Econ 583
 Winter 2013
 HW \#1

Eric Zivot

Due: Monday, January 14

1. Recall Chebychev's inequality: Let X by any random variable with $E[X]=\mu<\infty$ and $\operatorname{var}(X)=\sigma^{2}<\infty$. Then for every $\varepsilon>0$

$$
\operatorname{Pr}(|X-\mu| \geq \varepsilon) \leq \frac{\operatorname{var}(X)}{\varepsilon^{2}}=\frac{\sigma^{2}}{\varepsilon^{2}}
$$

Suppose $X \sim N\left(\mu, \sigma^{2}\right)$. Using Chebychev's inequality, determine the upper bound on $\operatorname{Pr}(|X-\mu| \geq 3 \sigma)$ and compare it to the exact bound based on the normal distribution.

2. Cholesky decomposition.

Result 1: For any $k \times k$ symmetric and positive semi-definite matrix \mathbf{A} there exists a $k \times k$ matrix \mathbf{B} such that $\mathbf{A}=\mathbf{B B}^{\prime}$ where \mathbf{B} is a lower triangular matrix with all diagonal elements greater than or equal to zero.
Result 2: For any $k \times k$ symmetric and positive definite matrix \mathbf{A} there exists a $k \times k$ matrix \mathbf{B} such that $\mathbf{A}=\mathbf{B B}^{\prime}$ where \mathbf{B} is a lower triangular matrix with all diagonal elements greater than zero.
Result 3: For any $k \times k$ symmetric and positive definite matrix A there exists $k \times k$ matrices \mathbf{C} and \mathbf{D} such that $\mathbf{A}=\left(\mathbf{C D}^{1 / 2}\right)\left(\mathbf{C D}^{1 / 2}\right)^{\prime}=\mathbf{C D C}^{\prime}$ where \mathbf{C} is a lower triangular matrix with all diagonal elements equal to 1 and \mathbf{D} is a diagonal matrix with positive diagonal elements.

Note that the matrices \mathbf{A} and \mathbf{B} have the same number of elements. Also, a simple test to see if \mathbf{A} is positive definite is to compute \mathbf{B} and see if all of the
diagonal elements are positive. Result 3 follows directly from Result 2 and implies that $\mathbf{B}=\mathbf{C D}^{1 / 2}$.
(a) Let

$$
\mathbf{A}=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]
$$

Verify that

$$
\mathbf{C}=\left[\begin{array}{cc}
1 & 0 \\
0.5 & 1
\end{array}\right], \mathbf{D}=\left[\begin{array}{cc}
2 & 0 \\
0 & 1.5
\end{array}\right]
$$

(b) Find \mathbf{B} and verify that $\mathbf{A}=\mathbf{B B}^{\prime}$
(c) Show that \mathbf{A} can be diagonalized by computing $\mathbf{C}^{-1} \mathbf{A} \mathbf{C}^{-1}$.
3. Consistency of simple estimators

Let X_{1}, \ldots, X_{n} be iid random variables with $E\left[X_{1}\right]=\mu$ and $\operatorname{var}\left(X_{1}\right)=\sigma^{2}<\infty$. Consider two estimators of σ^{2} :

$$
\begin{aligned}
\hat{\sigma}_{1}^{2} & =\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} \\
\hat{\sigma}_{2}^{2} & =\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}
\end{aligned}
$$

where $\bar{X}=n^{-1} \sum_{i=1}^{n} X_{i}$.
(a) Compute $E\left[\hat{\sigma}_{i}^{2}\right]$ for $i=1,2$. You should find that $\hat{\sigma}_{1}^{2}$ is unbiased and that $\hat{\sigma}_{2}^{2}$ is biased.
(b) Compute the bias of $\hat{\sigma}_{2}^{2}: \operatorname{bias}\left(\hat{\sigma}_{2}^{2}, \sigma^{2}\right)=E\left[\hat{\sigma}_{2}^{2}\right]-\sigma^{2}$. Show that $\operatorname{bias}\left(\hat{\sigma}_{2}^{2}, \sigma^{2}\right) \rightarrow 0$ as $n \rightarrow \infty$.
(c) In class we showed that $\hat{\sigma}_{2}^{2} \xrightarrow{p} \sigma^{2}$. Using this result, show that $\hat{\sigma}_{1}^{2} \xrightarrow{p} \sigma^{2}$.
4. Hayashi, Chapter 2, page 97, Question for Review \#4
5. Using Chebychev's inequality, prove Markov's LLN.
6. Hayashi, Chapter 2, page 168, Analytical Exercises \#1,

