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Pooled Cross Section and Panel Data

Definition 1 (Pooled cross-section data) Randomly sampled cross sections of

individuals at different points in time

Example: Current population survey (CPS) in 1978 and 1988

Definition 2 (Panel Data) Observe cross sections of the same individuals at

different points in time

Example: National Longitudinal Survey of Youth (NLSY)

Pooled Cross Section Data

• Pooling makes sense if cross sections are randomly sampled (like one big
sample)

• Time dummy variables can be used to capture structural change over time

• Observations across different time periods allows for policy analysis



Example: Women’s fertility over time (Wooldridge)

National Opinion Research Center’s General Social Survey for even years from

1972-1984

 = 0 + 174 + · · ·+ 684 + β0x + 

74 = 1 if year = 74 0 otherwise (year dummy)

x = (  
2
        )

Q: After controlling for observable factors (educ etc), what has happened to

fertility over time?

A: Time effects of fertility are captured by dummy variables

[|x  = 72] = 0 + β0x
[|x  = 74] = 0 + 1 + β0x

[|x  = 74]−[|x  = 72] = 1

Hence, 1 = change in fertility between 1972 and 1974 controlling for x

Some complications:

• () may change over time. Best to use HC standard errors

• Other coefficients may not be constant over time



Example cont’d

To allow coefficients on x to vary over time, add interaction terms with the

dummy variable:

 = 0 + 174 + · · ·+ 684 + β0x
γ01 (74 × x) + · · ·+ γ6 (84 × x) + 

Then

[|x  = 72] = 0 + β0x
[|x  = 74] = 0 + 1 + (β + γ1)

0x
and

[|x  = 74]−[|x  = 72] = 1 + γ01x

Testing for Structural Change (Chow Test)

0 : (no structural change) 1 = · · · = 6 = 0 and γ1 = · · · = γ6 = 0

1 : (structural change) some  6= 0 and/or γ 6= 0

• Use F-test or Wald test

• Advisable to correct for possible heteroskedasticity



Policy Analysis with Pooled Cross Section Data

• Pooled cross-sections can be useful for evaluating the impact of certain
events or policy interventions

• Event or policy intervention must be a “natural experiment” - i.e., must
be exogenously imposed on data

• Control variable must be exogenous (no endogenous regressors)

Example: Effect of Garbage Incinerator Location on House Values in North

Andover MA

• 2 year pooled cross section of data for 1978 and 1981

• New incinerator built in 1981 and online in 1985

• Knowledge of incinerator project not known in 1978

• Q: Did house values near the incinerator decline in value?



Regression using 1981 data

 = 0 + 1 + 

= 101 307
(3093)

− 30 688
(5827)

· 
 = 1 if near incinerator, 0 otherwise

 = 142 2 = 0665

Note

[| = 1 in 1981]−[| = 0 in 1981]
= 1 = −30 688

Regression using 1978 data

d = 82 517
(2653)

− 18 824
(5287)

· 

 = 142 2 = 0665

Note

[| = 1 in 1978]−[| = 0 in 1978]
= −18 824

so that it appears that the incinerator was build in a low income/house value

area.



Difference in Differences (Diff-in-Diff) Estimate

To determine the impact of the incinerator on house values, we need to compare

the differences between the treatment and control groups across the two time

periods (compute the difference in the difference)

[| = 1 in 1981]−[| = 0 in 1981]
−[| = 1 in 1978]−[| = 0 in 1978]

= −30 688− (−18 824)
= −11 863

Dummy Variable Formulation of Diff-in-Diff Estimation

 = 0 + 081 + 1 + 1 (81 × ) + 

Then

[| = 1 81 = 1] = 0 + 0 + 1 + 1

[| = 0 81 = 1] = 0 + 0

81 = 1 + 1

[| = 1 81 = 0] = 0 + 1

[| = 0 81 = 0] = 0

78 = 1

81 −78 = 1



Dummy variable regression results

d = 82 517
(2726)

+ 18 790
(4050)

× 81 − 18 824
(4875)

× 

−11 863
(7456)

× 81 × 

̂1 = −11 863 = 81 −78

1=0 =
−11 863
7 456

= 159

Note: Dummy variable formulation allows the standard error on ̂1 to be com-

puted.

Natural Experiment

• Some exogenous event (e.g., change in government policy) changes the
environment in which individuals, families, firms, cities, etc., operate

• Control group is not affected by the policy change

• Treatment group is thought to be affected by the policy change

• No random assignment to control and treatment groups



Group comparison

Group Period 1 Period 2

Control before after Diff

Treatment before after Diff

Diff in Diff

Two Period Panel Data

• Observe cross section on the same individuals, cities, countries etc., in two
time periods  = 1 and  = 2

• Panel data structure makes it possible to deal with certain types of endo-
geneity without the use of exogenous instruments

• Extends the natural experiment framework to situations in which there may
be endogeneity



Example: Determine the effect of the unemployment rate on crime rates (Wooldridge)

Data on crime rates and unemployment for 46 cities for 1982 and 1987

Regression for 1982

d = 12838
(2076)

− 416
(342)

× umemp
 = 46 2 = 0033

• It appears that increases in unemp lowers crime rate (but not significant)
!

• Bias likely due to omitted variables (unemp is endogenous)

Error Components Framework for Two Period Panel Data

 = 0 + 02 + β0x +   = 1 2

= 0 + 02 + β0x + ( + )

2 = 1 if  = 2; 0 otherwise

 = unobserved heterogeneity (fixed effect)

 = idiosyncratic error

•  represents unobserved omitted variables that vary across individuals but

stay fixed over time (e.g., race, gender, ability)

• x is endogenous if it is correlated with  and pooled OLS is biased and
inconsistent



Example: Pooled OLS estimates in crime rate regression

d = 9342
(1274)

+ 794
(798)

× 87 + 427
(1188)

× 

 = 92 (46 x 2), 2 = 0012

• unemp is not significant in pooled regression

• It is likely that unemp is endogenous; e.g., correlated with omitted time
invariant city specific demographic variables like age, race, education levels,

attitudes towards crime etc.

Eliminating Endogeneity in Two Period Panel Data

 = 0 + 02 + β0x +  +   = 1 2

Then

 = 1 : 1 = 0 + β0x1 +  + 1

 = 2 : 2 = 0 + 0 + β0x2 +  + 2

 : ∆ = 0 + β0∆2 +∆2

• First differencing eliminates the unobserved fixed effect !

• OLS on first differenced data gives consistent estimates of β (provided

∆2 is uncorrelated with ∆2)



Example: First Difference Estimates in crime rate regression

∆ d = 1540
(470)

+ 222
(088)

∆

 = 46 2 = 127

=0 =
222

088
= 252

• coef on ∆ is of expected sign and is significant

Potential Problems with First Difference Regression

• First differencing removes variables that don’t vary with time (e.g. gender,
race, etc.)

• Effective sample size is reduced



Policy Analysis with Two-Period Panel Data

• Two period panel data is often used for program evaluation studies in

which there is likely to be endogeneity

Example: Evaluation of Michigan Job Training Program

• Data for two years (1987 and 1988) on the same manufacturing firms in
Michigan

• Some firms received job training grants in 1988 and some did not (training
was available on first come first serve basis)

Panel data regression

 = 0 + 0 × 88 + 1 +  + 

 = scrap rate (% of items scrapped due to defects)

 = 1 if firm  received a training grant in 1988

 = unobserved firm fixed effects (e.g. worker productivity)

( ) 6= 0 (why?)

First Difference transformation

∆ = 0 + 1∆ +∆

= 0 + 188 +∆



Here, 1 = “average treatment effect”

 = [88|88 = 1]−[87|88 = 1] = 0

 = [88|88 = 0]−[87|88 = 0] = 0

 − = 1

Example: First Differences Regression

∆ d = − 564
(405)

− 739
(683)

∆

 = 54 2 = 022

1=0 =
−739
683

= 108



Panel Data with More than 2 Time Periods

Suppose  = 1 2 and 3

 = 1 + 22 + 33 + β0x +  + 

2 = 1 if  = 2; 0 otherwise

3 = 1 if  = 3; 0 otherwise

Then

 = 1 : 1 = 1 + β0x1 +  + 1

 = 2 : 2 = 1 + 2 + β0x2 +  + 2

 = 3 : 3 = 1 + 3 + β0x2 +  + 3

First differencing gives

∆ = 1 + 2∆2 + 3∆3 + β0∆2 +∆2  = 2 3

That is,

 = 2 : ∆2 = 2 + β0∆2 +∆2

 = 3 : ∆3 = −2 + 3 + β0∆2 +∆3

because

∆23 = 23 − 22 = −1



• Estimation is by pooled OLS on first differenced data

• Error terms for a given  are correlated across time

(∆3∆2) = (3 − 2 2 − 1)

= −(2)
Hence, Gauss-Markov assumptions are violated and OLS is not efficient.


