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The Likelihood Function

LetX1, . . . ,Xn be an iid sample with probability density function (pdf) f(xi; θ),
where θ is a (k × 1) vector of parameters that characterize f(xi; θ).

Example: Let Xi˜N(μ, σ
2) then

f(xi; θ) = (2πσ2)−1/2 exp
µ
− 1

2σ2
(x− μ)2

¶
θ = (μ, σ2)0



The joint density of the sample is, by independence, equal to the product of
the marginal densities

f(x1, . . . , xn; θ) = f(x1; θ) · · · f(xn; θ) =
nY
i=1

f(xi; θ).

The joint density is an n dimensional function of the data x1, . . . , xn given the
parameter vector θ and satisfies

f(x1, . . . , xn; θ) ≥ 0Z
· · ·

Z
f(x1, . . . , xn; θ)dx1 · · · dxn = 1.



The likelihood function is defined as the joint density treated as a function of
the parameters θ :

L(θ|x1, . . . , xn) = f(x1, . . . , xn; θ) =
nY
i=1

f(xi; θ).

Notice that the likelihood function is a k dimensional function of θ given the
data x1, . . . , xn.

It is important to keep in mind that the likelihood function, being a function
of θ and not the data, is not a proper pdf. It is always positive butZ

· · ·
Z
L(θ|x1, . . . , xn)dθ1 · · · dθk 6= 1.

To simplify notation, let the vector x = (x1, . . . , xn) denote the observed
sample. Then the joint pdf and likelihood function may be expressed as f(x; θ)
and L(θ|x), respectively.



Example 1 Bernoulli Sampling

Let Xi˜ Bernoulli(θ). That is,

Xi = 1 with probability θ

Xi = 0 with probability 1− θ

The pdf for Xi is

f(xi; θ) = θxi(1− θ)1−xi, xi = 0, 1

Let X1, . . . ,Xn be an iid sample with Xi˜ Bernoulli(θ). The joint density /
likelihood function is given by

f(x; θ) = L(θ|x) =
nY
i=1

θxi(1− θ)1−xi

= θ
Pn

i=1 xi(1− θ)n−
Pn

i=1 xi



Example 2 Normal Sampling

Let X1, . . . ,Xn be an iid sample with Xi˜N(μ, σ
2). The pdf for Xi is

f(xi; θ) = (2πσ2)−1/2 exp
µ
− 1

2σ2
(xi − μ)2

¶
,

θ = (μ, σ2)0

−∞ < μ <∞, σ2 > 0, −∞ < xi <∞

The likelihood function is given by

L(θ|x) =
nY
i=1

(2πσ2)−1/2 exp
µ
− 1

2σ2
(xi − μ)2

¶

= (2πσ2)−n/2 exp

⎛⎝− 1

2σ2

nX
i=1

(xi − μ)2

⎞⎠



Example 3 Linear Regression Model with Normal Errors

Consider the linear regression

yi = x0i
(1×k)

β
(k×1)

+ εi, i = 1, . . . , n

εi|xi ˜ iid N(0, σ2)
The pdf of εi|xi is

f(εi|xi;σ2) = (2πσ2)−1/2 exp
µ
− 1

2σ2
ε2i

¶

The Jacobian of the transformation for εi to yi is one so the pdf of yi|xi is
normal with mean x0iβ and variance σ

2 :

f(yi|xi; θ) = (2πσ2)−1/2 exp
µ
− 1

2σ2
(yi − x0iβ)

2
¶

θ = (β0, σ2)0



Given an iid sample of n observations, y and X, the joint density of the sample
is

f(y|X; θ) = (2πσ2)−n/2 exp

⎛⎝− 1

2σ2

nX
i=1

(yi − x0iβ)
2

⎞⎠
= (2πσ2)−n/2 exp

µ
− 1

2σ2
(y−Xβ)0(y−Xβ)

¶
y = (y1, . . . , yn)

0, xi = (xi1, . . . , xin)
0

X = [x1, . . . , xk]

The log-likelihood function is then

lnL(θ|y,X) = −n
2
ln(2π)− n

2
ln(σ2)

− 1

2σ2
(y−Xβ)0(y−Xβ)



The Maximum Likelihood Estimator

Suppose we have a random sample from the pdf f(xi; θ) and we are interested
in estimating θ.

The maximum likelihood estimator, denoted θ̂mle, is the value of θ that max-
imizes L(θ|x). That is,

θ̂mle = argmax
θ

L(θ|x)



It is often quite difficult to directly maximize L(θ|x). It usually much easier
to maximize the log-likelihood function lnL(θ|x). Since ln(·) is a monotonic
function

θ̂mle = argmax
θ
lnL(θ|x)

With random sampling, the log-likelihood has the particularly simple form

lnL(θ|x) = ln
⎛⎝ nY
i=1

f(xi; θ)

⎞⎠ = nX
i=1

ln f(xi; θ)



Since the MLE is defined as a maximization problem, we would like know the
conditions under which we may determine the MLE using the techniques of
calculus.

A regular pdf f(x; θ) provides a sufficient set of such conditions. We say the
f(x; θ) is regular if

1. The support of the random variables X,SX = {x : f(x; θ) > 0}, does
not depend on θ

2. f(x; θ) is at least three times differentiable with respect to θ

3. The true value of θ lies in a compact set Θ



If f(x; θ) is regular then we may find the MLE by differentiating lnL(θ|x) and
solving the first order conditions

∂ lnL(θ̂mle|x)
∂θ

= 0

Since θ is (k × 1) the first order conditions define k, potentially nonlinear,
equations in k unknown values:

∂ lnL(θ̂mle|x)
∂θ

=

⎛⎜⎜⎜⎜⎝
∂ lnL(θ̂mle|x)

∂θ1...
∂ lnL(θ̂mle|x)

∂θk

⎞⎟⎟⎟⎟⎠ = 0



The vector of derivatives of the log-likelihood function is called the score vector
and is denoted

S(θ|x) = ∂ lnL(θ|x)
∂θ

By definition, the MLE satisfies

S(θ̂mle|x) = 0

Under random sampling

S(θ|x) =
nX
i=1

∂ ln f(xi; θ)

∂θ
=

nX
i=1

S(θ|xi)

where

S(θ|xi) =
∂ ln f(xi; θ)

∂θ



Example 4 Bernoulli example continued

The log-likelihood and score functions are

lnL(θ|x) = ln
³
θ
Pn

i=1 xi(1− θ)n−
Pn

i=1 xi
´

=
nX
i=1

xi ln(θ) +

⎛⎝n− nX
i=1

xi

⎞⎠ ln(1− θ)

S(θ|x) =
∂ lnL(θ|x)

∂θ
=
1

θ

nX
i=1

xi −
1

1− θ

⎛⎝n− nX
i=1

xi

⎞⎠
The MLE satisfies S(θ̂mle|x) = 0, which produces

θ̂mle =
1

n

nX
i=1

xi.



Example 5 Normal example continued

The log-likelihood is

lnL(θ|x) = −n
2
ln(2π)− n

2
ln(σ2)

− 1

2σ2

nX
i=1

(xi − μ)2.

The sample score is a (2× 1) vector given by

S(θ|x) =
⎛⎝ ∂ lnL(θ|x)

∂μ
∂ lnL(θ|x)

∂σ2

⎞⎠



where

∂ lnL(θ|x)
∂μ

=
1

σ2

nX
i=1

(xi − μ)

∂ lnL(θ|x)
∂σ2

= −n
2
(σ2)−1 +

1

2
(σ2)−2

nX
i=1

(xi − μ)2

Solving S(θ̂mle|x) = 0 gives the normal equations

∂ lnL(θ̂mle|x)
∂μ

=
1

σ̂2mle

nX
i=1

(xi − μ̂mle) = 0

∂ lnL(θ̂mle|x)
∂σ2

= −n
2
(σ̂2mle)

−1

+
1

2
(σ̂2mle)

−2
nX
i=1

(xi − μ̂mle)
2 = 0



Solving the first equation for μ̂mle gives

μ̂mle =
1

n

nX
i=1

xi = x̄

Solving the second equation for σ̂2mle gives

σ̂2mle =
1

n

nX
i=1

(xi − μ̂mle)
2.

Notice that σ̂2mle is not equal to the sample variance.



Example 6 Linear regression example continued

The log-likelihood is

lnL(θ|y,X) = −n
2
ln(2π)− n

2
ln(σ2)

− 1

2σ2
(y−Xβ)0(y−Xβ)

The MLE of θ satisfies S(θ̂mle|y,X) = 0 where S(θ|y,X) = ∂
∂θ lnL(θ|y,X)

is the score vector. Now

∂ lnL(θ|y,X)
∂β

=
−1
2σ2

∂

∂β
[y0y− 2y0Xβ + β0X0Xβ]

= −(σ2)−1[−X0y+X0Xβ]
∂ lnL(θ|y,X)

∂σ2
= −n

2
(σ2)−1

+
1

2
(σ2)−2(y−Xβ)0(y−Xβ)



Solving ∂ lnL(θ̂mle|y,X)
∂β = 0 for β̂mle gives

β̂mle = (X
0X)−1X0y = β̂OLS

Next, solving ∂ lnL(θ̂mle|y,X)
∂σ2

= 0 for σ̂2mle gives

σ̂2mle =
1

n
(y−Xbβmle)

0(y−Xbβmle)

6= σ̂2OLS =
1

n− k
(y−XbβOLS)0(y−XbβOLS)



Properties of the Score Function

The matrix of second derivatives of the log-likelihood is called the Hessian

H(θ|x) = ∂2 lnL(θ|x)
∂θ∂θ0

=

⎛⎜⎜⎜⎜⎝
∂2 lnL(θ|x)

∂θ21
· · · ∂2 lnL(θ|x)

∂θ1∂θk
... . . . ...

∂2 lnL(θ|x)
∂θk∂θ1

· · · ∂2 lnL(θ|x)
∂θ2k

⎞⎟⎟⎟⎟⎠
The information matrix is defined as minus the expectation of the Hessian

I(θ|x) = −E[H(θ|x)]



If we have random sampling then

H(θ|x) =
nX
i=1

∂2 ln f(θ|xi)
∂θ∂θ0

=
nX
i=1

H(θ|xi)

and

I(θ|x) = −
nX
i=1

E[H(θ|xi)] = −nE[H(θ|xi)] = nI(θ|xi)



Proposition 1 Let f(xi; θ) be a regular pdf. Then

1. E[S(θ|xi)] =
R
S(θ|xi)f(xi; θ)dxi = 0

2. If θ is a scalar then

var(S(θ|xi)) = E[S(θ|xi)2]
=

Z
S(θ|xi)2f(xi; θ)dxi = I(θ|x)

If θ is a vector then

var(S(θ|xi)) = E[S(θ|xi)S(θ|x)0]
=

Z
S(θ|xi)S(θ|x)0f(xi; θ)dxi

= I(θ|xi)



Proof. For part 1, we have

E[S(θ|xi)] =
Z
S(θ|xi)f(xi; θ)dxi

=
Z
∂ ln f(xi; θ)

∂θ
f(xi; θ)dxi

=
Z

1

f(xi; θ)

∂

∂θ
f(xi; θ)f(xi; θ)dxi

=
Z

∂

∂θ
f(xi; θ)dxi

=
∂

∂θ

Z
f(xi; θ)dxi

=
∂

∂θ
· 1

= 0.

The key part to the proof is the ability to interchange the order of differentiation
and integration.



Part 2: Homework problem.



Computation: Newton-Raphson Iteration

Goal: Using iterative scheme compute

θ̂ = argmax
θ

lnL(θ|x)

Idea: Consider 2nd order TSE of lnL(θ|x) about starting value θ̂1

lnL(θ|x) = lnL(θ̂1|x) +
∂ lnL(θ̂1|x)

∂θ0
(θ − θ̂1)

+
1

2
(θ − θ̂1)

0∂
2 lnL(θ̂1|x)
∂θ∂θ0

(θ − θ̂1) + error

Now maximize 2nd order TSE wrt θ. The FOCs are

0
p×1

=
∂ lnL(θ̂1|x)

∂θ
+
∂2 lnL(θ̂1|x)

∂θ∂θ0
(θ̂2 − θ̂1)



Solve for θ̂2

θ̂2 = θ̂1 −
"
∂2 lnL(θ̂1|x)

∂θ∂θ0

#−1
∂ lnL(θ̂1|x)

∂θ

= θ̂1 −H(θ̂1|x)−1S(θ̂1|x)

This suggests the iterative scheme

θ̂n+1 = θ̂n −H(θ̂n|x)−1S(θ̂n|x)

Iteration stops when

S(θ̂n|x) ≈ 0



The Precision of the Maximum Likelihood Estimator

Intuitively, the precision of θ̂mle depends on the curvature of the log-likelihood
function near θ̂mle.

If the log-likelihood is very curved or “steep” around θ̂mle, then θ will be
precisely estimated. In this case, we say that we have a lot of information
about θ.

If the log-likelihood is not curved or “flat” near θ̂mle, then θ will not be precisely
estimated. Accordingly, we say that we do not have much information about
θ.

If the log-likelihood is completely flat in θ then the sample contains no informa-
tion about the true value of θ because every value of θ produces the same value
of the likelihood function. When this happens we say that θ is not identified.



The curvature of the log-likelihood is measured by its second derivative (Hessian)

H(θ|x) = ∂2 lnL(θ|x)
∂θ∂θ0

Since the Hessian is negative semi-definite, the information in the sample about
θ may be measured by −H(θ|x). If θ is a scalar then −H(θ|x) is a positive
number.

The expected amount of information in the sample about the parameter θ is
the information matrix I(θ|x) = −E[H(θ|x)].

As we shall see, the information matrix is directly related to the precision of
the MLE.



Theorem 2 Cramer-Rao Inequality

Let X1, . . . ,Xn be an iid sample with pdf f(x; θ).

Let θ̂ be an unbiased estimator of θ; i.e., E[θ̂] = θ.

If f(x; θ) is regular then

var(θ̂) ≥ I(θ|x)−1 = CRLB
where I(θ|x) = −E[H(θ|x)] denotes the sample information matrix.

Note: If θ is a vector then var(θ) ≥ I(θ|x)−1 means that var(θ̂)− I(θ|x) is
positive semi definite

Result: If E[θ̂] = θ and var(θ̂) = I(θ|x)−1 then θ̂ is the Best Unbiased
Estimator (BUE)



Example 7 Bernoulli model continued

To determine the CRLB the information matrix must be evaluated. The infor-
mation matrix may be computed as

I(θ|x) = −E[H(θ|x)]
= var(S(θ|x))

Further, due to random sampling I(θ|x) = n · I(θ|xi) = n·var(S(θ|xi)).

Now, using the chain rule it can be shown that

H(θ|xi) =
d

dθ
S(θ|xi) =

d

dθ

Ã
xi − θ

θ(1− θ)

!

= −
Ã
1 + S(θ|xi)− 2θS(θ|xi)

θ(1− θ)

!



The information for an observation is then

I(θ|xi) = −E[H(θ|xi)] =
1 +E[S(θ|xi)]− 2θE[S(θ|xi)]

θ(1− θ)

=
1

θ(1− θ)

since

E[S(θ|xi)] =
E[xi]− θ

θ(1− θ)
=

θ − θ

θ(1− θ)
= 0



The information for an observation may also be computed as

I(θ|xi) = var(S(θ|xi)) = var
Ã

xi − θ

θ(1− θ)

!

=
var(xi)

θ2(1− θ)2
=

θ(1− θ)

θ2(1− θ)2

=
1

θ(1− θ)



The information for the sample is then

I(θ|x) = n · I(θ|xi) =
n

θ(1− θ)

and the CRLB is

CRLB = I(θ|x)−1 = θ(1− θ)

n

This the lower bound on the variance of any unbiased estimator of θ.

Consider the MLE for θ, θ̂mle = x̄. Now,

E[θ̂mle] = E[x̄] = θ

var(θ̂mle) = var(x̄) =
θ(1− θ)

n

Notice that the MLE is unbiased and its variance is equal to the CRLB. There-
fore, θ̂mle is BUE.



Example 8 Linear regression model continued

The score vector is given by

S(θ|y,X) =

Ã
−(σ2)−1[−X0y+X0Xβ]

−n
2(σ

2)−1 + 1
2(σ

2)−2(y−Xβ)0(y−Xβ)

!

=

Ã
−(σ2)−1

¡
−X0ε

¢
−n
2(σ

2)−1 + 1
2(σ

2)−2ε0ε

!
ε = y−Xβ.

Now

E[ε] = 0

E[ε0ε] = nσ2 since
ε0ε
σ2
∼ χ2(n)



and so that

E[S(θ|y,X)] =
Ã

−(σ2)−1
¡
−X0E[ε]

¢
−n
2(σ

2)−1 + 1
2(σ

2)−2E[ε0ε]

!
=

Ã
0
0

!



To determine the Hessian and information matrix we need the second derivatives
of lnL(θ|y,X) :

∂2 lnL(θ|y,X)
∂β∂β0

=
∂

∂β0
³
−(σ2)−1[−X0y+X0Xβ]

´
= −(σ2)−1X0X

∂2 lnL(θ|y,X)
∂β∂σ2

=
∂

∂σ2

³
−(σ2)−1[−X0y+X0Xβ]

´
= −(σ2)−2X0ε

∂2 lnL(θ|y,X)
∂σ2∂β0

= −(σ2)−2ε0X

∂2 lnL(θ|y,X)

∂
³
σ2
´2 =

∂

∂σ2

µ
−n
2
(σ2)−1 +

1

2
(σ2)−2ε0ε

¶

=
n

2
(σ2)−2 − (σ2)−3ε0ε



Therefore,

H(θ|y,X) =
Ã
−(σ2)−1X 0X −(σ2)−2X 0ε
−(σ2)−2ε0X n

2(σ
2)−2 − (σ2)−3ε0ε

!
and

I(θ|y,X) = −E[H(θ|y,X)]

=

Ã
−(σ2)−1X0X −(σ2)−2X 0E[ε]
−(σ2)−2E[ε]0X n

2(σ
2)−2 − (σ2)−3E[ε0ε]

!

=

Ã
(σ2)−1X 0X 0

0 n
2(σ

2)−2

!

Notice that the information matrix is block diagonal in β and σ2. The CRLB
for unbiased estimators of θ is then

I(θ|y,X)−1 =
Ã
σ2(X 0X)−1 0

0 2
nσ
4

!



Do the MLEs of β and σ2 achieve the CRLB?

First, β̂mle = β̂OLS is unbiased and

var(β̂mle|X) = σ2(X0X)−1 = CRLB

Therefore, β̂mle is BUE.

This is an improvement over the Gauss-Markov theorem which says that β̂mle =

β̂OLS is the most efficient linear and unbiased estimator (BLUE).



Next, note that σ̂2mle is not unbiased (why?) so the CRLB result does not
apply.

Consider the unbiased estimator

s2 = (n− k)−1(y−Xβ̂OLS)0(y−Xβ̂OLS)

It can be shown that

var(s2|X) = 2σ4

n− k
>
2

n
σ4 = CRLB

Hence s2 is not the most efficient unbiased estimator of σ2.



Invariance Property of Maximum Likelihood Estimators

One of the attractive features of the method of maximum likelihood is its
invariance to one-to-one transformations of the parameters of the log-likelihood.

That is, if θ̂mle is the MLE of θ and α = h(θ) is a one-to-one function of θ
then α̂mle = h(θ̂mle) is the mle for α.



Example 9 Normal Model Continued

The log-likelihood is parameterized in terms of μ and σ2 and

μ̂mle = x̄

σ̂2mle =
1

n

nX
i=1

(xi − μmle)
2

Suppose we are interested in the MLE for

σ = h(σ2) = (σ2)1/2

which is a one-to-one function for σ2 > 0.

The invariance property says that

σ̂mle = (σ̂
2
mle)

1/2 =

⎛⎝1
n

nX
i=1

(xi − μ̂mle)
2

⎞⎠1/2



Asymptotic Properties of Maximum Likelihood Estimators

LetX1, . . . ,Xn be an iid sample with probability density function (pdf) f(xi; θ),
where θ is a (k × 1) vector of parameters that characterize f(xi; θ).

Under general regularity conditions (to be discussed below), the ML estimator
of θ has the following asymptotic properties

1. θ̂mle
p→ θ

2.
√
n(θ̂mle − θ)

d→ N(0, I(θ|xi)−1), where

I(θ|xi) = −E [H(θ|xi)] = −E
"
∂ ln f(xi; θ)

∂θ∂θ0

#



That is,

avar(
√
n(θ̂mle − θ)) = I(θ|xi)−1

Alternatively,

θ̂mle
A∼ N

µ
θ,
1

n
I(θ|xi)−1

¶
= N(θ, I(θ|x)−1)

where

I(θ|x) = nI(θ|xi)



Remarks:

1. For a wide class of consistent and asymptotically normal estimators which
include GMM estimators, θ̂mle is efficient in the class. That is,

avar(
√
n(θ̃ − θ))− avar(

√
n(θ̂mle − θ)) ≥ 0

for any consistent and asymptotically normal estimator θ̃ in the class.

2. For some weird cases, it is possible to find a consistent and asymptotically
normal estimator that has smaller variance than the MLE (see Amemiya,
1985 Example 4.2.4)



Recall, the MLE is an extremum estimator of the form

Qn(θ) =
1

n

nX
t=1

m(xi, θ)

m(xi, θ) = ln f(xi; θ)

The consistency of the MLE requires

1. Continuity of Qn(θ) and Q0(θ)

2. Qn(θ) =
1
n

Pn
i=1 ln f(xi|θ)

p→ E[ln f(xi|θ)] = Q0(θ) uniformly in θ

3. Compact parameter space Θ

4. Q0(θ) is uniquely maximized at θ = θ0.



Now,

1. Qn(θ) and Q0(θ) will be continuous provided f(xi; θ) is continuous

2. Uniform convergence of 1n
Pn
i=1 ln f(xi|θ) to E[ln f(xi|θ)] is satisfied if

E

"
sup
θ
|ln f(xi|θ)|

#
<∞

3. To establish that Q0(θ) is uniquely maximized at θ = θ0, we need that
E[ln f(xi|θ)] is uniquely maximized at θ = θ0



Result: E[ln f(xi|θ)] is uniquely maximized at θ = θ0 provided

Pr(f(xi|θ) 6= f(xi|θ0)) > 0 for all θ 6= θ0

Sketch of proof.

Let f(xi|θ) be a parametric family of hypothetical pdfs with true density func-
tion f(xi|θ0).

Suppose E[ln f(xi|θ)] exists and is finite for all θ.

Assume f(xi|θ) > 0 for all xi and suppose Pr(f(xi|θ) 6= f(xi|θ0)) > 0



Define

a(xi) =
f(xi|θ)
f(xi|θ0)

Then

Pr(a(xi) 6= 1) = Pr
Ã
f(xi|θ)
f(xi|θ0)

6= 1
!
> 0

since Pr(f(xi|θ) 6= f(xi|θ0)) > 0



Recall, Jensen’s inequality: If c(x) is a strictly concave function and x is a
non-constant random variable then

E[c(x)] < c(E[x])

Since ln(x) is strictly concave and a(xi) is non-constant, Jensen’s inequality
gives

E [ln a(xi)] = E

"
ln

f(xi|θ)
f(xi|θ0)

#
< lnE

"
f(xi|θ)
f(xi|θ0)

#

Now,

E

"
f(xi|θ)
f(xi|θ0)

#
=

Z
f(xi|θ)
f(xi|θ0)

f(xi|θ0)dxi

=
Z
f(xi|θ)dxi = 1



So that

E

"
ln

f(xi|θ)
f(xi|θ0)

#
< ln(1) = 0

It follows that

E [ln f(xi|θ)− ln f(xi|θ0)] < 0 for all θ 6= θ0

which implies that

E[ln f(xi|θ)] < E[ln f(xi|θ0)]

and so E[ln f(xi|θ)] is uniquely maximized at θ = θ0



Asymptotic Normality

Asymptotic normality of θ̂mle follows from an exact first order Taylor’s series
expansion of the first order conditions for a maximum of the log-likelihood
about θ0:

0 = S(θ̂mle|x) = S(θ0|x) +H(θ̄|x)(θ̂mle − θ0),

θ̄i = λiθ̂mle,i + (1− λi)θ0,i

Re-arranging gives

H(θ̄|x)(θ̂mle − θ0) = −S(θ0|x)

⇒
√
n(θ̂mle − θ0) = −

µ
1

n
H(θ̄|x)

¶−1Ã 1
√
n
S(θ0|x)

!



Now

1

n
H(θ̄|x) = 1

n

nX
i=1

H(θ̄|xi)
p→ E[H(θ0|xi)] = −I(θ0|xi)

assuming 1nH(θ|x) converges to E[H(θ|xi)] uniformly in θ.

Furthermore, assume that

1
√
n
S(θ0|x) =

1
√
n

nX
i=1

S(θ0|xi)
d→ N(0, I(θ0|xi))

which will occur if {S(θ0|xi)} is an ergodic-stationary process with

E[S(θ0|xi)S(θ0|xi)0] = I(θ0|xi).



Then
√
n(θ̂mle − θ0)

d→ I(θ0|xi)−1N(0, I(θ0|xi))
= N(0, I(θ0|xi)−1)

Alternatively

θ̂mle
A∼ N

³
θ, I(θ0|x)−1

´
where

I(θ0|x) = nI(θ0|xi)



Remark

Since I(θ|xi) = −E[H(θ|xi)] =var(S(θ|xi)) is generally not known, it must
be estimated. The most common estimates for I(θ|xi) are

Î1(θ̂mle|xi) = −1
n

nX
i=1

H(θ̂mle|xi)
p→ −E [H(θ0|xi)] = I(θ0|xi)

Î2(θ̂mle|xi) =
1

n

nX
i=1

S(θ̂mle|xi)S(θ̂mle|xi)0
p→ E[S(θ0|xi)S(θ0|xi)0]

= I(θ0|xi)

Then

Î1(θ̂mle|x) = nÎ1(θ̂mle|xi) = −H(θ̂mle|x)

Î2(θ̂mle|x) = nÎ2(θ̂mle|xi) =
nX
i=1

S(θ̂mle|xi)S(θ̂mle|xi)0



Example 10 Asymptotic results for MLE of Bernoulli distribution parameters

Let X1, . . . ,Xn be an iid sample with X ∼Bernoulli(θ). Recall,

θ̂mle = X̄ =
1

n

nX
i=1

Xi

I(θ|xi) =
1

θ(1− θ)

The asymptotic properties of the MLE tell us that

θ̂mle
p→ θ

√
n(θ̂mle − θ)

d→ N (0, θ(1− θ))

Alternatively,

θ̂mle
A∼ N

Ã
θ,
θ(1− θ)

n

!



An estimate of the asymptotic variance of θ̂mle is

davar(θ̂mle) =
θ̂mle(1− θ̂mle)

n
=

x̄(1− x̄)

n



Example 11 Asymptotic results for MLE of linear regression model parameters

In the linear regression with normal errors

yi = x0iβ + εi, i = 1, . . . , n

εi|xi ˜ iid N(0, σ2)

the MLE for θ = (β0, σ2)0 isÃ
β̂mle
σ̂2mle

!
=

Ã
(X0X)−1X0y

n−1(y−Xbβmle)
0(y−Xbβmle)

!
and the information matrix for the sample is

I(θ|x) =
Ã
σ−2X0X 0

0 n
2σ
−4

!



The asymptotic results for MLE tell us thatÃ
β̂mle
σ̂2mle

!
A∼ N

ÃÃ
β
σ2

!
,

Ã
σ2(X0X)−1 0

0 2
nσ
4

!!

Further, the block diagonality of the information matrix implies that β̂mle is
asymptotically independent of σ̂2mle.

An estimate of I(θ|x) is

Î(θ̂mle|x) =
Ã
σ̂−2mleX

0X 0

0 n
2 σ̂
−4
mle

!
.



Relationship Between ML and GMM

Let X1, . . . ,Xn be an iid sample from some underlying economic model.

To do ML estimation, you need to know the pdf, f(xi|θ), of an observation in
order to form the log-likelihood function

lnL(θ|x) =
nX
i=1

ln f(xi|θ)

The MLE satisfies the first order condtions

∂ lnL(θ̂mle|x)
∂θ

= S(θ̂mle|x) = 0



Under regularity conditions

θ̂mle
A∼ N

µ
θ,
1

n
I(θ|xi)−1

¶
I(θ|xi) = −E[H(θ|xi)] = E[S(θ|xi)S(θ|xi)0]



To do GMM estimation, you need to know k ≥ p population moment condtions

E[g(xi, θ)] = 0

The GMM estimator matches sample moments with the population moments.
The sample moments are

gn(θ) =
1

n

nX
i=1

g(xi, θ)

If k > p, the efficient GMM estimator minimizes the objective function

J(θ, Ŝ−1) = ngn(θ)
0Ŝ−1gn(θ)

S = E[g(xi, θ)g(xi,θ)
0]



The first order conditions are

∂J(θ̂gmm, S−1)
∂θ

= G0n(θ̂gmm)Ŝ
−1gn(θ̂gmm) = 0

Under regularity conditions,

θ̂gmm
A∼ N

µ
θ,
1

n
(G0S−1G)−1

¶
G = E

"
∂g(xi, θ)

∂θ0

#



The asymptotic efficiency of the MLE in the class of consistent and asymptot-
ically normal estimators implies that

avar(θ̂mle)− avar(θ̂gmm) ≤ 0

That is, the efficient GMM estimator is generally less efficient than the ML
estimator.

The GMM estimator will be equivalent to the ML estimator if the moment
conditions happen to correspond with the score associated with the pdf of an
observation. That is, if

g(xi, θ) = S(θ|xi)

In this case, there are p moment conditions and the model is just identified.



The GMM estimator then satisfies the sample moment equations

gn(θ̂gmm) =
1

n
S(θ̂gmm|x) = 0

⇒ θ̂gmm = θ̂mle



Furthermore,

G = E

"
∂S(θ|xi)

∂θ0

#
= E[H(θ|xi)] = −I(θ|xi)

S = E[S(θ|xi)S(θ|x0i)] = I(θ|xi)

Therefore, the asymptotic variance of the GMM estimator is the same as the
asymptotic variance of the MLE

(G0S−1G)−1 = I(θ|xi)−1


