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Generalized Method of Moments

1.1 Introduction

This chapter describes generalized method of moments (GMM) estima-
tion for linear and non-linear models with applications in economics and
finance. GMM estimation was formalized by Hansen (1982), and since has
become one of the most widely used methods of estimation for models
in economics and finance. Unlike maximum likelihood estimation (MLE),
GMM does not require complete knowledge of the distribution of the data.
Only specified moments derived from an underlying model are needed for
GMM estimation. In some cases in which the distribution of the data is
known, MLE can be computationally very burdensome whereas GMM can
be computationally very easy. The log-normal stochastic volatility model is
one example. In models for which there are more moment conditions than
model parameters, GMM estimation provides a straightforward way to test
the specification of the proposed model. This is an important feature that
is unique to GMM estimation.
This chapter is organized as follows. GMM estimation for linear models

is described in Section 1.2. Section 1.3 describes methods for estimating the
efficient weight matrix. Sections 1.4 and 1.5 give examples of estimation and
inference using the S+Finmetrics function GMM. Section 1.6 describes GMM
estimation and inference for nonlinear models. Section 1.7 provides numer-
ous examples of GMM estimation of nonlinear models in finance includ-
ing Euler equation asset pricing models, discrete-time stochastic volatility
models, and continous-time interest rate diffusion models.
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The theory and notation for GMM presented herein follows the excel-
lent treatment given in Hayashi (2000). Other good textbook treatments of
GMM at an intermediate level are given in Hamilton (1994), Ruud (2000),
Davidson and MacKinnon (2004), and Greene (2004). The most compre-
hensive textbook treatment of GMM is Hall (2005). Excellent surveys of
recent developments in GMM are given in the special issues of the Journal
of Business and Economic Statistics (1996, 2002). Discussions of GMM
applied to problems in finance are given in Ogaki (1992), Ferson (1995),
Andersen and Sorensen (1996), Campbell, Lo and MacKinlay (1997), James
and Webber (2000), Cochrane (2001), Jagannathan and Skoulakis (2002),
and Hall (2005).

1.2 Single Equation Linear GMM

Consider the linear regression model

yt = z
0
tδ0 + εt, t = 1, . . . , n (1.1)

where zt is an L × 1 vector of explanatory variables, δ0 is a vector of
unknown coefficients and εt is a random error term. The model (1.1) allows
for the possibility that some or all of the elements of zt may be correlated
with the error term εt, i.e., E[ztkεt] 6= 0 for some k. If E[ztkεi] 6= 0 then
ztk is called an endogenous variable. It is well known that if zt contains
endogenous variables then the least squares estimator of δ0 in (1.1) is biased
and inconsistent.
Associated with the model (1.1), it is assumed that there exists a K × 1

vector of instrumental variables xt which may contain some or all of the
elements of zt. Let wt represent the vector of unique and non-constant
elements of {yt, zt,xt}. It is assumed that {wt} is a stationary and ergodic
stochastic process.
The instrumental variables xt satisfy the set of K orthogonality condi-

tions

E[gt(wt, δ0)] = E[xtεt] = E[xt(yt − z0tδ0)] = 0 (1.2)

where gt(wt, δ0) = xtεt = xt(yt−z0tδ0). Expanding (1.2), gives the relation

Σxy = Σxzδ0

where Σxy = E[xtyt] and Σxz = E[xtz
0
t]. For identification of δ0, it is

required that the K×L matrix E[xtz
0
t] = Σxz be of full rank L. This rank

condition ensures that δ0 is the unique solution to (1.2). Note, if K = L,
then Σxz is invertible and δ0 may be determined using

δ0 = Σ
−1
xzΣxy



1.2 Single Equation Linear GMM iii

A necessary condition for the identification of δ0 is the order condition

K ≥ L (1.3)

which simply states that the number of instrumental variables must be
greater than or equal to the number of explanatory variables in (1.1). If
K = L then δ0 is said to be (apparently) just identified; if K > L then δ0
is said to be (apparently) over-identified; if K < L then δ0 is not identified.
The word “apparently” in parentheses is used to remind the reader that
the rank condition

rank(Σxz) = L (1.4)

must also be satisfied for identification.
In the regression model (1.1), the error terms are allowed to be condi-

tionally heteroskedastic as well as serially correlated. For the case in which
εt is conditionally heteroskedastic, it is assumed that {gt} = {xtεt} is a
stationary and ergodic martingale difference sequence (MDS) satisfying

E[gtg
0
t] = E[xtx

0
tε
2
t ] = S

where S is a non-singular K ×K matrix. The matrix S is the asymptotic
variance-covariance matrix of the sample moments ḡ = n−1

Pn
t=1 gt(wt, δ0).

This follows from the central limit theorem for ergodic stationary martin-
gale difference sequences (see Hayashi page 106)

√
nḡ =

1√
n

nX
t=1

xtεt
d→ N(0,S)

where avar(ḡ) = S denotes the variance-covariance matrix of the limiting
distribution of

√
nḡ.

For the case in which εt is serially correlated and possibly conditionally
heteroskedastic as well, it is assumed that {gt} = {xtεt} is a stationary
and ergodic stochastic process that satisfies

√
nḡ =

1√
n

nX
t=1

xtεt
d→ N(0,S)

S =
∞X

j=−∞
Γj = Γ0 +

∞X
j=1

(Γj + Γ
0
j)

where Γj = E[gtg
0
t−j ] = E[xtx

0
t−jεtεt−j ]. In the above, avar(ḡ) = S is

also referred to as the long-run variance of ḡ.

1.2.1 Definition of the GMM Estimator

The generalized method of moments (GMM) estimator of δ in (1.1) is con-
structed by exploiting the orthogonality conditions (1.2). The idea is to cre-
ate a set of estimating equations for δ by making sample moments match
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the population moments defined by (1.2). The sample moments based on
(1.2) for an arbitrary value δ are

gn(δ) =
1

n

nX
t=1

g(wt, δ) =
1

n

nX
t=1

xt(y − z0tδ)

=


1
n

Pn
t=1 x1t(y − z0tδ)

...
1
n

Pn
t=1 xKt(y − z0tδ)


These moment conditions are a set of K linear equations in L unknowns.
Equating these sample moments to the population moment E[xtεt] = 0
gives the estimating equations

Sxy − Sxzδ = 0 (1.5)

where Sxy = n−1
Pn

t=1 xtyt and Sxz = n−1
Pn

t=1 xtz
0
t are the sample mo-

ments.
If K = L (δ0 is just identified) and Sxz is invertible then the GMM

estimator of δ is
δ̂ = S−1xz Sxy

which is also known as the indirect least squares estimator. If K > L
then there may not be a solution to the estimating equations (1.5). In this
case, the idea is to try to find δ that makes Sxy − Sxzδ as close to zero as
possible. To do this, let Ŵ denote a K×K symmetric and positive definite

(p.d.) weight matrix, possibly dependent on the data, such that Ŵ
p→W

as n → ∞ with W symmetric and p.d. Then the GMM estimator of δ,
denoted δ̂(Ŵ), is defined as

δ̂(Ŵ) = argmin
δ

J(δ,Ŵ)

where

J(δ,Ŵ) = ngn(δ)
0Ŵgn(δ) (1.6)

= n(Sxy − Sxzδ)0Ŵ(Sxy − Sxzδ)
Since J(δ,Ŵ) is a simple quadratic form in δ, straightforward calculus
may be used to determine the analytic solution for δ̂(Ŵ) :

δ̂(Ŵ) = (S0xzŴSxz)
−1S0xzŴSxy (1.7)

Asymptotic Properties

Under standard regularity conditions (see Hayashi Chapter 3), it can be
shown that

δ̂(Ŵ)
p→ δ0

√
n
³
δ̂(Ŵ)− δ0

´
d→ N(0, avar(δ̂(Ŵ)))
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where

avar(δ̂(Ŵ)) = (Σ0xzWΣxz)
−1Σ0xzWSWΣxz(Σ

0
xzWΣxz)

−1 (1.8)

A consistent estimate of avar(δ̂(Ŵ)), denoted [avar(δ̂(Ŵ)), may be com-
puted using

[avar(δ̂(Ŵ)) = (S0xzŴSxz)
−1S0xzŴŜŴSxz(S

0
xzŴSxz)

−1 (1.9)

where Ŝ is a consistent estimate for S = avar(ḡ).

The Efficient GMM Estimator

For a given set of instruments xt, the GMM estimator δ̂(Ŵ) is define
for an arbitrary positive definite and symmetric weight matrix Ŵ. The
asymptotic variance of δ̂(Ŵ) in (1.8) depends on the chosen weight matrix
Ŵ. A natural question to ask is: What weight matrix W produces the
smallest value of avar(δ̂(Ŵ))? The GMM estimator constructed with this
weight matrix is called the efficient GMM estimator . Hansen (1982) showed
that efficient GMM estimator results from setting Ŵ = Ŝ−1 such that
Ŝ

p→ S. For this choice of Ŵ, the asymptotic variance formula (1.8) reduces
to

avar(δ̂(Ŝ−1)) = (Σ0xzS
−1Σxz)

−1 (1.10)

of which a consistent estimate is

[avar(δ̂(Ŝ−1)) = (S0xzŜ−1Sxz)−1 (1.11)

The efficient GMM estimator is defined as

δ̂(Ŝ−1) = argmin
δ

ngn(δ)
0
Ŝ−1gn(δ)

which requires a consistent estimate of S. However, consistent estimation of
S, in turn, requires a consistent estimate of δ. To see this, consider the case
in which εt in (1.1) is conditionally heteroskedastic so that S = E[gtg

0
t] =

E[xtx
0
tε
2
t ]. A consistent estimate of S has the form

1

Ŝ =
1

n

nX
t=1

xtx
0
tε̂
2
t =

1

n

nX
t=1

xtx
0
t(yt − z0tδ̂)2

such that δ̂
p→ δ. Similar arguments hold for the case in which gt = xtεt is

a serially correlated and heteroskedastic process.

1Davidson and MacKinnon (1993, section 16.3) suggest using a simple degrees-of-
freedom corrected estimate of S that replaces n−1 in (1.17) with (n− k) to improve the
finite sample performance of tests based on (1.11).
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Two Step Efficient GMM

The two-step efficient GMM estimator utilizes the result that a consistent
estimate of δ may be computed by GMM with an arbitrary positive definite

and symmetric weight matrix Ŵ such that Ŵ
p→ W. Let δ̂(Ŵ) denote

such an estimate. Common choices for Ŵ are Ŵ = Ik and Ŵ = S−1xx =
(n−1X0X)−1, where X is an n× k matrix with tth row equal to x0t2. Then,
a first step consistent estimate of S is given by

Ŝ(Ŵ) =
1

n

nX
t=1

xtx
0
t(yt − z0tδ̂(Ŵ))2 (1.12)

The two-step efficient GMM estimator is then defined as

δ̂(Ŝ−1(Ŵ)) = argmin
δ

ngn(δ)
0
Ŝ−1(Ŵ)gn(δ) (1.13)

Iterated Efficient GMM

The iterated efficient GMM estimator uses the two-step efficient GMM
estimator δ̂(Ŝ−1(Ŵ)) to update the estimation of S in (1.12) and then
recomputes the estimator in (1.13). The process is repeated (iterated) until
the estimates of δ do not change significantly from one iteration to the
next. Typically, only a few iterations are required. The resulting estimator

is denoted δ̂(Ŝ
−1
iter). The iterated efficient GMM estimator has the same

asymptotic distribution as the two-step efficient estimator. However, in
finite samples the two estimators may differ. As Hamilton (1994, page 413)
points out, the iterated GMM estimator has the practical advantage over
the two-step estimator in that the resulting estimates are invariant with
respect to the scale of the data and to the initial weighting matrix Ŵ.

Continuous Updating Efficient GMM

This estimator simultaneously estimates S, as a function of δ, and δ. It is
defined as

δ̂(Ŝ−1CU ) = argmin
δ

ngn(δ)
0
Ŝ−1(δ)gn(δ) (1.14)

where the expression for Ŝ(δ) depends on the estimator used for S. For
example, with conditionally heteroskedastic errors Ŝ(δ) takes the form

Ŝ(δ)=
1

n

nX
t=1

xtx
0
t(yt − z0tδ)2

2In the function GMM, the default initial weight matrix is the identity matrix.
This can be changed by supplying a weight matrix using the optional argument
w=my.weight.matrix. Using Ŵ = S−1xx is often more numerically stable than using
Ŵ = Ik.



1.2 Single Equation Linear GMM vii

Hansen, Heaton and Yaron (1996) call δ̂(Ŝ−1CU ) the continuous updating
(CU) efficient GMM estimator . This estimator is asymptotically equivalent
to the two-step and iterated estimators, but may differ in finite samples.
The CU efficient GMM estimator does not depend on an initial weight ma-
trixW, and, like the iterated efficient GMM estimator, the numerical value
of CU estimator is invariant to the scale of the data. It is computationally
more burdensome than the iterated estimator, especially for large nonlin-
ear models, and is more prone to numerical instability. However, Hansen,
Heaton and Yaron find that the finite sample performance of the CU estima-
tor, and test statistics based on it, is often superior to the other estimators.
The good finite sample performance of the CU estimator relative to the it-
erated GMM estimator may be explained by the connection between the
CU estimator and empirical likelihood estimators. See Imbens (2002) and
Newey and Smith (2004) for further discussion on the relationship between
GMM estimators and empirical likelihood estimators.

The J-Statistic

The J-statistic, introduced in Hansen (1982), refers to the value of the
GMM objective function evaluated using an efficient GMM estimator:

J = J(δ̂(Ŝ−1), Ŝ−1) = ngn(δ̂(Ŝ
−1
))
0
Ŝ−1gn(δ̂(Ŝ

−1
)) (1.15)

where δ̂(Ŝ−1) denotes any efficient GMM estimator of δ and Ŝ is a consis-
tent estimate of S. If K = L then J = 0, and if K > L then J > 0. Under
regularity conditions (see Hayashi chapter 3) and if the moment conditions
(1.2) are valid, then as n→∞

J
d→ χ2(K − L)

Hence, in a well specified overidentified model with valid moment conditions
the J−statistic behaves like a chi-square random variable with degrees of
freedom equal to the number of overidentifying restrictions. If the model
is mis-specified and or some of the moment conditions (1.2) do not hold
(e.g., E[xitεt] = E[xit(yt − z0tδ0)] 6= 0 for some i) then the J−statistic will
be large relative to a chi-square random variable with K − L degrees of
freedom.
The J−statistic acts as an omnibus test statistic for model mis-specifica-

tion. A large J−statistic indicates a mis-specified model. Unfortunately, the
J−statistic does not, by itself, give any information about how the model
is mis-specified.

Normalized Moments

If the model is rejected by the J−statistic, it is of interested to know why
the model is rejected. To aid in the diagnosis of model failure, the magni-
tudes of the individual elements of the normalized moments

√
ngn(δ̂(Ŝ

−1))
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may point the reason why the model is rejected by the J−statistic. Un-
der the null hypothesis that the model is correct and the orthogonality
conditions are valid, the normalized moments satisfy

√
ngn(δ̂(Ŝ

−1)) d→ N(0,S−Σxz[Σ
0
xzS
−1Σxz]

−1Σ0xz)

As a result, for a well specified model the individual moment t−ratios
ti = gn(δ̂(Ŝ

−1))i/SE(gn(δ̂(Ŝ−1))i), i = 1, . . . ,K (1.16)

where

SE(gn(δ̂(Ŝ
−1))i =

³h
Ŝ− Σ̂xz[Σ̂

0
xzŜ
−1Σ̂xz]

−1Σ̂0xz
i
/T
´1/2
ii

are asymptotically standard normal. When the model is rejected using the
J−statistic, a large value of ti indicates mis-specification with respect to
the ith moment condition. Since the rank of S−Σxz[Σ

0
xzS
−1Σxz]

−1Σ0xz is
K − L, the interpretation of the moment t−ratios (1.16) may be difficult
in models for which the degree of over-identification is small. In particular,
if K − L = 1 then t1 = · · · = tK .

Two Stage Least Squares as Efficient GMM

If, in the linear GMM regression model (1.1), the errors are conditionally
homoskedastic then

E[xtx
0
tε
2
t ] = σ2Σxx = S

A consistent estimate of S has the form Ŝ = σ̂2Sxx where σ̂
2 p→ σ2. Typi-

cally,

σ̂2 = n−1
nX
t=1

(yt − z0tδ)2

where δ̂ → δ0. The efficient GMM estimator becomes:

δ̂(σ̂−2S−1xx ) = (S0xzσ
−2S−1xxSxz)

−1S0xzσ
−2S−1xxSxy

= (S0xzS
−1
xxSxz)

−1S0xzS
−1
xxSxy

= δ̂(S−1xx )

which does not depend on σ̂2. The estimator δ̂(S−1xx ) is, in fact, identical
to the two stage least squares (TSLS) estimator of δ :

δ̂(S−1xx ) = (S0xzS
−1
xxSxz)

−1S0xzS
−1
xxSxy

= (Z0PXZ)
−1Z0PXy

= δ̂TSLS

where Z denotes the n×Lmatrix of observations with tth row z0t,X denotes
the n× k matrix of observations with tth row x0t, and PX = X(X

0X)−1X0

is the idempotent matrix that projects onto the columns of X.



1.3 Estimation of S ix

Using (1.10), the asymptotic variance of δ̂(S−1xx ) = δ̂TSLS is

avar(δ̂TSLS) = (Σ
0
xzS
−1Σxz)

−1 = σ2(Σ0xzΣ
−1
xxΣxz)

−1

Although δ̂(S−1xx ) does not depend on σ̂2, a consistent estimate of the
asymptotic variance does:

[avar(δ̂TSLS) = σ̂2(S0xzS
−1
xxSxz)

−1

Similarly, the J-statistic also depends on σ̂2 and takes the form

J(δ̂TSLS , σ̂
−2S−1xx ) = n

(sxy − Sxz δ̂TSLS)0S−1xx (sxy − Sxz δ̂TSLS)
σ̂2

The TSLS J-statistics is also known as Sargan’s statistic (see Sargan 1958).

1.3 Estimation of S

To compute any of the efficient GMM estimators, a consistent estimate
of S = avar(ḡ) is required. The method used to estimate S depends on
the time series properties of the population moment conditions gt. Two
cases are generally considered. In the first case, gt is assumed to be serially
uncorrelated but may be conditionally heteroskedastic. In the second case,
gt is assumed to be serially correlated as well as potentially conditionally
heteroskedastic. The following sections discuss estimation of S in these two
cases. Similar estimators were discussed in the context of linear regression
in Chapter 6, Section 5. In what follows, the assumption of a linear model
(1.1) is dropped and the K moment conditions embodied in the vector
gt are assumed to be nonlinear functions of q ≤ K model parameters θ
and are denoted gt(θ). The moment conditions satisfy E[gt(θ0)] = 0 and
S = avar(ḡ) = avar(n−1

Pn
i=1 gt(θ0)).

1.3.1 Serially Uncorrelated Moments

In many situations the population moment conditions gt(θ0) form an ergodic-
stationary MDS with an appropriate information set It. In this case,

S = avar(ḡ) = E[gt(θ0)gt(θ0)
0]

Following White (1982), a heteroskedasticity consistent (HC) estimate of S
has the form

ŜHC =
1

n

nX
t=1

gt(θ̂)gt(θ̂)
0 (1.17)
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where θ̂ is a consistent estimate of θ0
3. Davidson and MacKinnon (1993,

section 16.3) suggest using a simple degrees-of-freedom corrected estimate
of S that replaces n−1 in (1.17) with (n−k)−1 to improve the finite sample
performance of tests based on (1.11).

1.3.2 Serially Correlated Moments

If the population moment conditions gt(θ0) are an ergodic-stationary but
serially correlated process then

S = avar(ḡ) = Γ0 +
∞X
j=1

(Γj + Γ
0
j)

where Γj = E[gt(θ0)gt−j(θ0)0]. In this case a heteroskedasticity and auto-
correlation consistent (HAC) estimate of S has the form

ŜHAC =
1

n

n−1X
j=1

wj,n(Γ̂j(θ̂) + Γ̂
0
j(θ̂))

where wj,n (j = 1, . . . , bn) are kernel function weights, bn is a non-negative

bandwidth parameter that may depend on the sample size, Γ̂j(θ̂)

= 1
n

Pn
t=j+1 gt(θ̂)gt−j(θ̂)

0, and θ̂ is a consistent estimate of θ0. Different
HAC estimates of S are distinguished by their kernel weights and band-
width parameter. The most common kernel functions are listed in Table
1.1. For all kernels except the quadratic spectral, the integer bandwidth
parameter, bn, acts as a lag truncation parameter and determines how
many autocovariance matrices to include when forming ŜHAC . Figure 1.1
illustrates the first ten kernel weights for the kernels listed in Table 1.1
evaluated using the default values of bn for n = 100.The choice of kernel
and bandwidth determine the statistical properties of ŜHAC . The truncated
kernel is often used if the moment conditions follow a finite order moving
average process. However, the resulting estimate of S is not guaranteed
to be positive definite. Use of the Bartlett, Parzen or quadratic spectral
kernels ensures that ŜHAC will be positive semi-definite. For these kernels,
Andrews (1991) studied the asymptotic properties ŜHAC . He showed that
ŜHAC is consistent for S provided that bn → ∞ as n → ∞. Furthermore,
for each kernel, Andrews determined the rate at which bn →∞ to asymp-
totically minimizeMSE(ŜHAC ,S). For the Bartlett, Parzen and quadratic
spectral kernels the rates are n1/3, n1/5, and n1/5, respectively. Using the
optimal bandwidths, Andrews found that the ŜHAC based on the quadratic
spectral kernel has the smallest asymptotic MSE, followed closely by ŜHAC

based on the Parzen kernel.

3For example, θ̂ may be an inefficient GMM estimate based on an arbitrary p.d.
weight matrix.
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Kernel Default bn wj,n

Truncated int
h
4 · ¡ n

100

¢1/5i 1 for aj < 1
0 for aj ≥ 1

Bartlett int
h
4 · ¡ n

100

¢1/4i 1− aj for aj ≤ 1
0 for aj > 1

Parzen int
h
4 · ¡ n

100

¢4/25i 1− 6a2j + 6a3j for 0 ≤ aj ≤ .5
2(1− aj)

3 for .5 ≤ aj ≤ 1
0 for aj > 1

Quadratic
spectral

int
h
4 · ¡ n

100

¢4/25i 25
12π2d2i

h
sin(mj)
mj

− cos(mj)
i

note: aj = i/(bn + 1), dj = j/bn, mj = 6πdi/5

TABLE 1.1. Common kernel weights and default bandwidths

Automatic Bandwidth Selection

Based on extensive Monte Carlo experiments, Newey and West (1994) con-
clude that the choice of bandwidth parameter is more important than
the choice of kernel for the finite sample performance of ŜHAC . Increas-
ing bn reduces the bias of ŜHAC but increases the variance. The default
values for bn in Table 1.1 are ad hoc, being motivated by the convergence
rates of ŜHAC for the respective kernels. To overcome the ad hoc choice
of bn, Andrews (1991) and Newey and West (1994) propose data depen-
dent automatic bandwidth selection procedures that asymptotically mini-
mize MSE(ŜHAC ,S). The details of these procedures are tedious and so
are not repeated here. The interested reader is referred to den Haan and
Levin (1997), who nicely summarize the procedures and give guidance to
the practitioner. However, as den Haan and Levin point out, the so-called
“automatic” bandwidth selection procedures still depend on a K × 1 user-
specified vector of weights w for the elements of gt(θ̂) and a method of
providing initial estimates of S.

Pre-Whitening and Re-coloring

If gt(θ̂) is highly autocorrelated, Andrews and Monahan (1992) found that
the finite sample behavior of ŜHAC is often improved if a pre-whitening
and re-coloring procedure is used. This procedure works as follows:

1. Pre-whiten gt(θ̂) by estimating a VAR(1) for gt(θ̂)

gt(θ̂) = Φgt−1(θ̂) + et(θ̂)

and forming the residuals et(θ̂) = gt(θ̂)− Φ̂gt−1(θ̂)
2. Construct an HAC estimator for et(θ̂) :

Σ̂HAC =
1

n

bnX
j=1

wj,n(Γ̂j + Γ̂
0
j)
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FIGURE 1.1. Kernel weights evaluated at default bandwidths for n = 100.

where Γ̂j =
1
n

Pn
t=j+1 et(θ̂)et−j(θ̂)

3. Form the re-colored HAC estimate for S using

ŜPWHAC = (IK − Φ̂)−1Σ̂HAC(IK − Φ̂)−10

1.3.3 Estimating S Using the S+FinMetrics Function
var.hac

HAC estimates of S for an n×k time series xt, based on the procedures de-
scribed in the previous section, may be computed using the S+FinMetrics
function var.hac4. The arguments expected by var.hac are

> args(var.hac)

function(x, bandwidth = NULL, window = "parzen", na.rm = F,

automatic = "none", df.correction = 0, prewhiten = F,

w = NULL, demean = T)

The optional arguments bandwidth and window are used to specify the
bandwidth parameter bn and kernel weight function wj,n, respectively.
Valid kernels are those listed in Table 1.1: truncated, bartlett, parzen

4The function var.hac is an enhanced version of the S+FinMertics function
asymp.var.
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and qs. If the bandwidth is not specified, then the default value for bn from
Table 1.1 is used for the specified kernel. The argument df.correction
specifies a non-negative integer to be subtracted from the sample size to
perform a degrees-of-freedom correction. The argument automatic deter-
mines if the Andrews (1991) or Newey-West (1994) automatic bandwidth
selection procedure is to be used to set bn. If automatic="andrews" or
automatic="nw" then the argument w must be supplied a vector of weights
for each variable in x. The Andrews-Monahan (1992) VAR(1) pre-whitening
and re-coloring procedure is performed if prewhiten=T.

1.4 GMM Estimation Using the S+FinMetrics
Function GMM

GMM estimation of general linear and nonlinear models may be performed
using the S+FinMetrics function GMM. The arguments expected by GMM are

> args(GMM)

function(start, moments, control = NULL, scale = NULL, lower

= - Inf, upper = Inf, trace = T, method =

"iterative", w = NULL, max.steps = 100, w.tol = 0.0001,

ts = F, df.correction = T, var.hac.control =

var.hac.control(), w0.efficient = F, ...)

The required arguments are start, which is a vector of starting values for
the parameters of the model, and moments, which is an S-PLUS function
to compute the sample moment conditions used for estimating the model.
The moments function must be of the form f(parm,...), where parm is
a vector of L parameters, and return a matrix of dimension n×K giving
the GMM moment conditions x0tεt for t = 1, . . . , n. The optional argu-
ments control, scale, lower and upper are used by the S-PLUS optimizer
function nlregb. See the online help for nlregb and nlregb.control for
details. Setting trace=T, displays iterative information from the optimiza-
tion. The argument method determines the type of GMM estimation to
be performed. Valid choices are "iterative", for iterated GMM estima-
tion, and "simultaneous", for continuous updating GMM estimation. If
method="iterative" then the argument max.steps determines the num-
ber of iterations to be performed. The argument w specifies the weight ma-
trix used for constructing the GMM objective function (1.6)5. If w=NULL,
then an estimate of the efficient weight matrix based on the asymptotic
variance of the sample moment conditions will be used. In this case, the ar-
gument ts determines if an HC or HAC covariance estimator is computed
and the arguments df.correction and var.hac.control control various

5The current version of GMM uses the inverse of w as the initial weight matrix.



xiv 1. Generalized Method of Moments

options associated with these estimators. The user may supply a positive
definite and symmetric weight matrix to be used as the initial weight ma-
trix if method="iterative". This weight matrix may be fixed through-
out the estimation by setting max.step=0. If method="interative" and
max.step=0 then the argument w0.efficient indicates whether the user-
supplied weight matrix is an efficient weight matrix. This is useful for com-
puting certain types of test statistics based on the GMM objective function.
The argument ... specifies any optional arguments that will be passed to
the moments function used for computing the GMM moment conditions.
Typically, these arguments specify the data used to compute the moment
conditions.
The GMM function produces an object of class GMM for which there are

print and summary methods, and extractor function coef.

Example 1 Estimating the classical linear regression model by GMM

Consider the classical linear regression model

yt = x
0
tβ0 + εt (1.18)

where the explanatory variables xt are assumed to be orthogonal to the er-
ror term. However, εt is allowed to be conditionally heteroskedastic and/or
serially correlated. In this model the explanatory variables are also the
instrumental variables so that zt = xt and K = L. The population orthog-
onality condition is

E[gt(wt,β0)] = E[xtεt] = E[xt(yt − x0tβ0)] = 0

where gt(wt,β) = xtεt and wt = (yt,xt)
0. The sample moment condition

used for estimation is

gn(wt,β) =
1

n

nX
t=1

xt(yt − x0tβ)

which gives rise to the GMM estimating equation

Sxy − Sxxβ = 0

Since K = L the model is just identified, and, provided Sxx is invertible,
the GMM estimator is equivalent to the least squares estimator

β̂ = S−1xxSxy

The estimate β̂ is asymptotically normally distributed with asymptotic
variance

avar(β̂) = (ΣxxS
−1Σxx)

−1
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where S = avar(ḡ). If εt is iid (0, σ
2), say, then S = E[xtx

0
tε
2
t ] = σ2Σxx and

avar(β̂) = σ
2
Σ−1xx , which is the usual formula for avar(β̂) in the classical

linear regression formula.
As an example of a simple linear regression model, consider the Capital

Asset Pricing Model (CAPM)

Rt − rft = α+ β(RMt − rft) + εt, t = 1, . . . , n (1.19)

where Rt denotes the return on an asset, rt denotes the risk free rate and
RMt denotes the return on a market portfolio proxy. Using the notation for
the linear model (1.18), yt = Rt − rft and xt = (1, RMt − rft)

0. The data
for this example are the monthly excess returns on Microsoft stock and the
S&P 500 index over the period February, 1990 through December, 2000
in the S+FinMetrics “timeSeries” object excessReturns.ts. Assuming
the error term is orthogonal to RMt − rft, the CAPM may be consistently
estimated using ordinary least squares

> ols.fit = OLS(MSFT~SP500, data = excessReturns.ts)

> ols.fit

Call:

OLS(formula = MSFT ~SP500, data = excessReturns.ts)

Coefficients:

(Intercept) SP500

0.0175 1.5677

Degrees of freedom: 131 total; 129 residual

Time period: from Feb 1990 to Dec 2000

Residual standard error: 0.09094843

An S-PLUS function to compute the moment conditions for the linear
regression model is

ols.moments = function(parm,y=NULL,x=NULL) {

x = as.matrix(x)

x*as.vector(y - x%*%parm)

}

where parm is an L × 1 vector of parameter β, y is an n × 1 vector of
observations on the dependent variable and x is an n× L matrix of obser-
vations on the explanatory variables. The function returns an n×L matrix
of moment conditions x0tεt = x0t(yt − x0tβ) for t = 1, . . . , n :
> ols.moments(c(1,1),y = excessReturns.df[,"MSFT"],

+ x = cbind(1, excessReturns.df[,"SP500"]))

numeric matrix: 131 rows, 2 columns.

[,1] [,2]
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[1,] -0.9409745 -0.0026713864

[2,] -0.9027093 -0.0161178959

...

[131,] -1.2480621 0.0009318206

To estimate the CAPM regression (1.19) with GMM assuming heteroskedas-
tic errors use

> start.vals = c(0,1)

> names(start.vals) = c("alpha", "beta")

> gmm.fit = GMM(start.vals, ols.moments, max.steps = 1,

+ y = excessReturns.df[,"MSFT"],

+ x = cbind(1, excessReturns.df[,"SP500"]))

> class(gmm.fit)

[1] "GMM"

Notice how the data are passed to the function ols.moments through the
... argument. The object gmm.fit returned by GMM is of class “GMM” and
has components

> names(gmm.fit)

[1] "parameters" "objective"

[3] "message" "grad.norm"

[5] "iterations" "r.evals"

[7] "j.evals" "scale"

[9] "normalized.moments" "vcov"

[11] "method" "df.J"

[13] "df.residual" "call"

The online help for GMM gives a complete description of these components6.
Typing the name of the “GMM” object invokes the print method

> gmm.fit

Call:

GMM(start = start.vals, moments = ols.moments, max.steps = 1,

y = excessReturns.df[, "MSFT"], x = cbind(1,

excessReturns.df[, "SP500"]))

Coefficients:

alpha beta

0.0175 1.5677

6Since the linear model is just identified, the weight matrix in the GMM objective
function is irrelevant and so the weight.matrix component of gmm.fit is not returned.
Also, the moments.vcov component is not returned since all of the normalized moments
are equal to zero.
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Test of Overidentification:

model is just-identified

Optimization Info:

Number of Iterations: 1

Convergence: x convergence

As expected, the GMM estimates of α and β are equivalent to the least
squares estimates. Also, since the linear model is just identified the GMM
objective function (J−statistic) is identically zero at the optimum and,
therefore, there is no test for overidentifying restrictions.
The summary method provides information about the statistical signifi-

cance of the estimated parameters:

> summary(gmm.fit)

Call:

GMM(start = start.vals, moments = ols.moments, max.steps = 1,

y = excessReturns.df[, "MSFT"], x = cbind(1,

excessReturns.df[, "SP500"]))

Coefficients:

Value Std.Error t value Pr(>|t|)

alpha 0.0175 0.0079 2.2175 0.0283

beta 1.5677 0.1905 8.2274 0.0000

Test of Overidentification:

model is just-identified

Optimization Info:

Number of Iterations: 1

Convergence: x convergence

By default, the GMM function computes an HC estimate of the asymptotic
variance of the sample moment conditions, and so values in the column
labeled Std.Error are heteroskedasticity consistent (HC) standard errors.
To be sure, these standard errors may be compared to those computed from
the OLS fit with the White HC correction:

> summary(ols.fit,correction="white")

Call:

OLS(formula = MSFT ~SP500, data = excessReturns.ts)

Residuals:

Min 1Q Median 3Q Max

-0.3101 -0.0620 -0.0024 0.0581 0.2260
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Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) 0.0175 0.0079 2.2175 0.0283

SP500 1.5677 0.1905 8.2274 0.0000

To compute the GMM estimator using an HAC estimate of the asymp-
totic variance of the sample moment conditions, call the GMM function with
the optional argument ts=T. The type of HAC estimate used is determined
by the options set in var.hac.control. For example, to compute the OLS
estimates with the usual Newey-West HAC standard errors use

> gmm.fit2 = GMM(c(0,1), ols.moments, max.steps = 1,

+ y = excessReturns.df[,"MSFT"],

+ x = cbind(1, excessReturns.df[,"SP500"]), ts = T,

+ var.hac.control = var.hac.control(window = "bartlett",

+ bandwidth = floor(4 * (nrow(excessReturns.df)/100)^(2/9))))

The standard errors for the GMM estimates above are identical to those
returned by

> summary(ols.fit,correction="nw")

Example 2 Estimating the instrumental variables regression model using
GMM

As in Campbell and Mankiw (1990), consider the stylized consumption
function

∆ct = δ0 + δ1∆yt + δ2rt + εt, t = 1, . . . , T (1.20)

= δ0zt + εt

where ct denotes the log of real per capita consumption (excluding durables),
yt denotes the log of real disposable income, and rt denotes the ex post real
interest rate (T-bill rate - inflation rate). Assume that {∆ct,∆yt, rt} are
stationary and ergodic, and that {εt, It} is a stationary and ergodic mar-
tingale difference sequence (MDS) where It = {∆cs,∆ys, rs}ts=1 denotes
the observed information set at time t. In (1.20), the variables ∆yt and
rt are likely to be contemporaneously correlated with εt and so the least
squares estimates of δ are likely to be biased and inconsistent. Because
{εt, It} is a stationary and ergodic MDS, E[εt|It−1] = 0 which implies that
any variable in It−1 is a potential instrument. Furthermore, for any variable
xt−1 ⊂ It−1, {xt−1εt} is an uncorrelated sequence.
The data for this example are annual data over the period 1960 - 1995,

and are in the “timeSeries” object consump.ts

> colIds(consump.ts)

[1] "GC" "GY" "R3"
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> consump.ts@documentation

[1] "GY = log growth rate of real income"

[2] "GC = log growth rate of real consumption"

[3] "R3 = real 3-month T-bill rate"

[4] "source: Wooldridge (2002), Introduction to"

[5] "Econometrics, 2nd Edition"

[6] "South-Western Thompson"

The following data frame consump is created for use with the function GMM:

> nobs = numRows(consump.ts)

> consump = seriesData(consump.ts)

> consump$const = rep(1,nobs)

An S-PLUS function to compute the linear instrumental variables regres-
sion model moment conditions g(wt, δ) = xt(yt − z0tδ) for t = 1, . . . n,
is

iv.moments = function(parm, y, X, Z) {

# parm = L x 1 vector of parameters

# y = n x 1 response vector

# X = n x K matrix of instruments

# Z = n x L matrix of explanatory variables

X = as.matrix(X)

Z = as.matrix(Z)

X*as.vector(y - Z%*%parm)

}

Applying this function to the consumption data with δ = (1, 1, 1)0, zt =
(∆yt, rt, 1)

0 and xt = (∆ct−1,∆yt−1, rt−1, 1)0 gives

> iv.moments(c(1,1,1),y = consump[2:nobs,1],

+ X = consump[1:(nobs-1),],

+ Z = consump[2:nobs,2:4])

GC GY R3 const

1 -0.014143206 -0.0070677434 -0.0124922035 -1.0156263

2 -0.013609181 -0.0154800892 -0.0141370678 -1.0244252

...

35 -0.015828003 -0.0143904735 -0.0175688817 -1.0395788

To estimate the consumption function (1.20) by two-step efficient GMM
using Ŵ = IK as the initial weight matrix and assuming conditionally
heteroskedastic errors, call GMM with the optional arguments method =
"iterative" and max.steps = 1:

> start.vals = rep(0.1,3)

> names(start.vals) = c("GY","R3","const")

> gmm.fit.2step = GMM(start.vals, iv.moments,

+ method = "iterative", max.steps=1,
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+ y = consump[2:nobs,1],

+ X = consump[1:(nobs-1),],

+ Z = consump[2:nobs,2:4])

1-step objective = 1.02951e-8

2-step objective = 1.57854

A summary of the model fit is

> summary(gmm.fit.2step)

Call:

GMM(start = start.vals, moments = iv.moments, method =

"iterative", max.steps = 1, y = consump[2:nobs, 1],

X = consump[1:(nobs - 1), ], Z = consump[2:nobs,2:4])

Coefficients:

Value Std.Error t value Pr(>|t|)

GY 0.6277 0.1500 4.1852 0.0002

R3 -0.0099 0.0981 -0.1009 0.9202

const 0.0071 0.0037 1.9134 0.0647

Test of Overidentification:

J-stat Df P.value

1.5785 1 0.209

Optimization Info:

Number of Iterative Steps: 2

The coefficient on∆yt is 0.6277, with an estimated standard error of 0.1761,
and the coefficient on rt is slightly negative, with an estimated standard
error of 0.1156. The J-statistic is 1.5785, and has a p-value of 0.209 based
on the chi-square distribution with one degree of freedom. The data appear
to support the single over-identifying restriction.
To estimate the consumption function (1.20) by iterated efficient GMM

assuming conditionally heteroskedastic errors call GMM with method =

"iterative" and max.steps set to a large number7:

> gmm.fit.iter = GMM(start.vals, iv.moments,

+ method = "iterative", max.steps = 100,

+ y = consump[2:nobs,1],

+ X = consump[1:(nobs-1),],

+ Z = consump[2:nobs,2:4])

1-step objective = 1.02951e-8

7Notice that the 1-step objective almost equal to zero. This is caused by using Ŵ = Ik
as the initial weight matrix since the scaling of the individual moment conditions is very
different. Using Ŵ = S−1xx generally provides a better scaling of the moment conditions.
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2-step objective = 1.57854

...

13-step objective = 1.85567

To compute the continuously updated efficient GMM estimator (1.14),
call GMM with method = "simultaneous":

> start.vals = gmm.fit.iter$parameters

> gmm.fit.cu = GMM(start.vals, iv.moments,

+ method = "simultaneous",

+ y = consump[2:nobs,1],

+ X = consump[1:(nobs-1),],

+ Z = consump[2:nobs,2:4])

Good starting values are important for the CU estimator, and the above
estimation uses the iterated GMM estimates as starting values.
Finally, to compute an inefficient 1-step GMM estimator with W = I4

use

> start.vals = rep(0.1,3)

> names(start.vals) = c("GY","R3","const")

> gmm.fit.1step = GMM(start.vals, iv.moments,

+ method = "iterative", max.steps = 0,

+ w = diag(4), w0.efficient = F,

+ y = consump[2:nobs,1],

+ X = consump[1:(nobs-1),],

+ Z = consump[2:nobs,2:4])

1-step objective = 1.02951e-8

1-step objective = 1.02951e-8

Warning messages:

1: Maximum iterative steps exceeded. in: GMM(start.vals,

iv.moments, method = "iterative", max.steps = ....

2: The J-Statistic is not valid since the weight matrix is

not efficient. in: GMM(start.vals, iv.moments, method

= "iterative", max.steps = ....

Table 1.2 summarizes the different efficient GMM estimators for the pa-
rameters in (1.20). The results are very similar across the efficient estima-
tions8.

Example 3 Estimating the instrumental variables regression model using
TSLS

8To match the default Eviews output for GMM, set the optional argument
df.correction=F.
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∆ct = δ1 + δ2∆yt + δ3rt + εt
xt = (1,∆ct−1,∆yt−1, rt−1)0, E[xtεt] = 0, E[xtx0tε2t ] = S
Estimator δ1 δ2 δ3 J − stat

2-step efficient
.007
(.004)

.627
(.150)

−.010
(.098)

1.578
(.209)

Iterated efficient
.008
(.004)

.591
(.144)

−.032
(.095)

1.855
(.173)

CU efficient
.008
(.003)

.574
(.139)

−.054
.095

1.747
(.186)

1-step inefficient
.003
(.005)

.801
(.223)

−.024
(.116)

−
−

TABLE 1.2. Efficient GMM estimates of the consumption function parameters.

The TSLS estimator of δ may be computed using the function GMM by
supplying the fixed weight matrixW = S−1xx as follows

9

> w.tsls = crossprod(consump[1:(nobs-1),])/nobs

> start.vals = rep(0.1,3)

> names(start.vals) = c("GY","R3","const")

> gmm.fit.tsls = GMM(start.vals,iv.moments,

+ method = "iterative",max.steps = 0,

+ w = w.tsls,w0.efficient = T,

+ y = consump[2:nobs,1],

+ X = consump[1:(nobs-1),],

+ Z = consump[2:nobs,2:4])

1-step objective = 1.12666e-4

Warning messages:

Maximum iterative steps exceeded. in: GMM(start.vals,

iv.moments, method = "iterative", max.steps = ....

> gmm.fit.tsls

Call:

GMM(start = start.vals, moments = iv.moments, method =

"iterative", w = w.tsls, max.steps = 0, w0.efficient

= T, y = consump[2:nobs, 1], X = consump[1:(nobs -1), ],

Z = consump[2:nobs, 2:4])

Coefficients:

GY R3 const

0.5862 -0.0269 0.0081

Test of Overidentification:

9Recall, the GMM function uses the inverse of w as the weight matrix.
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J-stat Df P.value

0.0001 1 0.9915

Optimization Info:

Number of Iterative Steps: 1

The TSLS estimate of δ is similar to the efficient iterated estimate. The
J−statistic and the estimate of avar(δ̂TSLS) computed using Ŵ = Ŝ−1xx ,
however, are not correct since S−1xx is proportional to the efficient weight
matrix. To get the correct values for these quantities a consistent estimate
σ̂2 of σ2 is required to form the efficient weight matrix σ̂2S−1xx . This is easily
accomplished using

# compute TSLS estimate of error variance

> y = as.vector(consump[2:nobs,1])

> X = as.matrix(consump[1:(nobs-1),])

> Z = as.matrix(consump[2:nobs,2:4])

> d.hat = coef(gmm.fit.tsls)

> e.hat = y - Z%*%d.hat

> df = nrow(Z) - ncol(Z)

> s2 = as.numeric(crossprod(e.hat)/df)

# compute correct efficient weight matrix for tsls

# that contains error variance term

> w.tsls2 = crossprod(X)*s2/nobs

> start.vals = rep(0.1,3)

> names(start.vals) = c("GY","R3","const")

> gmm.fit.tsls2 = GMM(start.vals,iv.moments,

+ method = "iterative",max.steps = 0,

+ w = w.tsls2,w0.efficient = T,

+ y = consump[2:nobs,1],

+ X = consump[1:(nobs-1),],

+ Z = consump[2:nobs,2:4])

1-step objective = 2.01841

> summary(gmm.fit.tsls2)

Call:

GMM(start = start.vals, moments = iv.moments, method =

"iterative", w = w.tsls2, max.steps = 0, w0.efficient

= T, y = consump[2:nobs, 1], X = consump[1:(nobs -1), ],

Z = consump[2:nobs, 2:4])

Coefficients:

Value Std.Error t value Pr(>|t|)

GY 0.5862 0.1327 4.4177 0.0001

R3 -0.0269 0.0753 -0.3576 0.7230
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const 0.0081 0.0032 2.5285 0.0166

Test of Overidentification:

J-stat Df P.value

2.0184 1 0.1554

1.5 Hypothesis Testing for Linear Models

The following sections discuss hypothesis testing in linear models estimated
by GMM. The main types of hypothesis tests are for coefficient restrictions,
overidentification restrictions, subsets of orthogonality restrictions, and in-
strument relevance. Except for the tests for instrument relevance, the tests
extend in atraightforward to nonlinear models estimated by GMM.

1.5.1 Testing Restrictions on Coefficients

Hypothesis testing on coefficients in linear GMM models is surveyed in
Newey and West (1987) and nicely summarized in chapter 3 of Hayashi
(2000).

Wald Statistics

Wald-type statistics are based on the asymptotic normality of the GMM es-
timator δ̂(Ŵ) for an arbitrary weight matrix Ŵ. Simple tests on individual
coefficients of the form

H0 : δk = δ0k (1.21)

may be conducted using the asymptotic t-ratio

tk =
δ̂k(Ŵ)− δ0kdSE(δ̂k(Ŵ))

(1.22)

wheredSE(δ̂k(Ŵ)) is the square root of the kth diagonal element of (1.9).
Under the null hypothesis (1.21), the t-ratio (1.22) has an asymptotic stan-
dard normal distribution.
Linear hypotheses of the form

H0 : Rδ = r (1.23)

where R is a fixed q×L matrix of rank q and r is a fixed q× 1 vector may
be tested using the Wald statistic

Wald = n(Rδ̂(Ŵ)− r)0
h
R[avar(δ̂(Ŵ))R0

i−1
(Rδ̂(Ŵ)− r) (1.24)

where[avar(δ̂(Ŵ)) is given by (1.9). Under the null (1.23), the Wald statis-
tic (1.24) has a limiting chi-square distribution with q degrees of freedom.
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The Wald statistic (1.24) is valid for any consistent and asymptotically
normal GMM estimator δ̂(Ŵ) based on an arbitrary symmetric and posi-

tive definite weight matrix Ŵ
p→W. Usually, Wald statistics are compute

using Ŵ = Ŝ−1 so that [avar(δ̂(Ŝ−1)) is given by (1.11).
Nonlinear hypotheses of the form

H0 : a(δ0) = 0 (1.25)

where a(δ0) = 0 imposes q nonlinear restrictions and
∂a(δ0)
∂δ 0 has full rank

q, may be tested using the Wald statistic

Wald = na(δ̂(Ŵ))0
"
∂a(δ̂(Ŵ))

∂δ0
[avar(δ̂(Ŵ))

∂a(δ̂(Ŵ))

∂δ0

#−1
a(δ̂(Ŵ))

(1.26)
Under the null (1.25), the Wald statistic (1.26) has a limiting chi-square
distribution with q degrees of freedom.

GMM LR-type Statistics

Linear and nonlinear restrictions on the model coefficients δ may also be
tested using a likelihood ratio (LR) type statistic. In efficient GMM estima-
tion, the unrestricted objective function is J(δ̂(Ŝ−1), Ŝ−1), for a consistent
estimate Ŝ of S. The restricted efficient GMM estimator solves

δ̃R(Ŝ
−1) = argmin

δ
J(δ, Ŝ−1) subject to H0 (1.27)

The GMM LR-type statistic is the difference between the restricted and
unrestricted J-statistics:

LRGMM = J(δ̃R(Ŝ
−1), Ŝ−1)− J(δ̂(Ŝ−1), Ŝ−1) (1.28)

Under the null hypotheses (1.23) - (1.25), LRGMM has a limiting chi-
square distribution with q degrees of freedom. As n→∞, it can be shown

that Wald − LRGMM
p→ 0, although the two statistics may differ in fi-

nite samples. For linear restrictions, Wald and LRGMM are numerically
equivalent provided the same value of Ŝ is used to compute the restricted
and unrestricted efficient GMM estimator. Typically Ŝ computed under
the unrestricted model is used in constructing LRGMM . In this case, when
the restricted efficient GMM estimator is computed by solving (1.27) the
weight matrix Ŝ−1UR is held fixed during the estimation (no iteration is per-
formed on the weight matrix). If LRGMM is computed using two different
consistent estimates of S, say Ŝ and S̃, then it is not guaranteed to be posi-
tive in finite samples but is asymptotically valid. The LRGMM statistic has
the advantage over the Wald statistic for nonlinear hypotheses in that it is
invariant to how the nonlinear restrictions are represented. Additionally,
Monte Carlo studies have shown that LRGMM often performs better than
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Wald in finite samples. In particular, Wald tends to over reject the null
when it is true.

Example 4 Testing the PIH

The pure permanent income hypothesis (PIH) due to Hall (1980) states
that ct in (1.20) is a martingale so that ∆ct = εt is a MDS. Hence, the PIH
implies the linear restrictions

H0 : δ1 = δ2 = 0

which are of the form (1.23) with

R =

µ
1 0 0
0 1 0

¶
, r =

µ
0
0

¶
If there are temporary income consumers then δ1 > 0.
The Wald statistic (1.24) based on the iterated efficient GMM estimator

may be computed using

> Rmat = matrix(c(1,0,0,1,0,0),2,3)

> rvec = c(0,0)

> dhat = coef(gmm.fit.iter)

> avarRbhat = Rmat%*%gmm.fit.iter$vcov%*%t(Rmat)

> Rmr = Rmat%*%dhat - rvec

> wald.stat = as.numeric(t(Rmr)%*%solve(avarRbhat)%*%Rmr)

> wald.stat

[1] 16.99482

Since there are q = 2 linear restrictions, the Wald statistic has an asymp-
totic chi-square distribution with 2 degrees of freedom. The p-value is

> 1 - pchisq(wald.stat,2)

[1] 0.0002039964

which suggests rejecting the PIH at any reasonable level of significance.
To compute the GMM LR-type statistic (1.28), one must compute re-

stricted and unrestricted GMM estimates using the same estimate Ŝ−1of
the efficient weight matrix and evaluate the corresponding J−statistics.
Consider computing (1.28) using the iterated efficient GMM estimate as
the unrestricted estimate. Its J− statistic is J(δ̂(Ŝ−1), Ŝ−1) = 1.855. To
compute the restricted efficient GMM estimate, using Ŝ−1 from the unre-
stricted iterated efficient estimation, use

> s.ur = solve(gmm.fit.iter$weight.matrix)

> s.ur = (s.ur + t(s.ur))/2

> start.vals = 0.1

> names(start.vals) = c("const")

> gmm.fit.r = GMM(start.vals, iv.moments,
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+ method = "iterative", max.steps = 0,

+ w = s.ur, w0.efficient = T,

+ y = consump[2:nobs,1],

+ X = consump[1:(nobs-1),],

+ Z = consump[2:nobs,4])

1-step objective = 18.8505

The second line above is used to ensure that the weight matrix passed
to GMM is symmetric. The restricted model is specified using the function
iv.moments with zt = (1), and xt = (∆ct−1,∆yt−1, rt−1, 1)0. The restricted
fit is given by

> summary(gmm.fit.r)

Call:

GMM(start = start.vals, moments = iv.moments, method =

"iterative", w = s.ur, max.steps = 0, w0.efficient = T,

y = consump[2:nobs, 1], X = consump[1:(nobs - 1),],

Z = consump[2:nobs, 4])

Coefficients:

Value Std.Error t value Pr(>|t|)

const 0.0209 0.0012 17.0687 0.0000

Test of Overidentification:

J-stat Df P.value

18.8505 3 0.0003

Optimization Info:

Number of Iterative Steps: 1

The restricted J−statistic is J(δ̃R(Ŝ−1), Ŝ−1) = 18.8505. The GMM-LR
statistic is then

> gmm.lr = gmm.fit.r$objective - gmm.fit.iter$objective

> gmm.lr

[1] 16.99482

which is numerically identical to the Wald statistic computed earlier.

1.5.2 Testing Subsets of Orthogonality Conditions

Consider the linear GMM model (1.1) with instruments xt = (x01t,x
0
2t)

0

such that x1t is K1 × 1 and x2t is K2 × 1 with K1 ≥ L and K1 +K2 = K.
The instruments x1t are assumed to be valid (i.e., E[x1tεt] = 0) whereas
the instruments x2t are suspected not to be valid (i.e., E[x2tεt] 6= 0). A
procedure to test for the validity of x2t due to Newey (1985) is as follows.
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First, estimate (1.1) by efficient GMM using the full set of instruments xt
giving

δ̂(Ŝ−1Full) = (S
0
xzŜ
−1
FullSxz)

−1S0xzŜ
−1
FullSxy

where

ŜFull =

·
Ŝ11,Full Ŝ12,Full
Ŝ21,Full Ŝ22,Full

¸
such that Ŝ11,Full is K1 × K1. Second, estimate (1.1) by efficient GMM

using only the instruments x1t and using the weight matrix Ŝ
−1
11,Full giving

δ̃(Ŝ−111,Full) = (S
0
x1zŜ

−1
11,FullSx1z)

−1S0x1zŜ
−1
11,FullSx1y

Next, form the statistic10

C = J(δ̂(Ŝ−1Full), Ŝ
−1
Full)− J(δ̃(Ŝ−111,Full), Ŝ

−1
11,Full) (1.29)

Under the null hypothesis that E[xtεt] = 0, the statistic C has a limiting
chi-square distribution with K −K1 degrees of freedom.

Example 5 Testing the endogeneity of rt in the consumption function

Consider testing the hypothesis that rt in (1.20) is exogenous (E[rtεt] =
0). In this case the full set of instruments is xt = (∆ct−1,∆yt−1, rt−1, 1, rt)0,
and the reduced set is x1t = (∆ct−1,∆yt−1, rt−1, 1)0. Efficient GMM esti-
mation of the full model is achieved using

> start.vals = rep(0.1,3)

> names(start.vals) = c("GY","R3","const")

> gmm.fit.full = GMM(start.vals,iv.moments,

+ method = "iterative", max.steps = 100,

+ y = consump[2:nobs,"GC"],

+ X = cbind(consump[1:(nobs-1),],

+ consump[2:nobs,"R3"]),

+ Z = consump[2:nobs,2:4])

The efficient weight matrix Ŝ−111,Full may be extracted using

> w11.full = solve(gmm.fit.full$weight.matrix[1:4,1:4])

> w11.full = (w11.full + t(w11.full))/2

Efficient GMM estimation using x1t together with Ŝ
−1
11,Full may be com-

puted using

> start.vals = rep(0.1,3)

> names(start.vals) = c("GY","R3","const")

> gmm.fit.11 = GMM(start.vals,iv.moments,

10The use of Ŝ−111,Full guarantees that the C statistic is non-negative.
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+ method = "iterative", max.steps = 0,

+ w = w11.full, w0.efficient = T,

+ y = consump[2:nobs,"GC"],

+ X = consump[1:(nobs-1),],

+ Z = consump[2:nobs,2:4])

The C statistic (1.29) for testing the exogeneity of rt is then

> C.stat = gmm.fit.full$objective - gmm.fit.11$objective

> C.stat

[1] 0.01821106

Since K = 5 and K1 = 4, C has an limiting chi-square distribution with 1
degree of freedom. The p-value for the test

> 1 - pchisq(C.stat,1)

[1] 0.8926527

indicates that rt may be treated as exogenous in the consumption function.

1.5.3 Testing Instrument Relevance

In order to obtain consistent GMM estimates, the instruments xt must be
uncorrelated with the error term εt (valid instruments), and they must be
correlated with the endogenous variables zt (relevant instruments). The
subset orthogonality tests of the previous section can be used to test in-
strument validity. This section discusses some simple tests for instrument
relevance.
Instrument relevance is related to the rank condition (1.4). To see this,

consider the simple GMM regression involving a single endogenous variable
and a single instrument

yt = ztδ + εt

E[xtεt] = 0

The rank condition (1.4) reduces to rank(Σzx) = 1, which implies that
Σzx 6= 0. Assuming that both zt and xt are demeaned, the rank condition
can be restated as cov(x, z) = Σzx 6= 0. Hence the rank condition will
be satisfied as long as x is correlated with z. If there are K instruments
x1t, . . . , xKt but only one endogenous variable zt then the rank condition
holds as long as cov(xk, z) 6= 0 for some k. If cov(xk, z) ≈ 0 for all k then
the instruments are called weak.
Testing instrument relevance is important in practice because recent re-

search (e.g., Stock and Wright (2000)) has shown that standard GMM
procedures for estimation and inference may be highly misleading if instru-
ments are weak. If instruments are found to be weak then non-standard
methods of inference should be used for constucting confidence intervals
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and performing hypothesis tests. Stock, Wright and Yogo (2002) give a
nice survey of the issues associated with using GMM in the presence of
weak instruments, and discuss the non-standard inference procedures that
should be used.
In the general linear GMM regression (1.1), the relevance of the set of

instruments xt for each endogenous variable in zt can be tested as follows.
First, let z1t denote the L1×1 vector of non-constant endogenous variables
in zt, and let x1t denote the K1 × 1 remaining deterministic or exogenous
variables in zt such that zt = (z

0
1t,x

0
1t)

0 and L1+K1 = L. Similarly, define
x2t as the K2 × 1 vector of exogenous variables that are excluded from
zt. so that xt = (x

0
1t,x

0
2t)

0 and K1 +K2 = K. What is important for the
rank condition are the correlations between the endogenous variables in
z1t and the instruments in x2t. To measure these correlations and to test
for instrument relevance, estimate by least squares the so-called first stage
regression

z1lt = x
0
1tπ1l + x2tπ2l + vlt, l = 1, . . . , L1

for each endogenous variable in z1t. The t-ratios on the variables in x2t
can be used to assess the strength of the correlation between z1lt and the
variables in x2t. The F-statistic for testing π2l = 0 can be used to assess
the joint relevance of x2t for z1lt.

Example 6 Testing instrument relevance in the consumption function

In the consumption function regression, z1t = (∆yt, rt)
0 , x1t = (1), and

x2t = (∆ct−1,∆yt−1, rt−1)0. The first stage regressions for ∆yt and rt may
be computed simultaneously using the S+FinMetrics function OLS as fol-
lows

> firstStage.fit = OLS(cbind(GY,R3) ~ tslag(GC) + tslag(GY)

+ + tslag(R3), data = consump)

> class(firstStage.fit)

[1] "mOLS"

When a multivariate response is specified in the call to OLS, a regression
is performed for each response variable and the returned object is of class
“mOLS”. A summary of each first stage regression is

> summary(firstStage.fit)

Response: GY

Call:

OLS(formula = cbind(GY, R3) ~tslag(GC) + tslag(GY) + tslag(

R3), data = consump)

Residuals:

Min 1Q Median 3Q Max

-0.0305 -0.0122 -0.0021 0.0112 0.0349
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Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) 0.0067 0.0055 1.2323 0.2271

tslag(GC) 1.2345 0.3955 3.1214 0.0039

tslag(GY) -0.5226 0.2781 -1.8787 0.0697

tslag(R3) 0.0847 0.1395 0.6069 0.5483

Regression Diagnostics:

R-Squared 0.2791

Adjusted R-Squared 0.2093

Durbin-Watson Stat 1.8808

Residual Diagnostics:

Stat P-Value

Jarque-Bera 0.6181 0.7341

Ljung-Box 8.9289 0.8812

Residual standard error: 0.0163 on 31 degrees of freedom

F-statistic: 4 on 3 and 31 degrees of freedom, the p-value

is 0.01617

Response: R3

Call:

OLS(formula = cbind(GY, R3) ~tslag(GC) + tslag(GY) + tslag(

R3), data = consump)

Residuals:

Min 1Q Median 3Q Max

-0.0264 -0.0069 0.0021 0.0068 0.0436

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) 0.0083 0.0044 1.8987 0.0669

tslag(GC) 0.1645 0.3167 0.5192 0.6073

tslag(GY) -0.4290 0.2228 -1.9259 0.0633

tslag(R3) 0.8496 0.1117 7.6049 0.0000

Regression Diagnostics:

R-Squared 0.6519

Adjusted R-Squared 0.6182

Durbin-Watson Stat 1.7470
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Residual Diagnostics:

Stat P-Value

Jarque-Bera 14.8961 0.0006

Ljung-Box 20.7512 0.1450

Residual standard error: 0.01305 on 31 degrees of freedom

F-statistic: 19.35 on 3 and 31 degrees of freedom, the p-value

is 2.943e-007

In the first stage regression for ∆yt, the t-ratios for ∆ct−1 and ∆yt−1 are
significant at the 1% and 10% levels, respectively, indicating that these
variables are correlated with ∆yt. The F-statistic for testing the joint sig-
nificance of the variables in x2t is 4, with a p-value of 0.0167 indicating
that x2t is relevant for ∆yt.

1.6 Nonlinear GMM

Nonlinear GMM estimation occurs when the K GMM moment conditions
g(wt,θ) are nonlinear functions of the p model parameters θ. Depending
on the model, the moment conditions g(wt,θ) may be K ≥ p nonlinear
functions satisfying

E[g(wt,θ0)] = 0 (1.30)

Alternatively, for a response variable yt, L explanatory variables zt, and K
instruments xt, the model may define a nonlinear error term εt

a(yt, zt;θ0) = εt

such that
E[εt] = E[a(yt, zt;θ0)] = 0

Given that xt is orthogonal to εt, define g(wt,θ0) = xtεt = xta(yt, zt;θ0)
so that

E[g(wt,θ0)] = E[xtεt] = E[xta(yt, zt;θ0)] = 0 (1.31)

defines the GMM orthogonality conditions.
In general, the GMM moment equations (1.30) and (1.31) produce a

system ofK nonlinear equations in p unknowns. Identification of θ0 requires
that

E[g(wt,θ0)] = 0

E[g(wt,θ)] 6= 0 for θ 6= θ0

and the K × p matrix

G = E

·
∂g(wt,θ0)

∂θ0

¸
(1.32)
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has full column rank p. The sample moment condition for an arbitrary θ is

gn(θ) = n−1
nX
t=1

g(wt,θ)

If K = p, then θ0 is apparently just identified and the GMM objective
function is

J(θ) = ngn(θ)
0gn(θ)

which does not depend on a weight matrix. The corresponding GMM esti-
mator is then

θ̂ = argmin
θ

J(θ)

If K > p, then θ0 is apparently overidentified. Let Ŵ denote a K × K
symmetric and p.d. weight matrix, possibly dependent on the data, such

that Ŵ
p→ W as n → ∞ with W symmetric and p.d. Then the GMM

estimator of θ0, denoted θ̂(Ŵ), is defined as

θ̂(Ŵ) = argmin
θ

J(θ,Ŵ) = ngn(θ)
0Ŵgn(θ)

The efficient GMM estimator uses Ŵ = Ŝ
−1
such that Ŝ

p→S = avar(ḡ).
As with efficient GMM estimation of linear models, the efficient GMM
estimator of nonlinear models may be computed using a two-step, iterated,
or continuous updating estimator.

1.6.1 Asymptotic Properties

Under standard regularity conditions (see Hayashi Chapter 7), it can be
shown that

θ̂(Ŵ)
p→ θ0

√
n
³
θ̂(Ŵ)− θ0

´
d→ N(0, avar(θ̂(Ŵ)))

where
avar(θ̂(Ŵ)) = (G0WG)−1G0WSWG(G0WG)−1 (1.33)

and G is given by (1.32). IfW = S−1 then

avar(θ̂(Ŝ−1)) = (G0S−1G)−1 (1.34)

Notice that with nonlinear GMM, the expression for avar(θ̂(Ŵ)) is of the
same form as in linear GMM except that Σxz = E[xtz

0
t] is replaced by

G = E
h
∂g(wt,θ0)

∂θ 0

i
.

A consistent estimate of avar(θ̂(W)), denoted[avar(θ̂(Ŵ)),may be com-
puted using

[avar(θ̂(Ŵ)) = (Ĝ0ŴĜ)−1ĜŴŜŴĜ(Ĝ0ŴĜ)−1 (1.35)
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where Ŝ is a consistent estimate for S = avar(ḡ) and

Ĝ =Gn(θ̂(Ŵ)) = n−1
nX
t=1

∂g(wt, θ̂(Ŵ))

∂θ0

For the efficient GMM estimator, Ŵ = Ŝ
−1
, and

[avar(θ̂(Ŝ−1)) = (Ĝ0Ŝ−1Ĝ)−1 (1.36)

If {gt(wt,θ0)} is an ergodic stationary MDS withE[gt(wt,θ0)gt(wt,θ0)
0] =

S, then a consistent estimator of S takes the form

n−1
nX
t=1

gt(wt, θ̂)gt(wt, θ̂)
0

where θ̂ is any consistent estimator of θ0. If {gt(wt,θ0)} is a serially cor-
related ergodic stationary process then

S = avar(ḡ) = Γ0 + 2
∞X
j=1

(Γj + Γ
0
j)

and the methods discussed in Section 1.3 may be used to consistently esti-
mate S.

1.6.2 Hypothesis Tests for Nonlinear Models

Most of the GMM test statistics discussed in the context of linear mod-
els have analogues in the context of nonlinear GMM. For example, the
J-statistic for testing the validity of the K moment conditions (1.31) has
the form (1.15) with the efficient GMM estimate θ̂(Ŝ−1) in place of δ̂(Ŝ−1).
The asymptotic null distribution of the J-statistic is chi-squared with K−p
degrees of freedom. Wald statistics for testing linear and non-linear restric-
tion on θ have the same form as (1.24) and (1.26), with θ̂(Ŵ) in place of
δ̂(Ŵ). Similarly, GMM LR-type statistics for testing linear and non-linear
restriction on θ have the form (1.28), with θ̃(Ŝ−1) in place of δ̃(Ŝ−1) and
with θ̂(Ŝ−1) in place of δ̂(Ŝ−1). Testing the relevance of instruments in
nonlinear models, however, is not as straightforward as it is in linear mod-
els. In nonlinear models, instruments are relevant if the K × p matrix G
defined in (1.32) has full column rank p. Testing this condition is problem-
atic because G depends on θ0 which is unknown. See Wright (2001) for
an approach that can be used to test for instrument relevance in nonlinear
models.
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1.7 Examples of Nonlinear Models

The following sections give detailed examples of estimating nonlinear mod-
els using GMM.

1.7.1 Student-t Distribution

As in Hamilton (1994, chapter 14), consider a random sample y1, . . . , yT
that is drawn from a centered Student-t distribution with θ0 degrees of
freedom. The density of yt has the form

f(yt; θ0) =
Γ[(θ0 + 1)/2]

(πθ0)1/2Γ(θ0/2)
[1 + (y2t /θ0)]

−(θ0+1)/2

where Γ(·) is the gamma function. The goal is to estimate the degrees of
freedom parameter θ0 by GMM using the moment conditions

E[y2t ] =
θ0

θ0 − 2
E[y4t ] =

3θ20
(θ0 − 2)(θ0 − 4)

which require θ0 > 4. Let wt = (y
2
t , y

4
t )
0 and define

g(wt,θ) =

µ
y2t − θ/(θ − 2)

y4t − 3θ2/(θ − 2)(θ − 4)
¶

(1.37)

Then E[g(wt,θ0)] = 0 is the moment condition used for defining the GMM
estimator for θ0. Here, K = 2 and p = 1 so θ0 is apparently overidentified.
Using the sample moments

gn(θ) =
1

n

nX
t=1

g(wt, θ) =

µ
1
n

Pn
t=1 y

2
t − θ/(θ − 2)

1
n

Pn
t=1 y

4
t − 3θ2/(θ − 2)(θ − 4)

¶
the GMM objective function has the form

J(θ) = ngn(θ)
0Ŵgn(θ)

where Ŵ is a 2× 2 p.d. and symmetric weight matrix, possibly dependent
on the data, such that Ŵ

p→W. The efficient GMM estimator uses the

weight matrix Ŝ−1 such that Ŝ
p→ S = E[g(wt, θ0)g(wt, θ0)

0].
A random sample of n = 250 observations from a centered Student-t

distribution with θ0 = 10 degrees of freedom may be generated using the
S-PLUS function rt as follows

> set.seed(123)

> y = rt(250,df = 10)
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Basic summary statistics, computed using

> summaryStats(y)

Sample Quantiles:

min 1Q median 3Q max

-4.387 -0.6582 -0.0673 0.6886 3.924

Sample Moments:

mean std skewness kurtosis

-0.03566 1.128 -0.3792 4.659

Number of Observations: 250

indicate that the data are roughly symmetric about zero and have thicker
tails than the normal distribution.
An S-PLUS function to compute the moment condition (1.37) for t =

1, . . . , n is

t.moments <- function(parm,data=NULL) {

# parm = df parameter

# data = [y^2, y^4] is assumed to be a matrix

m1 = parm/(parm - 2)

m2 = 3*parm*parm/((parm - 2)*(parm - 4))

t(t(data) - c(m1,m2))

}

The function t.moments has arguments parm, specifying the degrees of
freedom parameter θ, and data, specifying an n × 2 matrix with tth row
wt = (y

2
t , y

4
t )
0.

To compute the iterated efficient GMM estimator of the degrees of free-
dom parameter θ from the simulated Student-t data use

> y = y - mean(y)

> t.data = cbind(y^2,y^4)

> start.vals = 15

> names(start.vals) = c("theta")

> t.gmm.iter = GMM(start.vals, t.moments,

+ method = "iterative", max.steps = 100,

+ data = t.data)

1-step objective = 0.471416

2-step objective = 0.302495

3-step objective = 0.302467

> summary(t.gmm.iter)

Call:

GMM(start = start.vals, moments = t.moments, method =
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"iterative", max.steps = 100, data = data)

Coefficients:

Value Std.Error t value Pr(>|t|)

theta 7.8150 1.1230 6.9592 0.0000

Test of Overidentification:

J-stat Df P.value

0.3025 1 0.5823

Optimization Info:

Number of Iterative Steps: 3

The iterated efficient GMM estimate of θ0 is 7.8150, with an asymptotic
standard error of 1.123. The small J-statistic indicates a correctly specified
model.

1.7.2 MA(1) Model

Following Harris (1999), consider GMM estimation of the parameters in
the MA(1) model

yt = µ0 + εt + ψ0εt−1, t = 1, . . . , n

εt ∼ iid (0, σ20), |ψ0| < 1
θ0 = (µ0, ψ0, σ

2
0)
0

Some population moment equations that can be used for GMM estimation
are

E[yt] = µ0
E[y2t ] = µ20 + σ20(1 + ψ20)

E[ytyt−1] = µ20 + σ20ψ0
E[ytyt−2] = µ20

Let wt = (yt, y
2
t , ytyt−1, ytyt−2)0 and define the moment vector

g(wt,θ) =


yt − µ

y2t − µ2 − σ2(1 + ψ2)
ytyt−1 − µ2 − σ2ψ

ytyt−2 − µ2

 (1.38)

Then

E[g(wt,θ0)] = 0
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is the population moment condition used for GMM estimation of the model
parameters θ0. The sample moments are

gn(θ) =
1

n− 2
nX
t=3

g(wt,θ) =


1

n−2
Pn

t=3 yt − µ
1

n−2
Pn

t=3 y
2
t − µ2 − σ2(1 + ψ2)

1
n−2

Pn
t=3 ytyt−1 − µ2 − σ2ψ

1
n−2

Pn
t=3 ytyt−2 − µ2


Since the number of moment conditions K = 4 is greater than the number
of model parameters p = 3, θ0 is apparently overidentified and the efficient
GMM objective function has the form

J(θ) = (n− 2) · gn(θ)0Ŝ−1gn(θ)

where Ŝ is a consistent estimate of S = avar(ḡ(θ0)). Notice that the pro-
cess {g(wt,θ0)} will be autocorrelated (at least at lag 1) since yt follows
an MA(1) process. As a result, an HAC type estimator must be used to
estimate S.
Simulated MA(1) data with θ0 = (0, 0.5, 1)0 and n = 250 is computed

using the S-PLUS function arima.sim11

> set.seed(123)

> ma1.sim = arima.sim(model = list(ma=-0.5),n=250)

This data along with the sample ACF and PACF are illustrated in Figure
1.2.
Summary statistics for the simulated are

> summaryStats(ma1.sim)

Sample Quantiles:

min 1Q median 3Q max

-2.606 -0.6466 0.1901 0.8755 3.221

Sample Moments:

mean std skewness kurtosis

0.1126 1.071 -0.0624 2.634

Number of Observations: 250

An S-PLUS function to compute the moment conditions (1.38) is12

11Recall, the S-PLUS function arima.sim reverses the sign of the moving average
parameter ψ.
12In the function ma1.moments the parameters are unrestricted. To force the moving

average parameter to satisfy |ψ| < 1 use the logistic transformation ψ = exp(γ1)/(1 +
exp(γ1)), and to force the variance parameter to be positive use σ

2 = exp(γ2).
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FIGURE 1.2. Simulated data, SACF and SPACF from MA(1) model with
θ = (0.5, 1)0.

ma1.moments <- function(parm, data = NULL) {

# parm = (mu,psi,sig2)’

# data = (y(t),y(t)^2,y(t)*y(t-1),y(t)*y(t-2))

m1 = parm[1]

m2 = parm[1]^2 + parm[3]*(1 + parm[2]^2)

m3 = parm[1]^2 + parm[3]*parm[2]

m4 = parm[1]^2

t(t(data) - c(m1,m2,m3,m4))

}

The function ma1.moments has arguments parm, specifying the model pa-
rameters θ = (µ,ψ, σ2)0 and data, specifying an (n − 2) × 4 matrix with
tth row wt = (yt, y

2
t , yyt−1, ytyt−2)0. The first five rows of g(wt,θ0) are

> ma1.data = cbind(ma1.sim[3:nobs],ma1.sim[3:nobs]^2,

+ ma1.sim[3:nobs]*ma1.sim[2:(nobs-1)],

+ ma1.sim[3:nobs]*ma1.sim[1:(nobs-2)])

> start.vals = c(0,0.5,1)

> names(start.vals) = c("mu","psi","sig2")

> ma1.mom = ma1.moments(parm = start.vals, data = ma1.data)

> ma1.mom[1:5,]

[,1] [,2] [,3] [,4]

[1,] 1.24643 0.303579 1.10981 -0.071482
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FIGURE 1.3. SACF of g(wt, θ0) from MA(1) model.

[2,] -0.80526 -0.601549 -1.50370 -1.040035

[3,] 1.13258 0.032744 -1.41203 1.411681

[4,] 1.58545 1.263659 1.29566 -1.276709

[5,] 0.67989 -0.787743 0.57794 0.770037

The sample average of g(wt,θ0) is

> colMeans(ma1.mom)

[1] 0.10852675 -0.09134586 0.01198312 0.05919433

which is somewhat close to the population value E[g(wt,θ0)] = 0. The
sample autocorrelations and cross autocorrelations of g(wt,θ0) are shown
in Figure 1.3, which confirm the need for an HAC type estimator for S.
To estimate the MA(1) model by GMM with S estimated using a trun-

cated (rectangular) kernel with bandwidth equal to one lag use13

> start.vals = c(0,0.5,1)

> names(start.vals) = c("mu","psi","sig2")

> ma1.gmm.trunc = GMM(start.vals, ma1.moments,

+ data = ma1.data,ts=T,

+ var.hac.control = var.hac.control(bandwidth = 1,

+ window = "truncated"))

13Recall, Ŝ computed with a truncated kernel is not guaranteed to be positive definite.
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1-step objective = 0.530132

2-step objective = 0.354946

3-step objective = 0.354926

The fitted results are

> summary(ma1.gmm.trunc)

Call:

GMM(start = start.vals, moments = ma1.moments, ts = T,

var.hac.control = var.hac.control(bandwidth = 1,

window = "truncated"), data = ma1.data)

Coefficients:

Value Std.Error t value Pr(>|t|)

mu 0.1018 0.0927 1.0980 0.2733

psi 0.5471 0.0807 6.7788 0.0000

sig2 0.8671 0.0763 11.3581 0.0000

Test of Overidentification:

J-stat Df P.value

0.3549 1 0.5513

Optimization Info:

Number of Iterative Steps: 3

The GMM estimate of µ0 is close to the sample mean, the estimate of ψ0
is slightly larger than 0.5 and the estimate of σ20 is slightly smaller than 1.
The low J−statistic indicates a correctly specified model.
To illustrate the impact of model mis-specification on GMM estimation,

consider fitting an MA(1) model by GMM to data simulated from an AR(1)
model

yt − µ0 = φ0(yt−1 − µ0) + εt, εt ∼ iid N(0, σ20)

The AR(1) model has moments

E[yt] = µ0

E[y2t ] = µ20 + σ20/(1− φ20)

E[ytyt−1] = µ20 + φσ20/(1− φ20)

E[ytyt−2] = µ20 + φ2σ20/(1− φ20)

Simulated AR(1) data with µ0 = 0, φ0 = 0.5, σ20 = 1 and n = 250 is
computed using the S-PLUS function arima.sim

> set.seed(123)

> ar1.sim = arima.sim(model=list(ar=0.5),n=250)

The moment data required for GMM estimation of the MA(1) model are
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> nobs = numRows(ar1.sim)

> ar1.data = cbind(ar1.sim[3:nobs],ar1.sim[3:nobs]^2,

+ ar1.sim[3:nobs]*ar1.sim[2:(nobs-1)],

+ ar1.sim[3:nobs]*ar1.sim[1:(nobs-2)])

The iterated efficient GMM estimates of the mis-specified MA(1) model
are

> ma1.gmm.ar1 = GMM(start.vals, ma1.moments,

+ data=ar1.data,ts = T,

+ var.hac.control = var.hac.control(bandwidth = 1,

+ window = "truncated"))

1-step objective = 25.6768

...

9-step objective = 13.0611

> summary(ma1.gmm.ar1, print.moments = T)

Call:

GMM(start = start.vals, moments = ma1.moments, ts = T,

var.hac.control = var.hac.control(bandwidth = 1,

window = "truncated"), data = ar1.data)

Coefficients:

Value Std.Error t value Pr(>|t|)

mu -0.0407 0.0909 -0.4478 0.6547

psi 0.4199 0.0789 5.3207 0.0000

sig2 0.7840 0.0737 10.6391 0.0000

Test of Overidentification:

J-stat Df P.value

13.0611 1 0.0003

Optimization Info:

Number of Iterative Steps: 9

Normalized Moments:

Moment Std.Error t value Pr(>|t|)

Moment 1 2.9166 0.8072 3.6131 0.0003

Moment 2 5.3807 1.4888 3.6140 0.0003

Moment 3 5.6389 1.5603 3.6140 0.0003

Moment 4 5.8329 1.6140 3.6140 0.0003

The GMM estimates of the MA(1) model parameters look reasonable. How-
ever, the large J−statistic correctly indicates a mis-specified model. Setting
the optional argument print.moments=T adds the normalized moment in-
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formation to the summary output. Since the J−statistic is large, all of the
normalized moments are significantly different from zero.

1.7.3 Euler Equation Asset Pricing Model

Following Hansen and Singleton (1982), a representative agent is assumed
to choose an optimal consumption path by maximizing the present dis-
counted value of lifetime utility from consumption

max
∞X
t=1

E
£
βt0U(Ct)|It

¤
subject to the budget constraint

Ct + PtQt ≤ VtQt−1 +Wt

where It denotes the information available at time t, Ct denotes real con-
sumption at t, Wt denotes real labor income at t, Pt denotes the price of a
pure discount bond maturing at time t + 1 that pays Vt+1, Qt represents
the quantity of bonds held at t, and β0 represents a time discount factor.
The first order condition for the maximization problem may be represented
as the conditional moment equation (Euler equation)

E

·
(1 +Rt+1)β0

U 0(Ct+1)

U 0(Ct)
|It
¸
− 1 = 0

where 1 + Rt+1 =
Vt+1
Vt

is the gross return on the bond at time t + 1.
Assuming utility has the power form

U(C) =
C1−α0

1− α0

where α0 represents the intertemporal rate of substitution (risk aversion),
then

U 0(Ct+1)

U 0(Ct)
=

µ
Ct+1

Ct

¶−α0
and the conditional moment equation becomes

E

"
(1 +Rt+1)β0

µ
Ct+1

Ct

¶−α0
|It
#
− 1 = 0 (1.39)

Define the nonlinear error term as

εt+1 = a(Rt+1, Ct+1/Ct;α0, β0) = (1 +Rt+1)β0

µ
Ct+1

Ct

¶−α0
− 1

= a(zt+1,θ0)
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with zt+1 = (Rt+1, Ct+1/Ct)
0 and θ0 = (α0, β0)

0. Then the conditional
moment equation (1.39) may be represented as

E[εt+1|It] = E[a(zt+1,θ0)|It] = 0
Since {εt+1, It+1} is a MDS, potential instruments xt include current and
lagged values of the elements in zt as well as a constant. For example, one
could use

xt = (1, Ct/Ct−1, Ct−1/Ct−2, Rt, Rt−1)0

Since xt ⊂ It, the conditional moment (1.39) implies that

E[xtεt+1|It] = E[xta(zt+1,θ0)|It] = 0
and by the law of total expectations

E[xtεt+1] = 0

For GMM estimation, define the nonlinear residual as

et+1 = (1 +Rt+1)β

µ
Ct+1

Ct

¶−α
− 1

and form the vector of moments

g(wt+1,θ) = xtet+1 = xta(zt+1,θ) (1.40)

=



(1 +Rt+1)β
³
Ct+1
Ct

´−α
− 1

(Ct/Ct−1)
µ
(1 +Rt+1)β

³
Ct+1
Ct

´−α
− 1
¶

(Ct−1/Ct−2)
µ
(1 +Rt+1)β

³
Ct+1
Ct

´−α
− 1
¶

Rt

µ
(1 +Rt+1)β

³
Ct+1
Ct

´−α
− 1
¶

Rt−1

µ
(1 +Rt+1)β

³
Ct+1
Ct

´−α
− 1
¶


In (1.40) there are K = 5 moment conditions to identify L = 2 model pa-
rameters givingK−L = 3 overidentifying restrictions. The GMM objective
function is

J(θ, Ŝ−1) = (n− 2) · gn(θ)0Ŝ−1gn(θ)
where Ŝ is a consistent estimate of S = avar(ḡ).
An S-PLUS function to compute the Euler moments (1.40) is

euler1.moments <- function(parm, data = NULL) {

# parm = (beta,gamma)

# data = (1+R(t+1),C(t+1)/C(t),1,C(t)/C(t-1),

# C(t-1)/C(t-2),R(t),R(t-1),...)
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ncol = numCols(data)

euler = data[,1]*parm[1]*(data[,2]^(-parm[2])) - 1

as.matrix(rep(euler,(ncol-2))*data[,3:ncol])

}

The function euler1.moments has arguments parm, specifying the model
parameters θ = (β, α)0 and data, specifying an (n− 2)× 7 matrix with tth
row wt+1 = (1 +Rt+1, Ct+1/Ct, 1, Ct/Ct−1, Ct−1/Ct−2, Rt, Rt−1)0.
Verbeek (2000) (chapter 5, section 7) describes an extension of the model

presented above that allows the individual to invest in J risky assets with
returns Rj,t+1 (j = 1, . . . , J), as well as a risk-free asset with certain return
Rf,t+1. Assuming power utility, and restricting attention to unconditional
moments (i.e., using xt = 1), the Euler equations may be written as

E

"
(1 +Rf,t+1)β0

µ
Ct+1

Ct

¶−α0#
− 1 = 0 (1.41)

E

"
(Rj,t+1 −Rf,t+1)β0

µ
Ct+1

Ct

¶−α0#
= 0, j = 1, . . . , J

Define the stochastic discount factor as

mt+1(θ0) = β0

µ
Ct+1

Ct

¶−α0
so that the risky assets satisfy

E[(Rj,t+1 −Rf,t+1) ·mt+1(θ0)] = 0

Using the identity E[xy] = cov(x, y) + E[x]E[y], the risk premium for the
risky assets may be deduced as

E[Rj,t+1 −Rf,t+1] = −cov(mt+1(θ0), Rj,t+1 −Rf,t+1)

E[mt+1(θ0)]
(1.42)

If the asset pricing model is correct then right-hand-side of (1.42) should
explain the cross sectional variation of expected returns across assets.
For GMM estimation define the J + 1 vector of moments

g(wt+1,θ) =



(1 +Rf,t+1)β
³
Ct+1
Ct

´−α
− 1

(R1,t+1 −Rf,t+1)β
³
Ct+1
Ct

´−α
...

(RJ,t+1 −Rf,t+1)β
³
Ct+1
Ct

´−α


An S-PLUS function to compute the above moments is
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euler2.moments <- function(parm, data = NULL) {

# parm = (beta,gamma)

# data = (C(t+1)/C(t),1+Rf(t+1),R1(t+1)-Rf(t+1),...,

# RJ(t+1)-Rf(t+1))

ncol = numCols(data)

sdf = parm[1]*data[,1]^(-parm[2])

d1 = (sdf - 1)*data[,2]

d2 = as.matrix(rep(sdf,(ncol-2))*data[,3:ncol])

cbind(d1,d2)

}

The function euler2.moments has arguments parm, specifying the model
parameters θ = (β, α)0 and data, specifying an n× (J +1) matrix with tth
row wt+1 = (Ct+1/Ct, 1 +Rf,t+1, R1,t+1 −Rf,t+1, . . . , RJ,t+1 −Rf,t+1)

0.
Following Verbeek (2000), the power utility asset pricing model is esti-

mated using monthly data over the period February 1959 through Novem-
ber 199314. Ten size-based portfolios from the Center for Research in Secu-
rity Prices (CRSP) data base are used as the risky assets. That is, portfolio
1 contains the monthly returns on the smallest 10% of firms (by market
capitalization) listed on the New York Stock Exchange, and portfolio 10
contains the returns on the largest 10% of firms. The risk-free asset is
the monthly return on 3-month U.S. T-Bills, and real consumption is mea-
sured by total U.S. personal consumption expenditures on nondurables and
services. The data is available in the S+FinMetrics “timeSeries” object
pricing.ts, which has variables

> colIds(pricing.ts)

[1] "CONS" "R1" "R2" "R3" "R4" "R5" "R6" "R7"

[9] "R8" "R9" "R10" "RF"

The data to be passed to the function euler2.moments is constructed using

> pricing.mat = as.matrix(seriesData(pricing.ts))

> ncol = numCols(pricing.mat)

> excessRet.mat = apply(pricing.mat[,2:(ncol-1)], 2,

+ function(x,y){x-y},

+ pricing.mat[,"RF"])

# data = (C(t+1)/C(t),1+Rf(t+1),R1(t+1)-Rf(t+1),...,

# RJ(t+1)-Rf(t+1))

> euler.data = cbind(pricing.mat[,"CONS"],

+ 1 + pricing.mat[,"RF"],

+ excessRet.mat)

The iterated efficient GMM estimator may be computed using

14The data is taken from Manro Verbeek’s web page at
http://www.econ.kuleuven.ac.be/GME.
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> start.vals = c(1,5)

> names(start.vals) = c("beta","alpha")

> euler.gmm.fit = GMM(start.vals, euler2.moments,

+ method = "iterative",data = euler.data)

> summary(euler.gmm.fit)

Call:

GMM(start = start.vals, moments = euler2.moments, method =

"iterative", data = euler.data)

Coefficients:

Value Std.Error t value Pr(>|t|)

beta 0.8314 0.1170 7.1049 0.0000

alpha 57.4020 34.3021 1.6734 0.0950

Test of Overidentification:

J-stat Df P.value

5.6574 9 0.7737

Optimization Info:

Number of Iterative Steps: 9

The small J-statistic indicates a correctly specified model. The estimate
of the time discount parameter β is economically reasonable and fairly
precise, but the estimate of the risk aversion parameter α is implausibly
large and imprecise. The large estimate of α illustrates the well known
equity premium puzzle under which the high risk premia on equity assets
is associated with extremely risk averse investors.
The 1-step inefficient GMM estimator withW = I11 may be computed

using

> euler.gmm.fit2 = GMM(start.vals, euler2.moments,

+ method = "iterative", max.steps = 0,

+ w = diag(11), w0.efficient = F,

+ data = euler.data)

> summary(euler.gmm.fit2)

Call:

GMM(start = start.vals, moments = euler2.moments, method =

"iterative", w = diag(11), max.steps = 0, w0.efficient

= F, data = euler.data)

Coefficients:

Value Std.Error t value Pr(>|t|)

beta 0.7031 0.1446 4.8612 0.0000

alpha 91.4097 38.2102 2.3923 0.0172
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The usual J−statistic is not valid for the 1-step estimates so it is not
reported. The 1-step estimates are similar to the iterated efficient GMM
estimates, and have slightly larger estimated standard errors.
Cochrane (1996, 2001) recommends using the 1-step GMM estimates

to compute empirical pricing errors based on (1.42), since these estimates
minimize such pricing errors by construction. The pricing errors can then
be plotted to evaluate the economic significance of the proposed asset pric-
ing model. The empirical pricing errors may be computed and plotted as
follows. First, the historical average excess returns on the ten portfolios are
computed using

> excessRet.hat = colMeans(excessRet.mat)

Next, the average excess returns on the ten portfolios predicted by the
model, based on the 1-step inefficient GMM estimates, may be computed
using the function

predRet <- function(parm,data) {

# parm = (beta,gamma)

# data = (C(t+1)/C(t),1+Rf(t+1),R1(t+1)-Rf(t+1),...,

# RJ(t+1)-Rf(t+1))

ncol = numCols(data)

sdf = parm[1]*data[,1]^(-parm[2])

tmp <- function(x,y) { -var(x,y)/mean(y) }

ans = apply(data[,3:ncol], 2, FUN = tmp,sdf)

ans

}

> predRet.hat = predRet(coef(euler.gmm.fit2),euler.data)

Figure 1.4 shows the historical average excess returns and the predicted
average excess returns along with a 450 line.
If the model is correct then all points should lie on the 450 line. The plot
shows that the model under-predicts the small firm excess returns and
over-predicts the large firm excess returns.

1.7.4 Stochastic Volatility Model

The simple log-normal stochastic volatility (SV) model, due to Taylor
(1986), is given by

yt = σtZt, t = 1, . . . , n (1.43)

lnσ2t = ω0 + β0 lnσ
2
t−1 + σ0,uut

(Zt, ut)
0 ∼ iid N(0, I2)

θ0 = (ω0, β0, σ0,u)
0

For 0 < β0 < 1 and σ0,u ≥ 0 the series yt is strictly stationary and ergodic,
and unconditional moments of all orders exist. In the SV model, the series
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FIGURE 1.4. Monthly actual versus predicted mean excess returns of size-based
portfolios.

yt is serially uncorrelated but dependency in the higher order moments is
induced by the serially correlated stochastic volatility term lnσ2t . Shephard
(1996) surveys the use of ARCH and SV models in finance and notes some
important advantages of SV models over ARCH models. In particular, their
statistical properties are easier to find and understand, they generalize
more easily to multivariate settings, and they have simpler continuous-time
representations that can be used in contingent claims pricing.
Simulated data from (1.43) with ω0 = −0.736, β0 = 0.90, σ0,u = 0.363

and n = 1000 is illustrated in Figure 1.5.
The data exhibit ARCH-like features such as volatility clustering and

fat tails. The data is created with the function sv.as.gensim, described
in Chapter 22 on EMM estimation, using

# beta.t = log(beta/(1-beta))

> n.sim = 1000

> n.burn = 100

> nz = n.sim + n.burn

> set.seed(456)

> sv.as.aux = list(z = rnorm(nz),u = rnorm(nz))

> rho.as = c(-0.736,2.197225,0.363)

> names(rho.as) = c("alpha","beta.t","sigma.u")

> sv.as.sim = sv.as.gensim(rho = rho.as, n.sim = n.sim,
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FIGURE 1.5. Simulated data from SV model (1.43) with ω0 = −0.736, β0 = 0.90
and σ0,u = 0.363.

n.burn = n.burn, aux = sv.as.aux)

GMM estimation of the SV model is surveyed in Andersen and Sorensen
(1996). They recommend using moment conditions for GMM estimation
based on lower order moments of yt, since higher order moments tend
to exhibit erratic finite sample behavior. They consider GMM estimation
based on (subsets) of 24 moments considered by Jacquier, Polson and Rossi
(1994). To describe these moment conditions, first define

µ =
ω

1− β
, σ2 =

σ2u
1− β2

Then the moment conditions, which follow from properties of the log-
normal distribution and the Gaussian AR(1) model, are expressed as

E[|yt|] = (2/π)1/2E[σt]

E[y2t ] = E[σ2t ]

E[|y3t |] = 2
p
2/πE[σ3t ]

E[y4t ] = 3E[σ4t ]

E[|ytyt−j |] = (2/π)E[σtσt−j ], j = 1, . . . , 10
E[y2t y

2
t−j ] = E[σ2tσ

2
t−j ], j = 1, . . . , 10
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where, for any positive integer j and positive constants r, s,

E[σrt ] = exp

µ
rµ

2
+

r2σ2

8

¶
E[σrtσ

s
t−j ] = E[σrt ]E[σ

s
t ] exp

Ã
rsβjσ2

4

!
Let

wt = (|yt|, y2t , |y3t |, y4t , |ytyt−1|, . . . , |ytyt−10|, y2t y2t−1, . . . , y2t y2t−10)0

and define the 24× 1 vector

g(wt,θ) =


|yt|− (2/π)1/2 exp

³
µ
2 +

σ2

8

´
y2t − exp

³
µ+ σ2

2

´
...

y2t y
2
t−10 − exp

³
µ+ σ2

2

´2
exp

¡
β10σ2

¢

 (1.44)

Then E[g(wt,θ0)] = 0 is the population moment condition used for GMM
estimation of the model parameters θ0. Since the elements ofwt are serially
correlated, the efficient weight matrix S = avar(ḡ) must be estimated using
an HAC estimator.
An S-PLUS function to compute the moment conditions (1.44) for t =

1, . . . , n is

sv.moments = function(parm, data = NULL)

{

omega = parm[1]

beta = parm[2]

sigu = parm[3]

mu = omega/(1-beta)

sig2 = (sigu*sigu)/(1-beta*beta)

#

E.sigma = c(sqrt(2/pi) * exp(mu/2 + sig2/8),

exp(mu + sig2/2),

2 * sqrt(2/pi) * exp(3*mu/2 + 9*sig2/8),

3 * exp(2*mu + 2*sig2))

E.sigma.c = c(2/pi * exp(2*(mu/2 + sig2/8)

+ beta^(1:10) * sig2/4),

exp(2*(mu + sig2/2)

+ 4 * beta^(1:10) * sig2/4))

#

t(t(data) - c(E.sigma, E.sigma.c))

}
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The transformed simulated data to be passed to the function sv.moments
for GMM estimation is created using

> sv.pow = cbind(abs(sv.as.sim), sv.as.sim^2,

+ abs(sv.as.sim)^3, sv.as.sim^4)

> sv.pow = sv.pow[-(1:10),]

> sv.cm = tslag(sv.as.sim, 1:10, trim=T) *

+ as.vector(sv.as.sim[-(1:10)])

> sv.data = cbind(sv.pow, abs(sv.cm), sv.cm^2)

The iterated efficient GMM estimator based on (1.44) may be computed
using15

> start.vals = c(0,0.5,0.5)

> names(start.vals) = c("omega","beta","sigu")

> sv.fit.1 = GMM(start.vals, sv.moments, method = "iterative",

+ ts = T, data = sv.data)

> summary(sv.fit.1)

Call:

GMM(start = start.vals, moments = sv.moments, method =

"iterative", ts = T, data = sv.data)

Coefficients:

Value Std.Error t value Pr(>|t|)

omega -0.4628 0.3731 -1.2405 0.2151

beta 0.9378 0.0502 18.6959 0.0000

sigu 0.2233 0.0978 2.2841 0.0226

Test of Overidentification:

J-stat Df P.value

18.8761 21 0.5931

Optimization Info:

Number of Iterative Steps: 7

The high p-value for the J−statistic indicates that the 24 moment condi-
tions are not rejected by the data. Consistent with the findings of Andersen
and Sorensen, ω0 is not estimated very precisely whereas β0 is estimated
fairly precisely.
Now consider estimation of the SV model (1.43) using the daily returns

on the S&P 500 index over the period March 14, 1986 through June 30,
2003.

> SP500.ts = sp500.ts

15Discuss choice of starting values.
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> SP500.ts@data = as.matrix(seriesData(sp500.ts))

>

> SP500.pow = seriesMerge(abs(SP500.ts), SP500.ts^2,

+ abs(SP500.ts)^3, SP500.ts^4)

> SP500.pow = SP500.pow[-(1:10),]@data

> SP500.cm = tslag(SP500.ts, 1:10, trim=T)@data *

+ as.vector(SP500.ts[-(1:10)]@data)

> SP500.data = cbind(SP500.pow, abs(SP500.cm), SP500.cm^2)

> colIds(SP500.data) = NULL

>

> # iterative GMM estimation of the SV model

> start.vals = c(0,0.5,0.5)

> names(start.vals) = c("omega","beta","sigu")

> sv.fit.SP500 = GMM(start.vals, sv.moments,

+ method = "iterative", ts = T,

+ data = SP500.data)

1-step objective = 2.10165e-7

...

9-step objective = 39.9342

> summary(sv.fit.SP500,print.moments=F)

Call:

GMM(start = start.vals, moments = sv.moments, method =

"iterative", ts = T, data = SP500.data)

Coefficients:

Value Std.Error t value Pr(>|t|)

omega -0.1541 0.1758 -0.8767 0.3807

beta 0.9838 0.0184 53.3692 0.0000

sigu 0.1548 0.0908 1.7041 0.0884

Test of Overidentification:

J-stat Df P.value

39.9342 21 0.0076

Optimization Info:

Number of Iterative Steps: 9

The low p-value on the J−statistic indicates that the SV model (1.43) does
not fit S&P 500 daily returns.
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1.7.5 Interest Rate Diffusion Model

Chan, Karolyi, Longstaff and Sanders (1992), hereafter CKLS, considered
estimating the parameters of the continuous-time interest rate diffusion
model

drt = (α0 + β0rt)dt+ σ0r
γ0
t dWt (1.45)

θ0 = (α0, β0, σ0, γ0)
0

using GMM. In (1.45), the drift function (α0+β0rt)dtmay be re-parameter-
ized as κ0(µ0 − rt)dt where α0 = κ0µ0 and β0 = −κ0. The parameter µ0
is the long-run mean, and the parameter κ0 determines the speed of mean
reversion. The model (1.45) encompasses a variety of models that have been
proposed for the short-term interest rate. Simulated solutions from (1.45)
based on Euler’s method for various models using parameters estimated by
CKLS are presented in Chapter 19.
CKLS derived moment conditions for GMM estimation of θ0 from the

Euler discretization

rt+∆t − rt = (α0 + β0rt)∆t+ σ0r
γ0
t

√
∆tzt+∆t

E[zt+∆t] = 0, E[z2t+∆t] = 1

They defined the true model error as

εt+∆t = a(rt+∆t − rt, rt;α0, β0, σ0, γ0) = (rt+∆t − rt)− (α0 + β0rt)∆t

= a(zt+∆t,θ0)

where zt+∆t = (rt+∆t − rt, rt)
0. Letting It represent information available

at time t, the true error satisfies E[εt+∆t|It] = 0. Since {εt+∆t, It+∆} is
a MDS, potential instruments xt include current and lagged values of the
elements of zt as well as a constant. As the basis for GMM estimation,
CKLS used xt = (1, rt)

0 as the instrument vector and deduced the following
four conditional moments

E[εt+∆t|It] = 0, E[ε2t+∆t|It] = σ20r
2γ0
t ∆t

E[εt+∆trt|It] = 0, E[ε2t+∆trt|It] = σ20r
2γ0
t ∆t · rt

For given values of α and β define the nonlinear residual

et+∆t = (rt+∆t − rt)− (α+ βrt)∆t

and, for wt+∆t = (rt+∆t − rt, rt, r
2
t )
0, define the 4× 1 vector of moments

g(wt+∆t,θ) =

µ
et+∆t
e2t+∆t

¶
⊗ xt =


et+∆t
et+∆trt

e2t+∆t − σ2r2γt ∆t³
e2t+∆t − σ2r2γt ∆t

´
rt
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Then E[g(wt+∆t,θ0)] = 0 gives the GMM estimating equation. Even
though {εt, It} is a MDS, the moment vector g(wt,θ0) is likely to be au-
tocorrelated since it contains ε2t . For the most general specification (1.45),
K = L and the model is just identified. For all models listed in Table ??
from Chapter 19, K > L, so that they are overidentified.
An S-PLUS function to compute the CKLS moments is

ckls.moments <- function(parm, data = NULL,dt = 1/12) {

# parm = (alpha,beta,sigma,gamma)’

# data = [r(t+dt)-r(t),r(t)]

# dt = discretization step

e.hat = as.vector(data[,1] -

(parm[1] + parm[2]*data[,2])*dt)

m2 = e.hat*as.vector(data[,2])

m3 = e.hat^2 - dt*parm[3]*parm[3]*

(as.vector(data[,2])^(2*parm[4]))

m4 = m3*data[,2]

cbind(e.hat,m2,m3,m4)

}

The function ckls.moments has arguments parm, specifying the model pa-
rameters θ = (α, β, σ, γ)0, data, specifying an n × 2 matrix with tth row
(rt+∆t − rt, rt), and dt, specifying the discretization increment.
GMM estimation is performed on (1.45) using monthly observations on

the U.S. 30-day T-Bill rate over the period June 1964 through November
1989. The same data is analyzed in Cliff (2003), and is illustrated in Figure
1.6.
The data to be passed to the function ckls.moments is constructed using

> data.ckls.ts = seriesMerge(diff(ckls.ts), tslag(ckls.ts))

> colIds(data.ckls.ts)[1] = "RF.diff"

> data.ckls = as.matrix(seriesData(data.ckls.ts))

The summary statistics for ∆rt and rt−1

> summaryStats(data.ckls)

Sample Quantiles:

min 1Q median 3Q max

RF.diff -0.05813 -0.00267 0.0002 0.00324 0.03285

RF.lag1 0.03127 0.04756 0.0603 0.07883 0.16150

Sample Moments:

mean std skewness kurtosis

RF.diff 0.00012 0.008187 -1.347 13.354

RF.lag1 0.06659 0.026375 1.206 4.332
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FIGURE 1.6. Monthly observations on the U.S. 30-day T-Bill rate and its first
difference.

Number of Observations: 305

are very close to those presented in Table II of CKLS.
First, consider GMM estimation of the most general model (1.45). Sen-

sible starting values for α and σ may be determined using the following
approximations

µ =
α

−β ≈ E[rt]

σ2 ≈ var(rt+∆t − rt)

var(rt)∆t

GMM estimation of θ may be performed using

> start.vals = c(0.06,-0.5,1,1)

> names(start.vals) = c("alpha","beta","sigma","gamma")

> gmm.ckls = GMM(start.vals,ckls.moments,ts = T,

+ data = data.ckls,dt = 1/12)

> summary(gmm.ckls)

Call:

GMM(start = start.vals, moments = ckls.moments, ts = T, data

= data.ckls, dt = 1/12)
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Coefficients:

Value Std.Error t value Pr(>|t|)

alpha 0.0419 0.0193 2.1710 0.0307

beta -0.6077 0.3454 -1.7592 0.0796

sigma 1.3337 1.0004 1.3331 0.1835

gamma 1.5081 0.2900 5.2010 0.0000

Test of Overidentification:

model is just-identified

Optimization Info:

Number of Iterations: 14

Convergence: absolute function convergence

In the call to GMM, the parameter dt is set to 1/12 because the data
are annual rates sampled monthly. Since the model is just identified, the
J−statistic is zero and the estimates do not depend on a weight matrix.
The results are similar to those obtained by CKLS. In particular, the es-
timate of γ is roughly 1.5 and is highly significant. The estimates of the
long-run mean and speed of adjustment are

> theta.hat = coef(gmm.ckls)

> theta.hat["alpha"]/-theta.hat["beta"]

alpha

0.06895576

> -theta.hat["beta"]

beta

0.6076583

The GMM estimates for the restricted models in Table ?? of Chap-
ter 19 may be computed in a similar fashion by modifying the function
ckls.moments. For example, to estimate the CIR SR model use

cir.moments <- function(parm, data = NULL, dt = 1/12) {

# parm = (alpha,beta,sigma)’

# data = [r(t+dt)-r(t),r(t)]

# dt = discretization step

e.hat = as.vector(data[,1] -

(parm[1] + parm[2]*data[,2])*dt)

m2 = e.hat*as.vector(data[,2])

m3 = e.hat^2 - dt*parm[3]*parm[3]*

(as.vector(data[,2]))

m4 = m3*data[,2]

cbind(e.hat,m2,m3,m4)

}

> start.vals = c(0.06,-0.5,1)

> names(start.vals) = c("alpha","beta","sigma")
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> gmm.cir = GMM(start.vals, cir.moments, ts = T,

+ data = data.ckls, dt = 1/12)

> summary(gmm.cir,print.moments = F)

Call:

GMM(start = start.vals, moments = cir.moments, ts = T, data =

data.ckls, dt = 1/12)

Coefficients:

Value Std.Error t value Pr(>|t|)

alpha 0.0204 0.0166 1.2258 0.2212

beta -0.2407 0.3023 -0.7963 0.4265

sigma 0.0841 0.0066 12.7661 0.0000

Test of Overidentification:

J-stat Df P.value

3.7977 1 0.0513

Optimization Info:

Number of Iterative Steps: 13

The low p-value on the J−statistic indicates a potentially mis-specified
model.
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