious regression
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phenomenon with I(1) that are not cointegrated. If ∆y1t is regressed on
∆y2t the correct relationship between the two series is revealed

> summary(OLS(diff(y1)~diff(y2)))

Call:

OLS(formula = diff(y1) ~diff(y2))

Residuals:

Min 1Q Median 3Q Max

-3.6632 -0.7706 -0.0074 0.6983 2.7184

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) -0.0565 0.0669 -0.8447 0.3991

diff(y2) 0.0275 0.0642 0.4290 0.6683

Regression Diagnostics:

R-Squared 0.0007

Adjusted R-Squared -0.0033

Durbin-Watson Stat 1.9356

Residual standard error: 1.055 on 247 degrees of freedom

F-statistic: 0.184 on 1 and 247 degrees of freedom, the

p-value is 0.6683

Similar results to those above occur if cov(ε1t, ε2t) 6= 0. The levels re-
gression remains spurious (no real long-run common movement in levels),
but the differences regression will reflect the non-zero contemporaneous
correlation between ∆y1t and ∆y2t.

Statistical Implications of Spurious Regression

Let Yt = (y1t, . . . , ynt)
0 denote an (n×1) vector of I(1) time series that are

not cointegrated. Using the partition Yt = (y1t,Y
0
2t)

0, consider the least
squares regression of y1t on Y2t giving the fitted model

y1t = β̂
0
2Y2t + ût (12.1)

Since y1t is not cointegrated with Y2t (12.1) is a spurious regression and
the true value of β2 is zero. The following results about the behavior of β̂2
in the spurious regression (12.1) are due to Phillips (1986):

• β̂2 does not converge in probability to zero but instead converges in
distribution to a non-normal random variable not necessarily centered
at zero. This is the spurious regression phenomenon.
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• The usual OLS t-statistics for testing that the elements of β2 are zero
diverge to ±∞ as T →∞. Hence, with a large enough sample it will
appear that Yt is cointegrated when it is not if the usual asymptotic
normal inference is used.

• The usual R2 from the regression converges to unity as T → ∞ so
that the model will appear to fit well even though it is misspecified.

• Regression with I(1) data only makes sense when the data are coin-
tegrated.

12.2.2 Cointegration

Let Yt = (y1t, . . . , ynt)
0 denote an (n× 1) vector of I(1) time series. Yt is

cointegrated if there exists an (n× 1) vector β = (β1, . . . , βn)0 such that

β0Yt = β1y1t + · · ·+ βnynt ∼ I(0) (12.2)

In words, the nonstationary time series in Yt are cointegrated if there is
a linear combination of them that is stationary or I(0). If some elements
of β are equal to zero then only the subset of the time series in Yt with
non-zero coefficients is cointegrated. The linear combination β0Yt is often
motivated by economic theory and referred to as a long-run equilibrium
relationship. The intuition is that I(1) time series with a long-run equilib-
rium relationship cannot drift too far apart from the equilibrium because
economic forces will act to restore the equilibrium relationship.

Normalization

The cointegration vector β in (12.2) is not unique since for any scalar c
the linear combination cβ0Yt = β∗0Yt ∼ I(0). Hence, some normalization
assumption is required to uniquely identify β. A typical normalization is

β = (1,−β2, . . . ,−βn)0

so that the cointegration relationship may be expressed as

β0Yt = y1t − β2y2t − · · ·− βnynt ∼ I(0)

or
y1t = β2y2t + · · ·+ βnynt + ut (12.3)

where ut ∼ I(0). In (12.3), the error term ut is often referred to as the
disequilibrium error or the cointegrating residual. In long-run equilibrium,
the disequilibrium error ut is zero and the long-run equilibrium relationship
is

y1t = β2y2t + · · ·+ βnynt
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Multiple Cointegrating Relationships

If the (n×1) vectorYt is cointegrated there may be 0 < r < n linearly inde-
pendent cointegrating vectors. For example, let n = 3 and suppose there are
r = 2 cointegrating vectors β1 = (β11, β12, β13)

0 and β2 = (β21, β22, β23)0.
Then β01Yt = β11y1t + β12y2t + β13y3t ∼ I(0), β02Yt = β21y1t + β22y2t +
β23y3t ∼ I(0) and the (3× 2) matrix

B0 =
µ
β01
β02

¶
=

µ
β11 β12 β13
β21 β22 β33

¶
forms a basis for the space of cointegrating vectors. The linearly indepen-
dent vectors β1 and β2 in the cointegrating basis B are not unique unless
some normalization assumptions are made. Furthermore, any linear combi-
nation of β1 and β2, e.g. β3 = c1β1 + c2β2 where c1 and c2 are constants,
is also a cointegrating vector.

Examples of Cointegration and Common Trends in Economics and
Finance

Cointegration naturally arises in economics and finance. In economics, coin-
tegration is most often associated with economic theories that imply equi-
librium relationships between time series variables. The permanent income
model implies cointegration between consumption and income, with con-
sumption being the common trend. Money demand models imply cointe-
gration between money, income, prices and interest rates. Growth theory
models imply cointegration between income, consumption and investment,
with productivity being the common trend. Purchasing power parity im-
plies cointegration between the nominal exchange rate and foreign and
domestic prices. Covered interest rate parity implies cointegration between
forward and spot exchange rates. The Fisher equation implies cointegration
between nominal interest rates and inflation. The expectations hypothesis
of the term structure implies cointegration between nominal interest rates
at different maturities. The equilibrium relationships implied by these eco-
nomic theories are referred to as long-run equilibrium relationships, because
the economic forces that act in response to deviations from equilibriium
may take a long time to restore equilibrium. As a result, cointegration
is modeled using long spans of low frequency time series data measured
monthly, quarterly or annually.
In finance, cointegration may be a high frequency relationship or a low

frequency relationship. Cointegration at a high frequency is motivated by
arbitrage arguments. The Law of One Price implies that identical assets
must sell for the same price to avoid arbitrage opportunities. This implies
cointegration between the prices of the same asset trading on different
markets, for example. Similar arbitrage arguments imply cointegration be-
tween spot and futures prices, and spot and forward prices, and bid and
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ask prices. Here the terminology long-run equilibrium relationship is some-
what misleading because the economic forces acting to eliminate arbitrage
opportunities work very quickly. Cointegration is appropriately modeled
using short spans of high frequency data in seconds, minutes, hours or
days. Cointegration at a low frequency is motivated by economic equilib-
rium theories linking assets prices or expected returns to fundamentals. For
example, the present value model of stock prices states that a stock’s price
is an expected discounted present value of its expected future dividends or
earnings. This links the behavior of stock prices at low frequencies to the
behavior of dividends or earnings. In this case, cointegration is modeled
using low frequency data and is used to explain the long-run behavior of
stock prices or expected returns.

12.2.3 Cointegration and Common Trends

If the (n × 1) vector time series Yt is cointegrated with 0 < r < n coin-
tegrating vectors then there are n − r common I(1) stochastic trends.
To illustrate the duality between cointegration and common trends, let
Yt = (y1t, y2t)

0 ∼ I(1) and εt = (ε1t, ε2t, ε3t)
0 ∼ I(0) and suppose that Yt

is cointegrated with cointegrating vector β = (1,−β2)0. This cointegration
relationship may be represented as

y1t = β2

tX
s=1

ε1s + ε3t

y2t =
tX

s=1

ε1s + ε2t

The common stochastic trend is
Pt

s=1 ε1s. Notice that the cointegrating
relationship annihilates the common stochastic trend:

β0Yt = β2

tX
s=1

ε1s + ε3t − β2

Ã
tX

s=1

ε1s + ε2t

!
= ε3t − β2ε2t ∼ I(0).

12.2.4 Simulating Cointegrated Systems

Cointegrated systems may be conveniently simulated using Phillips’ (1991)
triangular representation. For example, consider a bivariate cointegrated
system for Yt = (y1t, y2t)

0 with cointegrating vector β = (1,−β2)0. A
triangular representation has the form

y1t = β2y2t + ut, where ut ∼ I(0) (12.4)

y2t = y2t−1 + vt, where vt ∼ I(0) (12.5)
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The first equation describes the long-run equilibrium relationship with an
I(0) disequilibrium error ut. The second equation specifies y2t as the com-
mon stochastic trend with innovation vt:

y2t = y20 +
tX

j=1

vj .

In general, the innovations ut and vt may be contemporaneously and serially
correlated. The time series structure of these innovations characterizes the
short-run dynamics of the cointegrated system. The system (12.4)-(12.5)
with β2 = 1, for example, might be used to model the behavior of the
logarithm of spot and forward prices, spot and futures prices or stock prices
and dividends.

Example 72 Simulated bivariate cointegrated system

Consider simulating T = 250 observations from the system (12.4)-(12.5)
using β = (1,−1)0, ut = 0.75ut−1 + εt, εt ∼ iidN(0, 0.52) and vt ∼
iidN(0, 0.52). The S-PLUS code is

> set.seed(432)

> e = rmvnorm(250, mean=rep(0,2), sd=c(0.5,0.5))

> u.ar1 = arima.sim(model=list(ar=0.75), innov=e[,1])

> y2 = cumsum(e[,2])

> y1 = y2 + u.ar1

> par(mfrow=c(2,1))

> tsplot(y1, y2, lty=c(1,3),

+ main="Simulated bivariate cointegrated system",

+ sub="1 cointegrating vector, 1 common trend")

> legend(0, 7, legend=c("y1","y2"), lty=c(1,3))

> tsplot(u.ar1, main="Cointegrating residual")

Figure 12.2 shows the simulated data for y1t and y2t along with the cointe-
grating residual ut = y1t − y2t. Since y1t and y2t share a common stochas-
tic trend they follow each other closely. The impulse response function for
ut may be used to determine the speed of adjustment to long-run equi-
librium. Since ut is an AR(1) with φ = 0.75 the half life of a shock is
ln(0.5)/ ln(0.75) = 2.4 time periods.
Next, consider a trivariate cointegrated system for Yt = (y1t, y2t, y3t)

0.
With a trivariate system there may be one or two cointegrating vectors.
With one cointegrating vector there are two common stochastic trends and
with two cointegrating vectors there is one common trend. A triangular
representation with one cointegrating vector β = (1,−β2,−β3)0 and two
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Simulated bivariate cointegrated system
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FIGURE 12.2. Simulated bivariate cointegrated system with β = (1,−1)0.

stochastic trends is

y1t = β2y2t + β3y3t + ut, where ut ∼ I(0) (12.6)

y2t = y2t−1 + vt, where vt ∼ I(0) (12.7)

y3t = y3t−1 + wt, where wt ∼ I(0) (12.8)

The first equation describes the long-run equilibrium and the second and
third equations specify the common stochastic trends. An example of a
trivariate cointegrated system with one cointegrating vector is a system of
nominal exchange rates, home country price indices and foreign country
price indices. A cointegrating vector β = (1,−1,−1)0 implies that the real
exchange rate is stationary.

Example 73 Simulated trivariate cointegrated system with 1 cointegrating
vector

The S-PLUS code for simulating T = 250 observation from (12.6)-(12.8)
with β = (1,−0.5,−0.5)0, ut = 0.75ut−1 + εt, εt ∼ iidN(0, 0.52), vt ∼
iidN(0, 0.52) and wt ∼ iidN(0, 0.52) is

> set.seed(573)

> e = rmvnorm(250, mean=rep(0,3), sd=c(0.5,0.5,0.5))

> u1.ar1 = arima.sim(model=list(ar=0.75), innov=e[,1])

> y2 = cumsum(e[,2])
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Simulated trivariate cointegrated system
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FIGURE 12.3. Simulated trivariate cointegrated system with one cointegrating
vector β = (1,−0.5,−0.5)0 and two stochastic trends.

> y3 = cumsum(e[,3])

> y1 = 0.5*y2 + 0.5*y3 + u1.ar1

> par(mfrow=c(2,1))

> tsplot(y1, y2, y3, lty=c(1,3,4),

+ main="Simulated trivariate cointegrated system",

+ sub="1 cointegrating vector, 2 common trends")

> legend(0, 12, legend=c("y1","y2","y3"), lty=c(1,3,4))

> tsplot(u.ar1, main="Cointegrating residual")

Figure 12.3 illustrates the simulated data. Here, y2t and y3t are the two
independent common trends and y1t = 0.5y2t + 0.5y3t + ut is the average
of the two trends plus an AR(1) residual.
Finally, consider a trivariate cointegrated system with two cointegrat-

ing vectors and one common stochastic trend. A triangular representa-
tion for this system with cointegrating vectors β1 = (1, 0,−β13)0 and
β2 = (0, 1,−β23)0 is

y1t = β13y3t + ut, where ut ∼ I(0) (12.9)

y2t = β23y3t + vt, where vt ∼ I(0) (12.10)

y3t = y3t−1 + wt, where wt ∼ I(0) (12.11)

Here the first two equations describe two long-run equilibrium relations
and the third equation gives the common stochastic trend. An example in



12.2 Spurious Regression and Cointegration 439

finance of such a system is the term structure of interest rates where y3
represents the short rate and y1 and y2 represent two different long rates.
The cointegrating relationships would indicate that the spreads between
the long and short rates are stationary.

Example 74 Simulated trivariate cointegrated system with 2 cointegrating
vectors

The S-PLUS code for simulating T = 250 observation from (12.9)-(12.11)
with β1 = (1, 0,−1)0, β2 = (0, 1,−1)0, ut = 0.75ut−1+εt, εt ∼ iidN(0, 0.52),
vt = 0.75vt−1 + ηt, ηt ∼ iidN(0, 0.52) and wt ∼ iidN(0, 0.52) is

> set.seed(573)

> e = rmvnorm(250,mean=rep(0,3), sd=c(0.5,0.5,0.5))

> u.ar1 = arima.sim(model=list(ar=0.75), innov=e[,1])

> v.ar1 = arima.sim(model=list(ar=0.75), innov=e[,2])

> y3 = cumsum(e[,3])

> y1 = y3 + u.ar1

> y2 = y3 + v.ar1

> par(mfrow=c(2,1))

> tsplot(y1, y2, y3, lty=c(1,3,4),

+ main="Simulated trivariate cointegrated system",

+ sub="2 cointegrating vectors, 1 common trend")

> legend(0, 10, legend=c("y1","y2","y3"), lty=c(1,3,4))

> tsplot(u.ar1, v.ar1, lty=c(1,3),

+ main="Cointegrated residuals")

> legend(0, -1, legend=c("u","v"), lty=c(1,3))

12.2.5 Cointegration and Error Correction Models

Consider a bivariate I(1) vector Yt = (y1t, y2t)
0 and assume that Yt is

cointegrated with cointegrating vector β = (1,−β2)0 so that β0Yt = y1t −
β2y2t is I(0). In an extremely influential and important paper, Engle and
Granger (1987) showed that cointegration implies the existence of an error
correction model (ECM) of the form

∆y1t = c1 + α1(y1t−1 − β2y2t−1) (12.12)

+
X
j

ψj11∆y1t−j +
X
j

ψj12∆y2t−j + ε1t

∆y2t = c2 + α2(y1t−1 − β2y2t−1) (12.13)

+
X
j

ψj21∆y1t−j +
X
j

ψ222∆y2t−j + ε2t

that describes the dynamic behavior of y1t and y2t. The ECM links the
long-run equilibrium relationship implied by cointegration with the short-
run dynamic adjustment mechanism that describes how the variables react
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FIGURE 12.4. Simulated trivatiate cointegrated system with two cointegrating
vectors β1 = (1, 0,−1)0, β2 = (0, 1,−1)0 and one common trend.

when they move out of long-run equilibrium. This ECM makes the concept
of cointegration useful for modeling financial time series.

Example 75 Bivariate ECM for stock prices and dividends

As an example of an ECM, let st denote the log of stock prices and dt
denote the log of dividends and assume that Yt = (st, dt)

0 is I(1). If the
log dividend-price ratio is I(0) then the logs of stock prices and dividends
are cointegrated with β = (1,−1)0. That is, the long-run equilibrium is

dt = st + µ+ ut

where µ is the mean of the log dividend-price ratio, and ut is an I(0) random
variable representing the dynamic behavior of the log dividend-price ratio
(disequilibrium error). Suppose the ECM has the form

∆st = cs + αs(dt−1 − st−1 − µ) + εst

∆dt = cd + αd(dt−1 − st−1 − µ) + εdt

where cs > 0 and cd > 0. The first equation relates the growth rate of
dividends to the lagged disequilibrium error dt−1−st−1−µ, and the second
equation relates the growth rate of stock prices to the lagged disequilibrium
as well. The reactions of st and dt to the disequilibrium error are captured
by the adjustment coefficients αs and αd.
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Consider the special case of (12.12)-(12.13) where αd = 0 and αs = 0.5.
The ECM equations become

∆st = cs + 0.5(dt−1 − st−1 − µ) + εst,

∆dt = cd + εdt.

so that only st responds to the lagged disequilibrium error. Notice that
E[∆st|Yt−1] = cs + 0.5(dt−1 − st−1 − µ) and E[∆dt|Yt−1] = cd. Consider
three situations:

1. dt−1−st−1−µ = 0. Then E[∆st|Yt−1] = cs and E[∆dt|Yt−1] = cd, so
that cs and cd represent the growth rates of stock prices and dividends
in long-run equilibrium.

2. dt−1− st−1−µ > 0. Then E[∆st|Yt−1] = cs+0.5(dt−1− st−1−µ) >
cs. Here the dividend yield has increased above its long-run mean
(positive disequilibrium error) and the ECM predicts that st will grow
faster than its long-run rate to restore the dividend yield to its long-
run mean. Notice that the magnitude of the adjustment coefficient
αs = 0.5 controls the speed at which st responds to the disequilibrium
error.

3. dt−1− st−1−µ < 0. Then E[∆st|Yt−1] = cs+0.5(dt−1− st−1−µ) <
cs. Here the dividend yield has decreased below its long-run mean
(negative disequilibrium error) and the ECM predicts that st will
grow more slowly than its long-run rate to restore the dividend yield
to its long-run mean.

In Case 1, there is no expected adjustment since the model was in long-
run equilibrium in the previous period. In Case 2, the model was above
long-run equilibrium last period so the expected adjustment in st is down-
ward toward equilibrium. In Case 3, the model was below long-run equi-
librium last period and so the expected adjustment is upward toward the
equilibrium. This discussion illustrates why the model is called an error cor-
rection model. When the variables are out of long-run equilibrium, there
are economic forces, captured by the adjustment coefficients, that push
the model back to long-run equilibrium. The speed of adjustment toward
equilibrium is determined by the magnitude of αs. In the present example,
αs = 0.5 which implies that roughly one half of the disequilibrium error
is corrected in one time period. If αs = 1 then the entire disequilibrium
is corrected in one period. If αs = 1.5 then the correction overshoots the
long-run equilibrium.
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12.3 Residual-Based Tests for Cointegration

Let the (n×1) vector Yt be I(1). Recall, Yt is cointegrated with 0 < r < n
cointegrating vectors if there exists an (r × n) matrix B0 such that

B0Yt =

 β01Yt

...
β0rYt

 =

 u1t
...
urt

 ∼ I(0)

Testing for cointegration may be thought of as testing for the existence
of long-run equilibria among the elements of Yt. Cointegration tests cover
two situations:

• There is at most one cointegrating vector
• There are possibly 0 ≤ r < n cointegrating vectors.

The first case was originally considered by Engle and Granger (1986) and
they developed a simple two-step residual-based testing procedure based
on regression techniques. The second case was originally considered by Jo-
hansen (1988) who developed a sophisticated sequential procedure for de-
termining the existence of cointegration and for determining the number of
cointegrating relationships based on maximum likelihood techniques. This
section explains Engle and Granger’s two-step procedure. Johansen’s more
general procedure will be discussed later on.
Engle and Granger’s two-step procedure for determining if the (n × 1)

vector β is a cointegrating vector is as follows:

• Form the cointegrating residual β0Yt = ut

• Perform a unit root test on ut to determine if it is I(0).

The null hypothesis in the Engle-Granger procedure is no-cointegration and
the alternative is cointegration. There are two cases to consider. In the first
case, the proposed cointegrating vector β is pre-specified (not estimated).
For example, economic theory may imply specific values for the elements
in β such as β = (1,−1)0. The cointegrating residual is then readily con-
structed using the prespecified cointegrating vector. In the second case, the
proposed cointegrating vector is estimated from the data and an estimate

of the cointegrating residual β̂
0
Yt = ût is formed. Tests for cointegration

using a pre-specified cointegrating vector are generally much more powerful
than tests employing an estimated vector.

12.3.1 Testing for Cointegration When the Cointegrating
Vector Is Pre-specified

Let Yt denote an (n× 1) vector of I(1) time series, let β denote an (n× 1)
prespecified cointegrating vector and let ut = β0Yt denote the prespecified
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FIGURE 12.5. Log of US/CA spot and 30-day exchange rates and 30-day interest
rate differential.

cointegrating residual. The hypotheses to be tested are

H0 : ut = β0Yt ∼ I(1) (no cointegration) (12.14)

H1 : ut = β0Yt ∼ I(0) (cointegration)

Any unit root test statistic may be used to evaluate the above hypotheses.
The most popular choices are the ADF and PP statistics. Cointegration is
found if the unit root test rejects the no-cointegration null. It should be kept
in mind, however, that the cointegrating residual may include deterministic
terms (constant or trend) and the unit root tests should account for these
terms accordingly. See Chapter 4 for details about the application of unit
root tests.

Example 76 Testing for cointegration between spot and forward exchange
rates using a known cointegrating vector

In international finance, the covered interest rate parity arbitrage re-
lationship states that the difference between the logarithm of spot and
forward exchange rates is equal to the difference between nominal domes-
tic and foreign interest rates. It seems reasonable to believe that interest
rate spreads are I(0) which implies that spot and forward rates are coin-
tegrated with cointegrating vector β = (1,−1)0. To illustrate, consider the
log monthly spot, st, and 30 day forward, ft, exchange rates between the
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US and Canada over the period February 1976 through June 1996 taken
from the S+FinMetrics “timeSeries” object lexrates.dat

> uscn.s = lexrates.dat[,"USCNS"]

> uscn.s@title = "Log of US/CA spot exchange rate"

> uscn.f = lexrates.dat[,"USCNF"]

> uscn.f@title = "Log of US/CA 30-day forward exchange rate"

> u = uscn.s - uscn.f

> colIds(u) = "USCNID"

> u@title = "US/CA 30-day interest rate differential"

The interest rate differential is constructed using the pre-specified cointe-
grating vector β = (1,−1)0 as ut = st−ft. The spot and forward exchange
rates and interest rate differential are illustrated in Figure 12.5. Visually,
the spot and forward exchange rates clearly share a common trend and the
interest rate differential appears to be I(0). In addition, there is no clear de-
terministic trend behavior in the exchange rates. The S+FinMetrics func-
tion unitroot may be used to test the null hypothesis that st and ft are
not cointegrated (ut ∼ I(1)). The ADF t-test based on 11 lags and a con-
stant in the test regression leads to the rejection at the 5% level of the
hypothesis that st and ft are not cointegrated with cointegrating vector
β = (1,−1)0:

> unitroot(u, trend="c", method="adf", lags=11)

Test for Unit Root: Augmented DF Test

Null Hypothesis: there is a unit root

Type of Test: t-test

Test Statistic: -2.881

P-value: 0.04914

Coefficients:

lag1 lag2 lag3 lag4 lag5 lag6 lag7

-0.1464 -0.1171 -0.0702 -0.1008 -0.1234 -0.1940 0.0128

lag8 lag9 lag10 lag11 constant

-0.1235 0.0550 0.2106 -0.1382 0.0002

Degrees of freedom: 234 total; 222 residual

Time period: from Jan 1977 to Jun 1996

Residual standard error: 8.595e-4
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12.3.2 Testing for Cointegration When the Cointegrating
Vector Is Estimated

Let Yt denote an (n × 1) vector of I(1) time series and let β denote an
(n × 1) unknown cointegrating vector. The hypotheses to be tested are
given in (12.14). Since β is unknown, to use the Engle-Granger procedure
it must be first estimated from the data. Before β can be estimated some
normalization assumption must be made to uniquely identify it. A common
normalization is to specify the first element inYt as the dependent variable
and the rest as the explanatory variables. Then Yt = (y1t,Y

0
2t)

0 where
Y2t = (y2t, . . . , ynt)

0 is an ((n− 1)× 1) vector and the cointegrating vector
is normalized as β = (1,−β02)0. Engle and Granger propose estimating the
normalized cointegrating vector β2 by least squares from the regression

y1t = c+ β02Y2t + ut (12.15)

and testing the no-cointegration hypothesis (12.14) with a unit root test
using the estimated cointegrating residual

ût = y1t − ĉ− β̂2Y2t (12.16)

where ĉ and β̂2 are the least squares estimates of c and β2. The unit root
test regression in this case is without deterministic terms (constant or con-
stant and trend). Phillips and Ouliaris (1990) show that ADF and PP unit
root tests (t-tests and normalized bias) applied to the estimated cointegrat-
ing residual (12.16) do not have the usual Dickey-Fuller distributions under
the null hypothesis (12.14) of no-cointegration. Instead, due to the spurious
regression phenomenon under the null hypothesis (12.14), the distribution
of the ADF and PP unit root tests have asymptotic distributions that are
functions of Wiener processes that depend on the deterministic terms in
the regression (12.15) used to estimate β2 and the number of variables,
n− 1, in Y2t. These distributions are known as the Phillips-Ouliaris (PO)
distributions, and are described in Phillips and Ouliaris (1990). To further
complicate matters, Hansen (1992) showed the appropriate PO distribu-
tions of the ADF and PP unit root tests applied to the residuals (12.16)
also depend on the trend behavior of y1t and Y2t as follows:

Case I: Y2t and y1t are both I(1) without drift. The ADF and PP unit
root test statistics follow the PO distributions, adjusted for a con-
stant, with dimension parameter n− 1.

Case II: Y2t is I(1) with drift and y1t may or may not be I(1) with drift.
The ADF and PP unit root test statistics follow the PO distributions,
adjusted for a constant and trend, with dimension parameter n− 2.
If n− 2 = 0 then the ADF and PP unit root test statistics follow the
DF distributions adjusted for a constant and trend.
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Case III: Y2t is I(1) without drift and y1t is I(1) with drift. In this case,
β2 should be estimated from the regression

y1t = c+ δt+ β02Y2t + ut (12.17)

The resulting ADF and PP unit root test statistics on the residuals
from (12.17) follow the PO distributions, adjusted for a constant and
trend, with dimension parameter n− 1.

Computing Quantiles and P-values from the Phillips-Ouliaris
Distributions Using the S+FinMetrics Functions pcoint and qcoint

The S+FinMetrics functions qcoint and pcoint, based on the response
surface methodology of MacKinnon (1996), may be used to compute quan-
tiles and p-values from the PO distributions. For example, to compute the
10%, 5% and 1% quantiles from the PO distribution for the ADF t-statistic,
adjusted for a constant, with n− 1 = 3 and a sample size T = 100 use
> qcoint(c(0.1,0.05,0.01), n.sample=100, n.series=4,

+ trend="c", statistic="t")

[1] -3.8945 -4.2095 -4.8274

Notice that the argument n.series represents the total number of variables
n. To adjust the PO distributions for a constant and trend set trend="ct".
To compute the PO distribution for the ADF normalized bias statistic
set statistic="n". The quantiles from the PO distributions can be very
different from the quantiles from the DF distributions, especially if n−1 is
large. To illustrate, the 10%, 5% and 1% quantiles from the DF distribution
for the ADF t-statistic with a sample size T = 100 are

> qunitroot(c(0.1,0.05,0.01), n.sample=100,

+ trend="c", statistic="t")

[1] -2.5824 -2.8906 -3.4970

The following examples illustrate testing for cointegration using an esti-
mated cointegrating vector.

Example 77 Testing for cointegration between spot and forward exchange
rates using an estimated cointegrating vector

Consider testing for cointegration between spot and forward exchange
rates assuming the cointegrating vector is not known using the same data as
in the previous example. Let Yt = (st, ft)

0 and normalize the cointegrating
vector on st so that β = (1,−β2)0. The normalized cointegrating coefficient
β2 is estimated by least squares from the regression

st = c+ β2ft + ut

giving the estimated cointegrating residual ût = st − ĉ − β̂2ft. The OLS
function in S+FinMetrics is used to estimate the above regression:
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> uscn.ts = seriesMerge(uscn.s,uscn.f)

> ols.fit = OLS(USCNS~USCNF,data=uscn.ts)

> ols.fit

Call:

OLS(formula = USCNS ~USCNF, data = uscn.ts)

Coefficients:

(Intercept) USCNF

0.0023 1.0041

Degrees of freedom: 245 total; 243 residual

Time period: from Feb 1976 to Jun 1996

Residual standard error: 0.001444

The estimated value of β2 is 1.004 and is almost identical to the value
β2 = 1 implied by covered interest parity. The estimated cointegrating
residual ût is extracted from the least squres fit using

> u.hat = residuals(ols.fit)

Next, the no-cointegration hypothesis (12.14) is tested using the ADF and
PP t-tests. Because the mean of ût is zero, the unit root test regressions are
estimated without a constant or trend. The ADF t-statistic is computed
using 11 lags, as in the previous example, and the PP t-statistic is computed
using an automatic lag truncation parameter:

> adf.fit = unitroot(u.hat,trend="nc",method="adf",lags=11)

> adf.tstat = adf.fit$sval

> adf.tstat

lag1

-2.721

> pp.fit = unitroot(u.hat,trend="nc",method="pp")

> pp.tstat = pp.fit$sval

> pp.tstat

lag1

-5.416

The ADF t-statistic is −2.721 whereas the PP t-statistic is −5.416. Since
st and ft are both I(1) without drift, the 10%, 5% and 1% quantiles from
the approrpiate Phillips-Ouliaris distribution for the ADF t-statistic is

> qcoint(c(0.10,0.05,0.01),n.sample=nrow(uscn.s),n.series=2,

+ trend="c",statistic="t")

[1] -3.062 -3.361 -3.942
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The no-cointegration null hypothesis is not rejected at the 10% level using
the ADF t-statistic but is rejected at the 1% level using the PP t-statistic.
The p-values for the ADF and PP t-statistics are

> pcoint(adf.tstat, n.sample=nrow(uscn.s), n.series=2,

+ trend="c", statistic="t")

[1] 0.1957

> pcoint(pp.tstat, n.sample=nrow(uscn.s), n.series=2,

+ trend="c", statistic="t")

[1] 0.00003925

12.4 Regression-Based Estimates of Cointegrating
Vectors and Error Correction Models

12.4.1 Least Square Estimator

Least squares may be used to consistently estimate a normalized cointe-
grating vector. However, the asymptotic behavior of the least squares es-
timator is non-standard. The following results about the behavior of β̂2 if
Yt is cointegrated are due to Stock (1987) and Phillips (1991):

• T (β̂2−β2) converges in distribution to a non-normal random variable
not necessarily centered at zero.

• The least squares estimate β̂2 is consistent for β2 and converges to
β2 at rate T instead of the usual rate T 1/2. That is, β̂2 is super
consistent.

• β̂2 is consistent even if Y2t is correlated with ut so that there is no
asymptotic simultaneity bias.

• In general, the asymptotic distribution of T (β̂2 − β2) is asymptoti-
cally biased and non-normal. The usual OLS formula for computing
[avar(β̂2) is incorrect and so the usual OLS standard errors are not
correct.

• Even though the asymptotic bias goes to zero as T gets large β̂2 may
be substantially biased in small samples. The least squres estimator
is also not efficient.

The above results indicate that the least squares estimator of the coin-
tegrating vector β2 could be improved upon. A simple improvement is
suggested by Stock and Watson (1993).
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12.4.2 Stock and Watson’s Efficient Lead/Lag Estimator

Stock and Watson (1993) provide a very simple method for obtaining an
asymptotically efficient (equivalent to maximum likelihood) estimator for
the normalized cointegrating vector β2 as well as a valid formula for com-
puting its asymptotic variance2.
Let Yt = (y1t,Y

0
2t)

0 where Y2t = (y2t, . . . , ynt)
0 is an ((n−1)×1) vector

and let the cointegrating vector be normalized as β = (1,−β02)0. Stock and
Watson’s efficient estimation procedure is:

• Augment the cointegrating regression of y1t on Y2t with appropriate
deterministic terms Dt with p leads and lags of ∆Y2t

y1t = γ0Dt + β02Y2t +

pX
j=−p

ψ0j∆Y2t−j + ut (12.18)

= γ0Dt + β02Y2t +ψ0p∆Y2t+p + · · ·+ψ01∆Y2t+1

+ψ00∆Y2t +ψ0−1∆Y2t−1 + · · ·+ψ0−p∆Y2t−p + ut

• Estimate the augmented regression by least squares. The resulting
estimator of β2 is called the dynamic OLS estimator and is denoted
β̂2,DOLS . It will be consistent, asymptotically normally distributed
and efficient (equivalent to MLE) under certain assumptions (see
Stock and Watson, 1993).

• Asymptotically valid standard errors for the individual elements of
β̂2,DOLS are given by the OLS standard errors from (12.18) multiplied
by the ratio Ã

σ̂2uclrv(ut)
!1/2

where σ̂2u is the OLS estimate of var(ut) and
clrv(ut) is any consistent

estimate of the long-run variance of ut using the residuals ût from
(12.18). Alternatively, the Newey-West HAC standard errors may also
be used.

Example 78 DOLS estimation of cointegrating vector using exchange rate
data3

Let st denote the log of the monthly spot exchange rate between two
currencies at time t and let fkt denote the log of the forward exchange
rate at time t for delivery of foreign currency at time t+ k. Under rational

2Hamilton (1994) chapter 19, and Hayashi (2000) chapter 10, give nice discussions of
the Stock and Watson procedure.

3This example is based on Zivot (2000).
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expectations and risk neutrality fkt is an unbiased predictor of st+k, the
spot exchange rate at time t+ k. That is

st+k = fkt + εt+k

where εt+k is a white noise error term. This is known as the forward
rate unbiasedness hypothesis (FRUH). Assuming that st and fkt are I(1)
the FRUH implies that st+k and fkt are cointegrated with cointegrat-
ing vector β = (1,−1)0. To illustrate, consider again the log monthly
spot, st, and one month forward, f

1
t , exchange rates between the US and

Canada over the period February 1976 through June 1996 taken from the
S+FinMetrics “timeSeries” object lexrates.dat.The cointegrating vec-
tor between st+1 and f1t is estimated using least squares and Stock and
Watson’s dynamic OLS estimator computed from (12.18) with y1t = st+1,
Dt = 1, Y2t = f1t and p = 3. The data for the DOLS regression equation
(12.18) are constucted as

> uscn.df = diff(uscn.f)

> colIds(uscn.df) = "D.USCNF"

> uscn.df.lags = tslag(uscn.df,-3:3,trim=T)

> uscn.ts = seriesMerge(uscn.s,uscn.f,uscn.df.lags)

> colIds(uscn.ts)

[1] "USCNS" "USCNF" "D.USCNF.lead3"

[4] "D.USCNF.lead2" "D.USCNF.lead1" "D.USCNF.lag0"

[7] "D.USCNF.lag1" "D.USCNF.lag2" "D.USCNF.lag3"

The least squares estimator of the normalized cointegrating coefficient β2
computed using the S+FinMetrics function OLS is

> summary(OLS(tslag(USCNS,-1)~USCNF,data=uscn.ts,na.rm=T))

Call:

OLS(formula = tslag(USCNS, -1) ~USCNF, data = uscn.ts,

na.rm = T)

Residuals:

Min 1Q Median 3Q Max

-0.0541 -0.0072 0.0006 0.0097 0.0343

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) -0.0048 0.0025 -1.9614 0.0510

USCNF 0.9767 0.0110 88.6166 0.0000

Regression Diagnostics:

R-Squared 0.9709
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Adjusted R-Squared 0.9708

Durbin-Watson Stat 2.1610

Residual standard error: 0.01425 on 235 degrees of freedom

Time period: from Jun 1976 to Feb 1996

F-statistic: 7853 on 1 and 235 degrees of freedom,

the p-value is 0

Notice that in the regression formula, tslag(USCN,-1) computes st+1. The
least squares estimate of β2 is 0.977 with an estimated standard error of
0.011 indicating that f1t underpredicts st+1. However, the usual formula
for computing the estimated standard error is incorrect and should not be
trusted.
The DOLS estimator of β2 based on (12.18) is computed using

> dols.fit = OLS(tslag(USCNS,-1)~USCNF +

+ D.USCNF.lead3+D.USCNF.lead2+D.USCNF.lead1 +

+ D.USCNF.lag0+D.USCNF.lag1+D.USCNF.lag2+D.USCNF.lag3,

+ data=uscn.ts,na.rm=T)

The Newey-West HAC standard errors for the estimated coefficients are
computed using summary with correction="nw":

> summary(dols.fit,correction="nw")

Call:

OLS(formula = tslag(USCNS, -1) ~USCNF + D.USCNF.lead3 +

D.USCNF.lead2 + D.USCNF.lead1 + D.USCNF.lag0 +

D.USCNF.lag1 + D.USCNF.lag2 + D.USCNF.lag3, data =

uscn.ts, na.rm = T)

Residuals:

Min 1Q Median 3Q Max

-0.0061 -0.0008 0.0000 0.0009 0.0039

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) 0.0023 0.0005 4.3948 0.0000

USCNF 1.0040 0.0019 531.8862 0.0000

D.USCNF.lead3 0.0114 0.0063 1.8043 0.0725

D.USCNF.lead2 0.0227 0.0068 3.3226 0.0010

D.USCNF.lead1 1.0145 0.0090 112.4060 0.0000

D.USCNF.lag0 0.0005 0.0073 0.0719 0.9427

D.USCNF.lag1 -0.0042 0.0061 -0.6856 0.4937

D.USCNF.lag2 -0.0056 0.0061 -0.9269 0.3549

D.USCNF.lag3 -0.0014 0.0045 -0.3091 0.7575
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Regression Diagnostics:

R-Squared 0.9997

Adjusted R-Squared 0.9997

Durbin-Watson Stat 0.4461

Residual standard error: 0.001425 on 228 degrees of freedom

Time period: from Jun 1976 to Feb 1996

F-statistic: 101000 on 8 and 228 degrees of freedom,

the p-value is 0

The DOLS estimator of β2 is 1.004 with a very small estimated standard
error of 0.0019 and indicates that f1t is essentially an unbiased predictor of
the future spot rate st+1.

12.4.3 Estimating Error Correction Models by Least Squares

Consider a bivariate I(1) vectorYt = (y1t, y2t)
0 and assume thatYt is coin-

tegrated with cointegrating vector β = (1,−β2)0 so that β0Yt = y1t−β2y2t
is I(0). Suppose one has a consistent estimate β̂2 (by OLS or DOLS) of
the cointegrating coefficient and is interested in estimating the correspond-
ing error correction model (12.12)-(12.13) for ∆y1t and ∆y2t. Because β̂2
is super consistent it may be treated as known in the ECM, so that the
estimated disequilibrium error y1t − β̂2y2t may be treated like the known
disequilibrium error y1t − β2y2t. Since all variables in the ECM are I(0),
the two regression equations may be consistently estimated using ordinary
least squares (OLS). Alternatively, the ECM system may be estimated by
seemingly unrelated regressions (SUR) to increase efficiency if the number
of lags in the two equations are different.

Example 79 Estimation of error correction model for exchange rate data

Consider again the monthly log spot rate, st, and log forward rate, ft,
data between the U.S. and Canada. Earlier it was shown that st and ft are
cointegrated with an estimated cointegrating coefficient β̂2 = 1.004. Now
consider estimating an ECM of the form (12.12)-(12.13) by least squares
using the estimated disequilibrium error st−1.004 ·ft. In order to estimate
the ECM, the number of lags of ∆st and ∆ft needs to be determined. This
may be done using test statistics for the significance of the lagged terms
or model selection criteria like AIC or BIC. An initial estimation using one
lag of ∆st and ∆ft may be performed using

> u.hat = uscn.s - 1.004*uscn.f

> colIds(u.hat) = "U.HAT"

> uscn.ds = diff(uscn.s)

> colIds(uscn.ds) = "D.USCNS"



12.5 VAR Models and Cointegration 453

> uscn.df = diff(uscn.f)

> colIds(uscn.df) = "D.USCNF"

> uscn.ts = seriesMerge(uscn.s,uscn.f,uscn.ds,uscn.df,u.hat)

> ecm.s.fit = OLS(D.USCNS~tslag(U.HAT)+tslag(D.USCNS)

+ +tslag(D.USCNF),data=uscn.ts,na.rm=T)

> ecm.f.fit = OLS(D.USCNF~tslag(U.HAT)+tslag(D.USCNS)+

+ tslag(D.USCNF),data=uscn.ts,na.rm=T)

The estimated coefficients from the fitted ECM are

> ecm.s.fit

Call:

OLS(formula = D.USCNS ~tslag(U.HAT) + tslag(D.USCNS) + tslag(

D.USCNF), data = uscn.ts, na.rm = T)

Coefficients:

(Intercept) tslag(U.HAT) tslag(D.USCNS) tslag(D.USCNF)

-0.0050 1.5621 1.2683 -1.3877

Degrees of freedom: 243 total; 239 residual

Time period: from Apr 1976 to Jun 1996

Residual standard error: 0.013605

> ecm.f.fit

Call:

OLS(formula = D.USCNF ~tslag(U.HAT) + tslag(D.USCNS) + tslag(

D.USCNF), data = uscn.ts, na.rm = T)

Coefficients:

(Intercept) tslag(U.HAT) tslag(D.USCNS) tslag(D.USCNF)

-0.0054 1.7547 1.3595 -1.4702

Degrees of freedom: 243 total; 239 residual

Time period: from Apr 1976 to Jun 1996

Residual standard error: 0.013646

12.5 VAR Models and Cointegration

The Granger representation theorem links cointegration to error correction
models. In a series of important papers and in a marvelous textbook, Soren
Johansen firmly roots cointegration and error correction models in a vector
autoregression framework. This section outlines Johansen’s approach to
cointegration modeling.
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12.5.1 The Cointegrated VAR

Consider the levels VAR(p) model for the (n× 1) vector Yt

Yt= ΦDt+Π1Yt−1+ · · ·+ΠpYt−p+εt, t = 1, . . . , T, (12.19)

where Dt contains deterministic terms (constant, trend, seasonal dummies
etc.). Recall, the VAR(p) model is stable if

det(In −Π1z − · · ·−Πpz
p) = 0 (12.20)

has all roots outside the complex unit circle. If (12.20) has a root on the
unit circle then some or all of the variables in Yt are I(1) and they may
also be cointegrated. Recall, Yt is cointegrated if there exists some linear
combination of the variables in Yt that is I(0). Suppose Yt is I(1) and
possibly cointegrated. Then the VAR representation (22.11) is not the most
suitable representation for analysis because the cointegrating relations are
not explicitly apparent. The cointegrating relations become apparent if
the levels VAR (22.11) is transformed to the vector error correction model
(VECM)

∆Yt = ΦDt+ΠYt−1+Γ1∆Yt−1+ · · ·+ Γp−1∆Yt−p+1+εt (12.21)

where Π = Π1+ · · ·+Πp−In and Γk = −
Pp

j=k+1Πj , k = 1, . . . , p − 1.
The matrix Π is called the long-run impact matrix and Γk are the short-
run impact matrices. Notice that the VAR parametersΠi may be recovered
from the VECM parameters Π and Γk via

Π1 = Γ1+Π+ In, (12.22)

Πk = Γk−Γk−1, k = 2, . . . , p.

In the VECM (12.21), ∆Yt and its lags are I(0). The term ΠYt−1 is
the only one which includes potential I(1) variables and for ∆Yt to be
I(0) it must be the case that ΠYt−1 is also I(0). Therefore, ΠYt−1 must
contain the cointegrating relations if they exist. If the VAR(p) process has
unit roots then from (12.20) it is clear that Π is a singular matrix. If Π is
singular then it has reduced rank ; that is rank(Π) = r < n. There are two
cases to consider:

1. rank(Π) = 0. This implies thatΠ = 0 and Yt is I(1) and not cointe-
grated. The VECM (12.21) reduces to a VAR(p−1) in first differences

∆Yt= ΦDt+Γ1∆Yt−1+ · · ·+ Γp−1∆Yt−p+1+εt.

2. 0 < rank(Π) = r < n. This implies that Yt is I(1) with r linearly
independent cointegrating vectors and n−r common stochastic trends
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(unit roots)4. Since Π has rank r it can be written as the product

Π
(n×n)

= α
(n×r)

β
(r×n)

0

where α and β are (n × r) matrices with rank(α) = rank(β) = r.
The rows of β0 form a basis for the r cointegrating vectors and the
elements of α distribute the impact of the cointegrating vectors to
the evolution of ∆Yt. The VECM (12.21) becomes

∆Yt= ΦDt+αβ
0Yt−1+Γ1∆Yt−1+ · · ·+ Γp−1∆Yt−p+1+εt,

(12.23)
where β0Yt−1 ∼ I(0) since β0 is a matrix of cointegrating vectors.

It is important to recognize that the factorizationΠ = αβ0 is not unique
since for any r × r nonsingular matrix H we have

αβ0= αHH−1β0= (aH)(βH−10)0= a∗β∗0.

Hence the factorization Π = αβ0 only identifies the space spanned by the
cointegrating relations. To obtain unique values of α and β0 requires further
restrictions on the model.

Example 80 A bivariate cointegrated VAR(1) model

Consider the bivariate VAR(1) model for Yt = (y1t, y2t)
0

Yt= Π1Yt−1+²t.

The VECM is
∆Yt= ΠYt−1+εt

where Π = Π1−I2. Assuming Yt is cointegrated there exists a 2 × 1 vec-
tor β = (β1, β2)

0 such that β0Yt = β1y1t + β2y2t is I(0). Using the
normalization β1 = 1 and β2 = −β the cointegrating relation becomes
β0Yt = y1t − βy2t. This normalization suggests the stochastic long-run
equilibrium relation

y1t = βy2t + ut

where ut is I(0) and represents the stochastic deviations from the long-run
equilibrium y1t = βy2t.
Since Yt is cointegrated with one cointegrating vector, rank(Π) = 1 and

can be decomposed as

Π = αβ0 =
µ

α1
α2

¶¡
1 −β ¢

=

µ
α1 −α1β
α2 −α2β

¶
.

4To see thatYt has n−r common stochastic trends we have to look at the Beveridge-
Nelson decomposition of the moving average representation of ∆Yt.
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The elements in the vector α are interpreted as speed of adjustment coef-
ficients. The cointegrated VECM for ∆Yt may be rewritten as

∆Yt= αβ0Yt−1+εt. (12.24)

Writing the VECM equation by equation gives

∆y1t = α1(y1t−1 − βy2t−1) + ε1t,

∆y2t = α2(y1t−1 − βy2t−1) + ε2t.

The first equation relates the change in y1t to the lagged disequilibrium
error β0Yt−1 = (y1t−1−βy2t−1) and the second equation relates the change
in ∆y2t to the lagged disequilibrium error as well. Notice that the reactions
of y1 and y2 to the disequilibrium errors are captured by the adjustment
coefficients α1 and α2.
The stability conditions for the bivariate VECM are related to the stabil-

ity conditions for the disequilibrium error β0Yt. By pre-multiplying (12.24)
by β0, it is straightforward to show that β0Yt follows an AR(1) process

β0Yt= (1+ β
0
α)β

0
Yt−1+β0εt

or

ut = φut−1 + vt

where ut = β0Yt, φ = 1+β
0α = 1+(α1−βα2) and vt = β0εt = u1t−βu2t.

The AR(1) model for ut is stable as long as |φ| = |1+ (α1−βα2)| < 1. For
example, suppose β = 1. Then the stability condition is |φ| = |1 + (α1 −
α2)| < 1 which is satisfied if α1−α2 < 0 and α1−α2 > −2. If α2 = 0 then
−2 < α1 < 0 is the required stability condition.

12.5.2 Johansen’s Methodology for Modeling Cointegration

The basic steps in Johansen’s methodology are:

• Specify and estimate a VAR(p) model for Yt.

• Construct likelihood ratio tests for the rank of Π to determine the
number of cointegrating vectors.

• If necessary, impose normalization and identifying restrictions on the
cointegrating vectors.

• Given the normalized cointegrating vectors estimate the resulting
cointegrated VECM by maximum likelihood.
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12.5.3 Specification of Deterministic Terms

Following Johansen (1995), the deterministic terms in (12.23) are restricted
to the form

ΦDt = µt= µ0+µ1t

If the deterministic terms are unrestricted then the time series in Yt may
exhibit quadratic trends and there may be a linear trend term in the coin-
tegrating relationships. Restricted versions of the trend parameters µ0 and
µ1 limit the trending nature of the series in Yt. The trend behavior of Yt

can be classified into five cases:

1. Model H2(r): µt = 0 (no constant). The restricted VECM is

∆Yt= αβ0Yt−1+Γ1∆Yt−1+ · · ·+ Γp−1∆Yt−p+1+εt,

and all the series in Yt are I(1) without drift and the cointegrating
relations β0Yt have mean zero.

2. Model H∗1 (r): µt = µ0 = αρ0 (restricted constant). The restricted
VECM is

∆Yt= α(β0Yt−1 + ρ0)+Γ1∆Yt−1+ · · ·+ Γp−1∆Yt−p+1+εt,

the series in Yt are I(1) without drift and the cointegrating relations
β0Yt have non-zero means ρ0.

3. Model H1(r): µt= µ0 (unrestricted constant). The restricted VECM
is

∆Yt=µ0 +αβ0Yt−1+Γ1∆Yt−1+ · · ·+ Γp−1∆Yt−p+1+εt

the series in Yt are I(1) with drift vector µ0 and the cointegrating
relations β0Yt may have a non-zero mean.

4. ModelH∗(r): µt= µ0+αρ1t (restricted trend). The restricted VECM
is

∆Yt = µ0 +α(β0Yt−1 + ρ1t)

+Γ1∆Yt−1+ · · ·+ Γp−1∆Yt−p+1+εt

the series in Yt are I(1) with drift vector µ0 and the cointegrating
relations β0Yt have a linear trend term ρ1t.

5. Model H(r): µt= µ0+µ1t (unrestricted constant and trend). The un-
restricted VECM is

∆Yt= µ0 + µ1t+αβ0Yt−1+Γ1∆Yt−1+ · · ·+ Γp−1∆Yt−p+1+εt,

the series inYt are I(1) with a linear trend (quadratic trend in levels)
and the cointegrating relations β0Yt have a linear trend.
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FIGURE 12.6. Simulated Yt from bivariate cointegrated VECM for five trend
cases.
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FIGURE 12.7. Simulated β0Yt from bivariate cointegrated VECM for five trend
cases.
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Simulated data from the five trend cases for a bivariate cointegrated
VAR(1) model are illustrated in Figures 12.6 and 12.7. Case I is not really
relevant for empirical work. The restricted contstant Case II is appropriate
for non-trending I(1) data like interest rates and exchange rates. The un-
restriced constant Case III is appropriate for trending I(1) data like asset
prices, macroeconomic aggregates (real GDP, consumption, employment
etc). The restricted trend case IV is also appropriate for trending I(1) as
in Case III. However, notice the deterministic trend in the cointegrating
residual in Case IV as opposed to the stationary residual in case III. Fi-
nally, the unrestricted trend Case V is appropriate for I(1) data with a
quadratic trend. An example might be nominal price data during times of
extreme inflation.

12.5.4 Likelihood Ratio Tests for the Number of Cointegrating
Vectors

The unrestricted cointegrated VECM (12.23) is denoted H(r). The I(1)
model H(r) can be formulated as the condition that the rank of Π is less
than or equal to r. This creates a nested set of models

H(0) ⊂ · · · ⊂ H(r) ⊂ · · · ⊂ H(n)

where H(0) represents the non-cointegrated VAR model with Π = 0 and
H(n) represents an unrestricted stationary VAR(p) model. This nested
formulation is convenient for developing a sequential procedure to test for
the number r of cointegrating relationships.
Since the rank of the long-run impact matrixΠ gives the number of coin-

tegrating relationships in Yt, Johansen formulates likelihood ratio (LR)
statistics for the number of cointegrating relationships as LR statistics for
determining the rank ofΠ. These tests are based on the estimated eigenval-
ues λ̂1 > λ̂2 > · · · > λ̂n of the matrixΠ

5. These eigenvalues also happen to
equal the squared canonical correlations between ∆Yt and Yt−1 corrected
for lagged ∆Yt and Dt and so lie between 0 and 1. Recall, the rank of Π
is equal to the number of non-zero eigenvalues of Π.

Johansen’s Trace Statistic

Johansen’s LR statistic tests the nested hypotheses

H0(r) : r = r0 vs. H1(r0) : r > r0

The LR statistic, called the trace statistic, is given by

LRtrace(r0) = −T
nX

i=r0+1

ln(1− λ̂i)

5The calculation of the eigenvalues λ̂i (i = 1, . . . , n) is described in the appendix.
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If rank(Π) = r0 then λ̂r0+1, . . . , λ̂n should all be close to zero and LRtrace(r0)

should be small. In contrast, if rank(Π) > r0 then some of λ̂r0+1, . . . , λ̂n
will be nonzero (but less than 1) and LRtrace(r0) should be large. The
asymptotic null distribution of LRtrace(r0) is not chi-square but instead
is a multivariate version of the Dickey-Fuller unit root distribution which
depends on the dimension n − r0 and the specification of the determinis-
tic terms. Critical values for this distribution are tabulated in Osterwald-
Lenum (1992) for the five trend cases discussed in the previous section for
n− r0 = 1, . . . , 10.

Sequential Procedure for Determining the Number of Cointegrating
Vectors

Johansen proposes a sequential testing procedure that consistently deter-
mines the number of cointegrating vectors. First test H0(r0 = 0) against
H1(r0 > 0). If this null is not rejected then it is concluded that there are no
cointegrating vectors among the n variables in Yt. If H0(r0 = 0) is rejected
then it is concluded that there is at least one cointegrating vector and pro-
ceed to test H0(r0 = 1) against H1(r0 > 1). If this null is not rejected then
it is concluded that there is only one cointegrating vector. If the null is re-
jected then it is concluded that there is at least two cointegrating vectors.
The sequential procedure is continued until the null is not rejected.

Johansen’s Maximum Eigenvalue Statistic

Johansen also derives a LR statistic for the hypotheses

H0(r0) : r = r0 vs. H1(r0) : r0 = r0 + 1

The LR statistic, called the maximum eigenvalue statistic, is given by

LRmax(r0) = −T ln(1− λ̂r0+1)

As with the trace statistic, the asymptotic null distribution of LRmax(r0)
is not chi-square but instead is a complicated function of Brownian mo-
tion, which depends on the dimension n − r0 and the specification of the
deterministic terms. Critical values for this distribution are tabulated in
Osterwald-Lenum (1992) for the five trend cases discussed in the previous
section for n− r0 = 1, . . . , 10.

Finite Sample Correction to LR Tests

Reinsel and Ahn (1992) and Reimars (1992) have suggested that the LR
tests perform better in finite samples if the factor T − np is used instead
of T in the construction of the LR tests.
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12.5.5 Testing Hypothesis on Cointegrating Vectors Using the
S+FinMetrics Function coint

This section describes how to test for the number of cointegrating vectors,
and how to perform certain tests for linear restrictions on the long-run β
coefficients.

Testing for the Number of Cointegrating Vectors

The Johansen LR tests for determining the number of cointegrating vec-
tors in multivariate time series may be computed using the S+FinMetrics
function coint. The function coint has arguments

> args(coint)

function(Y, X = NULL, lags = 1, trend = "c", H = NULL,

b = NULL, save.VECM = T)

where Y is a matrix, data frame or “timeSeries” containing the I(1)
variables in Yt, X is a numeric object representing exogenous variables to
be added to the VECM, lags denotes the number of lags in the VECM
(one less than the number of lags in the VAR representation), trend deter-
mines the trend case specification, and save.VECM determines if the VECM
information is to be saved. The arguments H and b will be explained later.
The result of coint is an object of class “coint” for which there are print
and summary methods. The use of coint is illustrated with the following
examples.

Example 81 Exchange rate data

Consider testing for the number of cointegrating relations among the log-
arithms of the monthly spot and forward exchange rates in the “timeSeries”
uscn.ts examined earlier. The first step is to determine the number of lags
to use in the VECM. Using the S+FinMetrics function VAR, the lag length
that minimizes the AIC with a maximum lag of 6 is p = 2:

> uscn.ts = seriesMerge(uscn.s, uscn.f)

> var.fit = VAR(uscn.ts,max.ar=6,criterion="AIC")

> var.fit$ar.order

[1] 2

The lag length for the VECM is then p−1 = 1. Since the monthly exchange
rate data are not trending, the Johansen LR tests are computed assuming
the restricted constant case II:

> coint.rc = coint(uscn.ts,trend="rc",lags=1)

> class(coint.rc)

[1] "coint"

> coint.rc
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Call:

coint(Y = uscn.ts, lags = 1, trend = "rc")

Trend Specification:

H1*(r): Restricted constant

Trace tests significant at the 5% level are flagged by ’ +’.

Trace tests significant at the 1% level are flagged by ’++’.

Max Eigenvalue tests significant at the 5% level are flagged

by ’ *’.

Max Eigenvalue tests significant at the 1% level are flagged

by ’**’.

Tests for Cointegration Rank:

Eigenvalue Trace Stat 95% CV 99% CV Max Stat

H(0)++** 0.0970 32.4687 19.9600 24.6000 24.8012

H(1) 0.0311 7.6675 9.2400 12.9700 7.6675

95% CV 99% CV

H(0)++** 15.6700 20.2000

H(1) 9.2400 12.9700

Recall, the number of cointegrating vectors is equal to the number of non-
zero eigenvalues ofΠ. The two estimated eigenvalues are 0.0970 and 0.0311.
The first row in the table gives LRtrace(0) and LRmax(0) for testing the null
of r0 = 0 cointegrating vectors as well as the 95% and 99% quantiles of the
appropriate asymptotic distributions taken from the tables in Osterwald-
Lenum (1992). Both the trace and maximum eigenvalue statistics reject the
r0 = 0 null at the 1% level. The second row in the table gives LRtrace(1)
and LRmax(1) for testing the null of r0 = 1. Neither statistic rejects the
null that r0 = 1.
The summary method gives the same output as print as well as the un-

normalized cointegrating vectors, adjustment coefficients and the estimate
of Π.

Testing Linear Restrictions on Cointegrating Vectors

The coint function can also be used to test linear restrictions on the coin-
tegrating vectors β. Two types of restrictions are currently supported: the
same linear restrictions on all cointegrating vectors in β; some cointegrating
vectors in β are assumed known. Following Johansen (1995), two examples
are given illustrating how to use the coint function to test linear restric-
tions on β.

Example 82 Johansen’s Danish data



12.5 VAR Models and Cointegration 463

The "timeSeries" data set johansen.danish in S+FinMetrics contains
the monthly Danish data used in Johansen (1995), with the columns LRM,
LRY, LPY, IBO, IBE representing the log real money supply (mt), log real
income (yt), log prices, bond rate (i

b
t) and deposit rate (i

d
t ), respectively.

Johansen (1995) considered testing the cointegrating relationship among
mt, yt, i

b
t and idt . A natural hypothesis is that the velocity of money is a

function of the interest rates, or the cointegrating relation contains mt and
yt only through the term mt − yt. For R

0 = (1, 1, 0, 0), this hypothesis can
be represented as a linear restriction on β:

H0 : R
0β = 0 or β =HΨ (12.25)

where Ψ are the unknown parameters in the cointegrating vectors β, H =
R⊥ and R⊥ is the orthogonal complement of R such that R0R⊥ = 0.
Johansen (1995) showed that the null hypothesis (12.25) against the alter-
native of unrestricted r cointegrating relations H(r) can be tested using a
likelihood ratio statistic, which is asymptotically distributed as a χ2 with
r(n− s) degree of freedom where s is the number of columns in H.
To test the hypothesis that the coefficients of mt and yt add up to zero

in the cointegrating relations, Johansen (1995) considered a restricted con-
stant model. In this case, R0 = (1, 1, 0, 0, 0) since the restricted constant
also enters the cointegrating space. Given the restriction matrix R, the
matrix H can be computed using the perpMat function in S+FinMetrics:

> R = c(1, 1, 0, 0, 0)

> H = perpMat(R)

> H

[,1] [,2] [,3] [,4]

[1,] -1 0 0 0

[2,] 1 0 0 0

[3,] 0 1 0 0

[4,] 0 0 1 0

[5,] 0 0 0 1

Now the test can be simply performed by passing the matrix H to the
coint function:

> restr.mod1 = coint(johansen.danish[,c(1,2,4,5)],

+ trend="rc", H=H)

The result of the test can be shown by calling the generic print method
on restr.mod1 with the optional argument restrictions=T:

> print(restr.mod1, restrictions=T)

Call:

coint(Y = johansen.danish[, c(1, 2, 4, 5)], trend = "rc",

H = H)
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Trend Specification:

H1*(r): Restricted constant

Tests for Linear Restriction on Coint Vectors:

Null hypothesis: the restriction is true

Stat Dist df P-value

H(1) 0.0346 chi-square 1 0.8523

H(2) 0.2607 chi-square 2 0.8778

H(3) 4.6000 chi-square 3 0.2035

H(4) 6.0500 chi-square 4 0.1954

For unrestricted sequential cointegration testing, the statistics in the out-
put are labeled according to the null hypothesis, such as H(0), H(1), etc.
However, when restrictions are imposed, the statistics in the output printed
with restrictions=T are labeled according to the alternative hypothesis,
such as H(1), H(2), etc. In the above output, the null hypothesis can-
not be rejected against the alternatives of H(1), H(2), H(3) and H(4) at
conventional levels of significance.
After confirming that the cointegrating coefficients on mt and yt add

up to zero, it is interesting to see if (1,−1, 0, 0, 0) actually is a cointegrat-
ing vector. In general, to test the null hypothesis that some cointegrating
vectors in β are equal to b:

H0 : β = (b,Ψ)

where b is the n × s matrix of known cointegrating vectors and Ψ is the
n×(r−s) matrix of unknown cointegrating vectors, Johansen (1995) showed
that a likelihood ratio statistic can be used, which is asymptotically dis-
tributed as a χ2 with s(n− r) degrees of freedom. This test can be simply
performed by setting the optional argument b to the known cointegrating
vectors. For example,

> b = as.matrix(c(1,-1,0,0,0))

> restr.mod2 = coint(johansen.danish[,c(1,2,4,5)],

+ trend="rc", b=b)

> print(restr.mod2, restrictions=T)

Trend Specification:

H1*(r): Restricted constant

Tests for Known Coint Vectors:

Null hypothesis: the restriction is true

Stat Dist df P-value

H(1) 29.7167 chi-square 4 0.0000

H(2) 8.3615 chi-square 3 0.0391
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H(3) 4.8759 chi-square 2 0.0873

H(4) 0.5805 chi-square 1 0.4461

Again, the statistics in the above output are labeled according to the al-
ternative hypothesis H(1), H(2), etc. Although the hypothesis that the
cointegrating coefficients on mt and yt sum up to zero cannot be rejected,
mt−yt does not seem to be stationary because the hypothesis of the known
value of b is rejected at conventional levels of significance against H(1) and
H(2).

12.5.6 Maximum Likelihood Estimation of the Cointegrated
VECM

If it is found that rank(Π) = r, 0 < r < n, then the cointegrated VECM
(12.23) becomes a reduced rank multivariate regression. The details of the
maximum likelihood estimation of (12.23) under the reduced rank restric-
tion rank(Π) = r is briefly outlined in the Appendix to this chapter. There
it is shown that

β̂mle = (v̂1, . . . , v̂r), (12.26)

where v̂i are the eigenvectors associated with the eigenvalues λ̂i, and that
the MLEs of the remaining parameters are obtained by multivariate least
squares estimation of (12.23) with β replaced by β̂mle.

Normalized Estimates

Recall, the factorization Π = αβ0 is not unique and so the columns of
β̂mle in (12.26) may be interpreted as linear combinations of the under-
lying cointegrating relations. For interpretations, it is often convenient to
normalize or identify the cointegrating vectors by choosing a specific coor-
dinate system in which to express the variables. One arbitrary way to do
this, suggested by Johansen, is to solve for the triangular representation of
the cointegrated system. The details of this normalization process is given
in the appendix, and the S+FinMetrics function VECM utilizes this normal-
ization scheme by default. The resulting normalized cointegrating vector is
denoted β̂c,mle. The normalization of the MLE for β to β̂c,mle will affect
the MLE of α but not the MLEs of the other parameters in the VECM.
It must be emphasized that it is not possible to estimate the individual

elements of β without a specific normalization or identification scheme
and that the normalization based on Phillips’ triangular representation is
arbitrary and the resulting normalized cointegrating vectors (12.29) may
not have any economic meaning. Only in the case r = 1 can a unique
cointegrating vector be found after normalization.

Example 83 Unnormalzed MLEs for exchange rate data
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The unnormalized cointegrating vector assuming r0 = 1 may also be
extracted directly from the “coint” object:

> coint.rc$coint.vectors[1,]

USCNS USCNF Intercept*

-739.0541 743.314 2.023532

Notice in the case of a restricted constant, the last coefficient in β̂mle is an
estimate of the restricted constant. Normalizing on USCNS by dividing each
element in β̂mle by −739.0541 gives
> coint.rc$coint.vectors[1,]/

+ as.numeric(-coint.rc$coint.vectors[1,1])

USCNS USCNF Intercept*

-1 1.005764 0.002738003

The normalized MLEs, β̂c,mle = (−1, 1.006)0 and µ̂c = 0.0027 are almost

identical to the least squares estimates β̂ = (1,−1.004)0 and µ̂ = 0.0023
found earlier.

Asymptotic Distributions

Let β̂c,mle denote the MLE of the normalized cointegrating matrix βc.

Johansen (1995) shows that T (vec(β̂c,mle) − vec(βc)) is asymptotically
(mixed) normally distributed and that a consistent estimate of the asymp-
totic covariance of β̂c,mle is given by

[avar(vec(β̂c,mle)) =

T−1(In−β̂c,mlec
0)S−111 (In−β̂c,mlec

0)0 ⊗
³
α̂0c,mleΩ̂

−1α̂c,mle

´−1
(12.27)

Notice that this result implies that β̂c,mle
p→ βc at rate T instead of the

usual rate T 1/2. Hence, like the least squares estimator, β̂c,mle is super con-
sistent. However, unlike the least squares estimator, asymptotically valid
standard errors may be compute using the square root of the diagonal
elements of (12.27).

12.5.7 Maximum Likelihood Estimation of the Cointegrated
VECM Using the S+FinMetrics Function VECM

Once the number of cointegrating vectors is determined from the coint
function, the maximum likelihood estimates of the full VECM may be
obtained using the S+FinMetrics function VECM. The arguments expected
by VECM are

> args(VECM)

function(object, coint.rank = 1, coint.vec = NULL, X = NULL,

unbiased = T, lags = 1, trend = "c", levels = F)
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where object is either a “coint” object, usually produced by a call to the
function coint, or a rectangular data object. If object is a “coint” object
then coint.rank specifies the rank of Π to determine the number of coin-
tegrating vectors to be used in the fitted VECM. The cointegrating vectors
are then normalized using the Phillips’ triangular representation described
in the appendix. The lag length and trend specification for the VECM is
obtained from the information in the “coint” object. The lag length in
the fitted VECM, however, is one less than the lag length specified in the
“coint” object. If object is a rectangular data object, then coint.vec
must be assigned a matrix whose columns represent pre-specified cointe-
grating vectors. The argument lags is then used to specify the lag length of
the VECM, and trend is used to set the trend specification. The optional
argument X is used to specify any exogenous variables (e.g. dummy variables
for events) other than a constant or trend. The optional argument levels
determines if the VECM is to be fit to the levels Yt or to the first differ-
ences ∆Yt, and determines if forecasts are to be computed for the levels or
the first differences. The result of VECM is an object of class “VECM”, which
inherits from “VAR” for which there are print, summary, plot, cpredict
and predict methods and extractor functions coef, fitted, residuals
and vcov. Since “VECM” objects inherit from “VAR” objects, most of the
method and extractor functions for “VECM” objects work similarly to those
for “VAR” objects. The use of VECM is illustrated with the following exam-
ples.

Example 84 Maximum likelihood estimation of the VECM for exchange
rate data

Using the “coint” object coint.rc computed from the VAR(2) model
with a restricted constant, the VECM(1) with a restricted constant for the
exchange rate data is computed using

> vecm.fit = VECM(coint.rc)

> class(vecm.fit)

[1] "VECM"

> inherits(vecm.fit,"VAR")

[1] T

The print method gives the basic output

> vecm.fit

Call:

VECM(test = coint.rc)

Cointegrating Vectors:

coint.1

USCNS 1.0000



468 12. Cointegration

USCNF -1.0058

Intercept* -0.0027

VECM Coefficients:

USCNS USCNF

coint.1 1.7771 1.9610

USCNS.lag1 1.1696 1.2627

USCNF.lag1 -1.2832 -1.3679

Std. Errors of Residuals:

USCNS USCNF

0.0135 0.0136

Information Criteria:

logL AIC BIC HQ

2060.2 -4114.4 -4103.9 -4110.1

total residual

Degree of freedom: 243 240

Time period: from Apr 1976 to Jun 1996

The print method output is similar to that created by the VAR function.
The output labeled Cointegrating Vectors: gives the estimated cointe-
grating vector coefficients normalized on the first variable in the specifica-
tion of the VECM. To see standard errors for the estimated coefficients use
the summary method

> summary(vecm.fit)

Call:

VECM(test = coint.rc)

Cointegrating Vectors:

coint.1

1.0000

USCNF -1.0058

(std.err) 0.0031

(t.stat) -326.6389

Intercept* -0.0027

(std.err) 0.0007

(t.stat) -3.9758

VECM Coefficients:



12.5 VAR Models and Cointegration 469

USCNS USCNF

coint.1 1.7771 1.9610

(std.err) 0.6448 0.6464

(t.stat) 2.7561 3.0335

USCNS.lag1 1.1696 1.2627

(std.err) 0.9812 0.9836

(t.stat) 1.1921 1.2837

USCNF.lag1 -1.2832 -1.3679

(std.err) 0.9725 0.9749

(t.stat) -1.3194 -1.4030

Regression Diagnostics:

USCNS USCNF

R-squared 0.0617 0.0689

Adj. R-squared 0.0538 0.0612

Resid. Scale 0.0135 0.0136

Information Criteria:

logL AIC BIC HQ

2060.2 -4114.4 -4103.9 -4110.1

total residual

Degree of freedom: 243 240

Time period: from Apr 1976 to Jun 1996

The VECM fit may be inspected graphically using the generic plot
method

> plot(vecm.fit)

Make a plot selection (or 0 to exit):

1: plot: All

2: plot: Response and Fitted Values

3: plot: Residuals

4: plot: Normal QQplot of Residuals

5: plot: ACF of Residuals

6: plot: PACF of Residuals

7: plot: ACF of Squared Residuals

8: plot: PACF of Squared Residuals

9: plot: Cointegrating Residuals

10: plot: ACF of Cointegrating Residuals

11: plot: PACF of Cointegrating Residuals

12: plot: ACF of Squared Cointegrating Residuals
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FIGURE 12.8. Cointegrating residual from maximum likelihood estimation of
VECM(1) for exchange rate data.

13: plot: PACF of Squared Cointegrating Residuals

Selection:

The first eight plot options are the same as those created for a "VAR" object.
The remaining plot options allow a graphical inspection of the cointegrat-
ing residual. For example, plot option 9 is illustrated in Figure 12.8. The
estimated cointegrating residual appears to be I(0).

Example 85 Estimate VECM with pre-specified cointegrating vector

For the exchange rate data, the MLE of the normalized cointegrating
vector is close to (1,−1)0, and the estimate of the restricted constant is
close to zero. These are the values implied by the FRUH. To estimate a
VECM(1) imposing β = (1,−1)0 and µt = 0 use

> beta.true = as.matrix(c(1,-1, 0))

> dimnames(beta.true) = list(c("USCNS","USCNF","Intercept"),

+ "coint.1")

> vecm.fruh.fit = VECM(uscn.ts, coint.vec = beta.true,

+ lags = 1, trend = "rc")

Since the restricted constant lies in the cointegrating space, the last ele-
ment of the pre-specified cointegrating vector is the value of the restricted
constant. A summary of the restricted VECM fit is:
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> summary(vecm.fruh.fit)

Call:

VECM(data = uscn.ts, coint.vec = beta.true, lags = 1, trend =

"rc")

Cointegrating Vectors:

coint.1

USCNS 1

USCNF -1

Intercept 0

VECM Coefficients:

USCNS USCNF

coint.1 0.0337 0.1354

(std.err) 0.4442 0.4466

(t.stat) 0.0758 0.3032

USCNS.lag1 2.1330 2.2781

(std.err) 0.9535 0.9588

(t.stat) 2.2371 2.3760

USCNF.lag1 -2.2226 -2.3573

(std.err) 0.9472 0.9525

(t.stat) -2.3465 -2.4748

Regression Diagnostics:

USCNS USCNF

R-squared 0.0354 0.0393

Adj. R-squared 0.0273 0.0312

Resid. Scale 0.0137 0.0138

Information Criteria:

logL AIC BIC HQ

2053.662 -4101.324 -4090.845 -4097.103

total residual

Degree of freedom: 243 240

Time period: from Apr 1976 to Jun 1996

Notice that the VECM with the pre-specified cointegrating vector does not
fit as well as the VECM using the estimated cointegrating vector.
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12.5.8 Forecasting from the VECM

Forecasts from a VECM are computed by first transforming the VECM to
a VAR using (12.22), and then using the forecasting algorithms for VAR
models described in the previous chapter. For VECM models, one may
forecast the changes in the variables, ∆Yt, or the levels of the variables Yt.
The generic S+FinMetrics functions predict and cpredict are used to
compute unconditional and conditional forecasts from a “VECM” object. The
following example illustrates the use of the predict method to compute
forecasts for the differences and levels of the exchange rate data.

Example 86 Forecasts from VECM fit to exchange rate data

The “VECM” object vecm.fit was produced with the optional argument
levels=F. Consequently, the predict method will produce forecasts for
the changes in st and ft. To compute h-step forecasts for ∆st and ∆ft for
h = 1, . . . , 12 use

> vecm.fcst = predict(vecm.fit,n.predict=12)

> class(vecm.fcst)

[1] "forecast"

To see the forecast and forecast standard errors use

> summary(vecm.fcst)

Predicted Values with Standard Errors:

USCNS USCNF

1-step-ahead -0.0105 -0.0110

(std.err) 0.0136 0.0136

2-step-ahead -0.0130 -0.0139

(std.err) 0.0183 0.0183

...

12-step-ahead -0.0237 -0.0260

(std.err) 0.0435 0.0432

By default, the forecasts are computed using the chain-rule of forecasting.
To compute simulation-based forecasts use method = "mc" or method =
"bootstrap" in the call to predict.
To see the forecasts with standard error bands along the original data

use

> plot(vecm.fcst, xold=diff(uscn.ts), n.old=12)

Since the forecasts are of the first differenced data, the data passed to xold
must be first differenced. The resulting plot is shown in Figure 12.9.
To compute forecasts for the levels st and ft, re-fit the VECM with the

optional argument levels=T
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FIGURE 12.9. VECM forecasts of first differences of exchange rate data.

> vecm.fit.level = VECM(coint.rc, levels=T)

and then call the predict method as before

> vecm.fcst.level = predict(vecm.fit.level, n.predict=12)

> summary(vecm.fcst.level)

Predicted Values with Standard Errors:

USCNS USCNF

1-step-ahead -0.3150 -0.3154

(std.err) 0.0136 0.0136

2-step-ahead -0.3157 -0.3161

(std.err) 0.0183 0.0183

...

12-step-ahead -0.3185 -0.3193

(std.err) 0.0435 0.0432

To plot the forecasts use

> plot(vecm.fcst.level, xold=uscn.ts, n.old=12)

The resulting plot is shown in Figure 12.10.
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FIGURE 12.10. VECM forecasts of levels of exchange rate data.

12.6 Appendix: Maximum Likelihood Estimation
of a Cointegrated VECM

The following brief discussion of maximum likelihood estimation of the
cointegrated VECM (12.23) follows Hamilton (1994) and Johansen (1995).
For simplicity, assume the absence of deterministic terms.

• Concentrate the likelihood function with respect to the error covari-
ance matrix and short-run dynamics by estimating the regressions

∆Yt = Γ̂1∆Yt−1+ · · · Γ̂p−1∆Yt−p+1+Ût

Yt = Φ̂1∆Yt−1+ · · · Φ̂p−1∆Yt−p+1+V̂t

• Form the sample covariance matrices

S00 =
1

T

TX
t=1

ÛtÛ
0
t, S01 =

1

T

TX
t=1

ÛtV̂
0
t, S11 =

1

T

TX
t=1

V̂tV̂
0
t

• Solve the eigenvalue problem

|λS11 − S10S−100 S01| = 0
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giving ordered eigenvalues6 λ̂1 > λ̂2 > · · · > λ̂n and associated eigen-
vectors v̂1, v̂2, . . . , v̂n that satisfy

λ̂iS11v̂i = S10S
−1
00 S01, i = 1, . . . , n

V̂S11V̂ = In

where V̂ = [v̂1, . . . , v̂n]

• The unnormalized MLE for the (n× r) matrix β based on 0 < r < n
cointegrating vectors is given by the first r eigenvectors

β̂mle = (v̂1, . . . , v̂r)

• Form the normalized estimator β̂c,mle by imposing the appropriate
normalizing and identifying restrictions. The MLE for the normalized
estimator of α may be computed as

α̂c,mle = S01β̂c,mle

• The maximum likelihood estimators for the remaining parameters
may be obtained by multivariate least squares of the VECM with β
replaced by β̂c,mle

∆Yt= αcβ̂
0
c,mleYt−1+Γ1∆Yt−1+ · · ·+ Γp−1∆Yt−p+1+εt

• The maximized value of the likelihood function based on r cointe-
grating vectors used in the construction of LR tests for the number
of cointegrating vectors is

L−2/Tmax ∝ |S00|
rY

i=1

(1− λ̂i)

• Estimates of the orthogonal complements of αc and βc are given by

α̂c,⊥ = S−100 S11(v̂r+1, . . . , v̂n)

β̂c,⊥ = S11(v̂r+1, . . . , v̂n)

Let c be any (n× r) matrix such that β0c has full rank. Then β may be
normalized as

βc = β(c0β)−1

6These eigenvalues are the squared canonical correlations between Yt and ∆Yt cor-
rected for ∆Yt−1, . . . ,∆Yt−p+1. Johansen (1995) describes how to solve for the eigen-
values.
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satisfying c0βc = Ir provided |c0β| 6= 0. Johansen suggests setting

c = (Ir
...0)0 (12.28)

This choice of c corresponds to solving the cointegrating relations β0Yt for
the first r variables. To see this, let Yt= (Y

0
1t,Y

0
2t)

0, where Y1t contains
the first r variables and Y2t contains the remaining n−r variables, and let
β0 = (−β1

...β2), where β1 is (r×r) and β2 is (r×(n−r)). Then β0c = −β1
and

βc =

µ
Ir

−β−11 β2

¶
(12.29)

provided β1 has full rank r.
Some examples will help clarify the normalization scheme described above.

First, suppose there is only one cointegrating vector so that r = 1.Let the
(n × 1) vector β = (−β1, β2, . . . , βn)0 and define c = (1, 0, . . . , 0)0 so that
β0c = −β1 and βc = (1,−β2/β1, . . . ,−βn/β1)0 is the normalized coin-
tegrating vector. Notice that this normalization requires β1 6= 0. Next,
suppose there are two cointegrating vectors, r = 2, and let

β0 =

µ −β11 −β12 β13 . . . β1n
−β21 −β22 β23 . . . β2n

¶
=

µ
−β1

...β2

¶
c0 =

µ
1 0 0 . . . 0
0 1 0 . . . 0

¶
= (I2

...0)

such that β1 has full rank. Then β
0c = −β1 and

β0c =
µ
1 0 β∗13 . . . β∗1n
0 1 β∗23 . . . β∗2n

¶
= (I2

...β∗)

where β∗= −β−11 β2. The rows of β
0
c are the normalized cointegrating vec-

tors.
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