Distributed Lag (DL) Models

Consider the stylized regression model with a single lagged variable

\[y_t = \alpha + \beta_0 x_t + \beta_1 x_{t-1} + \varepsilon_t, \quad \varepsilon_t \sim WN(0, \sigma^2_\varepsilon) \]

\(x_t \) is covariance stationary and ergodic

\(x_t \) is strictly exogenous, \(E[\varepsilon_t|x_s] = 0 \) for all \(t, s \)

Remarks:

1. Covariance stationarity of \(x_t \) implies

\[x_t = \mu_x + \psi_x(L)v_t, \quad v_t \sim WN(0, \sigma^2_v) \]

2. \(E[\varepsilon_t|x_s] = 0 \) for all \(t, s \) implies that \(E[\varepsilon_t|v_s] = 0 \) for all \(t, s \)
Example: Dynamic demand function

\[y_t = \log \text{quantity} \]
\[x_t = \log \text{price} \]

Dynamic multipliers (impulse responses)

\[\frac{\partial y_t}{\partial x_t} = \beta_0 = \text{contemporaneous price elasticity} \]
\[\frac{\partial y_t}{\partial x_{t-1}} = \frac{\partial y_{t+1}}{\partial x_t} = \beta_1 = \text{lag 1 price elasticity} \]
\[\frac{\partial y_t}{\partial x_{t-j}} = \frac{\partial y_{t+j}}{\partial x_t} = 0 = \text{lag j price elasticity} \quad (j > 1) \]

Cumulative or long-run price elasticity

\[\lim_{j \to \infty} \sum_{j=0}^{\infty} \frac{\partial y_{t+j}}{\partial x_t} = \beta_0 + \beta_1 \]
Alternative Interpretation of Long-run Price Elasticity

Suppose \(x_t \) is at its steady-state value (unconditional mean): \(x_t = x_{t-1} = \mu_x \)
and \(\varepsilon_t = 0 \). Define the long-run value for \(y_t \) as its unconditional mean

\[
E[y_t] = \alpha + \beta_0 E[x_t] + \beta_1 E[x_{t-1}] + E[\varepsilon_t]
\]

\[
\Rightarrow \mu_y = \alpha + \beta_0 \mu_x + \beta_1 \mu_x = \alpha + (\beta_0 + \beta_1) \mu_x
\]

Note that

\[
\frac{\partial \mu_y}{\partial \mu_x} = \beta_0 + \beta_1
\]
Lag Operator Notation

\[y_t = \alpha + \beta_0 x_t + \beta_1 x_{t-1} + \varepsilon_t \]
\[= \alpha + (\beta_0 + \beta_1 L) x_t = \varepsilon_t \]
\[= \alpha + \beta(L) x_t + \varepsilon_t, \]
\[\beta(L) = \beta_0 + \beta_1 L \]

Note

\[\frac{\partial \mu_y}{\partial \mu_x} = \beta_0 + \beta_1 = \beta(1) \]
General DL(p) Model

\[
y_t = \alpha + \beta_0 x_t + \beta_1 x_{t-1} + \cdots + \beta_p x_{t-p} + \varepsilon_t,
\]

\[
\varepsilon_t \sim WN(0, \sigma^2_{\varepsilon})
\]

\[
E[\varepsilon_t|x_s] = 0 \text{ for all } t, s
\]

In lag notation

\[
y_t = \alpha + \beta(L)x_t + \varepsilon_t, \quad \beta(L) = \beta_0 + \beta_1 L + \cdots + \beta_p L^p
\]

Dynamic multipliers

\[
\frac{\partial y_t}{\partial x_{t-j}} = \frac{\partial y_{t+j}}{\partial x_t} = \beta_j \text{ for } j < p
\]

\[
\frac{\partial \mu_y}{\partial \mu_x} = \beta_0 + \beta_1 + \cdots + \beta_p = \beta(1)
\]
Estimation of DL(p) Models

• OLS estimation produces unbiased, consistent and asymptotically normally distributed estimates provides x_t is covariance stationary and ergodic, $\varepsilon_t \sim WN(0, \sigma^2_{\varepsilon})$ and x_t is strictly exogenous.

• If $\varepsilon_t \sim iid N(0, \sigma^2_{\varepsilon})$ then

$$y_t|x_t, \ldots, x_{t-p} \sim N(\alpha + \beta_0x_t + \beta_1x_{t-1} + \cdots + \beta_px_{t-p}, \sigma^2_{\varepsilon})$$

and OLS is equivalent to conditional MLE

• Main specification issue is how to choose the lag length. Note: $x_t, x_{t-1}, \ldots, x_{t-p}$ may be highly correlated.
Lag Length Specification

General-to-Specific Strategy (backwards selection)

1. Specify p_{max} and estimate DL model by OLS

$$y_t = \hat{\alpha} + \hat{\beta}_0 x_t + \hat{\beta}_1 x_{t-1} + \cdots + \hat{\beta}_p x_{t-p} + \hat{\epsilon}_t$$

2. Test significance of x_{t-p} using t-tests and test joint significance of x_{t-k}, \ldots, x_{t-p} using F-tests

3. Eliminate insignificant regressors and repeat testing until all regressors are significant
Model Selection Criteria

1. Specify p_{max} and estimate all DL(p) models for $p \leq p_{\text{max}}$ by OLS using common sample $t = p_{\text{max}} + 1, \ldots, T$. Define $N = T - (p_{\text{max}} + 1)$.

2. Compute AIC(p) and/or BIC(p) for each model where

$$AIC(p) = \ln \hat{\sigma}_\varepsilon^2 + N^{-1}2p$$

$$BIC = \ln \hat{\sigma}_\varepsilon^2 + \frac{\ln N}{N}p$$

3. Best model is one with smallest AIC or BIC
Dealing with High Correlation among Regressors

Problem: $x_t, x_{t-1}, \ldots, x_{t-p}$ may be highly correlated (e.g., x_t follows AR(1) with ϕ close to 1)

Implication: In estimated regression

$$y_t = \hat{\alpha} + \hat{\beta}_0 x_t + \hat{\beta}_1 x_{t-1} + \cdots + \hat{\beta}_p x_{t-p} + \hat{\varepsilon}_t,$$

individual $\hat{\beta}_i$ may not be significant but jointly $\hat{\beta}_1, \ldots, \hat{\beta}_p$ are significant. This can screw up model selection.

Remark: Reparameterization can sometimes help
Example: DL(1)

\[y_t = \alpha + \beta_0 x_t + \beta_1 x_{t-1} + \varepsilon_t \]

Problem: \(x_t \) and \(x_{t-1} \) are highly correlated because \(x_t \) is highly autocorrelated.

Solution: Reparametrize model (add and subtract \(\beta_0 x_{t-1} \) from RHS)

\[
\begin{align*}
y_t &= \alpha + \beta_0 x_t - \beta_0 x_{t-1} + \beta_1 x_{t-1} + \beta_0 x_{t-1} + \varepsilon_t \\
&= \alpha + \beta_0 \Delta x_t + (\beta_0 + \beta_1) x_{t-1} + \varepsilon_t \\
&= \alpha + \beta_0 \Delta x_t + \beta(1) x_{t-1} + \varepsilon_t
\end{align*}
\]

OLS on original and reparametrized model will give the same fit. However, in reparameterized model \(\Delta x_t \) and \(x_{t-1} \) will have low correlation.

Also: In reparameterized model short-run response, \(\beta_0 \), and long-run response, \(\beta(1) \), are directly estimated.
The Geometric Lag Model

Idea: Impose smoothness restrictions in lag structure to reduce number of estimated parameters

\[
\text{DL}(\infty) : y_t = \alpha + \sum_{k=0}^{\infty} \beta_k x_{t-k} + \varepsilon_t
\]

\[
\beta_k = \beta (1 - \lambda) \lambda^k, \quad 0 \leq \lambda < 1
\]

Here, \(\lambda\) measures persistence of lags (decay rate of impulse response function)

- \(\lambda \approx 0 \Rightarrow\) low persistence (fast decay of impulse responses)
- \(\lambda \approx 1 \Rightarrow\) high persistence (slow decay of impulse responses)
Substituting $\beta_k = \beta (1 - \lambda) \lambda^k$ into $DL(\infty)$ gives

$$y_t = \alpha + \sum_{k=0}^{\infty} \beta_k x_{t-k} + \varepsilon_t$$

$$= \alpha + \beta \sum_{k=0}^{\infty} (1 - \lambda) \lambda^k x_{t-k} + \varepsilon_t$$

$$= \alpha + \beta \cdot B(L)x_t + \varepsilon_t$$

$$B(L) = \sum_{k=0}^{\infty} b_k L^k = \sum_{k=0}^{\infty} (1 - \lambda) \lambda^k L^k = (1 - \lambda)(1 - \lambda L)^{-1}$$

Note

$$B(1) = \sum_{k=0}^{\infty} b_k = (1 - \lambda) \sum_{k=0}^{\infty} \lambda^k = 1$$
Impulse Responses (Dynamic Multipliers)

\[y_t = \alpha + \beta \sum_{k=0}^{\infty} (1 - \lambda) \lambda^k x_{t-k} + \varepsilon_t \]

\[= \alpha + \beta (1 - \lambda) x_t + \cdots + \beta (1 - \lambda) \lambda^k x_{t-k} + \cdots + \varepsilon_t \]

\[\frac{\partial y_t}{\partial x_t} = \beta (1 - \lambda) < \beta \]

\[\frac{\partial y_t}{\partial x_{t-k}} = \frac{\partial y_{t+k}}{\partial x_t} = \beta (1 - \lambda) \lambda^k \]

\[\sum_{k=0}^{\infty} \frac{\partial y_{t+k}}{\partial x_t} = \beta (1 - \lambda) \sum_{k=0}^{\infty} \lambda^k = \beta \]
Estimation of Geometric Lag Model

\[y_t = \alpha + \beta \cdot B(L)x_t + \varepsilon_t \]
\[= \alpha + \beta \cdot (1 - \lambda)(1 - \lambda L)^{-1}x_t + \varepsilon_t \]

Multiplying both sides by \((1 - \lambda L)\) gives the so-called Koyck transformed model

\[(1 - \lambda L)y_t = (1 - \lambda L)\alpha + \beta \cdot (1 - \lambda)x_t + (1 - \lambda L)\varepsilon_t \Rightarrow\]
\[y_t = (1 - \lambda)\alpha + \lambda y_{t-1} + \beta \cdot (1 - \lambda)x_t + \varepsilon_t - \lambda\varepsilon_{t-1} \]
\[= \delta_0 + \lambda y_{t-1} + \delta_1 x_t + u_t \]

where

\[\delta_0 = (1 - \lambda)\alpha, \quad \delta_1 = \beta \cdot (1 - \lambda) \]
\[u_t = \varepsilon_t - \lambda\varepsilon_{t-1} = MA(1) \text{ process} \]
Problem: In
\[y_t = \delta_0 + \lambda y_{t-1} + \delta_1 x_t + u_t \]
\[u_t = \varepsilon_t - \lambda \varepsilon_{t-1} \]
we have
\[\text{cov}(y_{t-1}, u_t) \neq 0 \]
Hence, OLS estimation gives biased and inconsistent estimates!

- Consistent estimation can be done by Instrumental Variables (IV) using \(y_{t-2} \) as an instrument for \(y_{t-1} \).
Economic Models that Generate Geometric Lag Behavior

Geometric lag behavior can result from a variety of sources. Two common sources are

1. Adaptive expectations
2. Partial adjustment
Adaptive Expectations

Suppose the theoretical model is of the form

\[y_t = \alpha + \beta x_t^e + \varepsilon_t \]

\[x_t^e = \text{unobserved expectation variable} \]

\[= E[x_{t+1}|I_t] \]

Adaptive expectations:

\[\Delta x_t^e = (1 - \lambda)(x_t - x_{t-1}^e), \quad 0 \leq \lambda < 1 \]

\[\Delta x_t^e = \text{revision in expectations} \]

\[(1 - \lambda) = \text{speed of adjustment} \]

\[(x_t - x_{t-1}^e) = x_t - E[x_t|I_{t-1}] = \text{forecast error} \]
Alternatively

\[x_t^e = x_{t-1}^e + (1 - \lambda)x_t - (1 - \lambda)x_{t-1}^e \]
\[= \lambda x_{t-1}^e + (1 - \lambda)x_t \]

Speed of adjustment (expectations revision)

- **Instantaneous revision**: \(\lambda = 0 \Rightarrow \Delta x_t^e = (x_t - x_{t-1}^e) \Rightarrow x_t^e = x_t \)

- **No revision**: \(\lambda = 1 \Rightarrow \Delta x_t^e = 0 \Rightarrow x_t^e = x_{t-1}^e \)

- **Fast revision**: \(\lambda \) close to zero

- **Slow revision**: \(\lambda \) close to one
Solving the Adaptive Expectations Model

\[x_t^e = \lambda x_{t-1}^e + (1 - \lambda)x_t \Rightarrow \]

\[(1 - \lambda L)x_t^e = (1 - \lambda)x_t \Rightarrow \]

\[x_t^e = (1 - \lambda L)^{-1}(1 - \lambda)x_t \]

\[= (1 - \lambda) \sum_{k=0}^{\infty} \lambda^k x_{t-k} \]

\[= \sum_{k=0}^{\infty} b_k x_{t-k}, \quad b_k = (1 - \lambda)\lambda^k \]

Hence, \(x_t^e \) is an exponentially weighted average of current and past \(x \) values.
Result: Economic model with adaptive expectations is a geometric DL model

\[y_t = \alpha + \beta x_t^e + \varepsilon_t \]

\[x_t^e = \lambda x_{t-1}^e + (1 - \lambda)x_t \]

\[= (1 - \lambda) \sum_{k=0}^{\infty} \lambda^k x_{t-k} \]

which implies

\[y_t = \alpha + \beta(1 - \lambda) \sum_{k=0}^{\infty} \lambda^k x_{t-k} + \varepsilon_t \]

\[= \alpha + \beta B(L)x_t + \varepsilon_t \]

\[B(L) = (1 - \lambda)(1 - \lambda L)^{-1} \]
Partial Adjustment Model

Idea: In the absence of adjustment costs, the desired or equilibrium level of \(y_t \) is described by

\[
y_t^* = \alpha + \beta x_t
\]

However, if \(y_t \neq y_t^* \) there is some cost required to adjust to the desired level and so each period there is only a partial adjustment

\[
\Delta y_t = (1 - \lambda)(y_t^* - y_{t-1}) + \varepsilon_t, \quad 0 < \lambda < 1, \varepsilon_t \sim WN(0, \sigma^2)
\]

\[
E[\Delta y_t] = (1 - \lambda)(y_t^* - y_{t-1})
\]
Note:

- \(y_{t-1} = y_t^* \Rightarrow E[\Delta y_t] = 0 \)

- \(y_{t-1} \neq y_t^* \Rightarrow E[\Delta y_t] \neq 0 \) and \(\lambda \) measures speed of adjustment

 - \(\lambda \approx 0 \Rightarrow \) fast adjustment

 - \(\lambda \approx 1 \Rightarrow \) slow adjustment
Result: Adjustment cost model is a linear regression with a lagged dependent variable

\[
y_t^* = \alpha + \beta x_t \]

\[
\Delta y_t = (1 - \lambda)(y_t^* - y_{t-1}) + \varepsilon_t, \quad 0 < \lambda < 1, \quad \varepsilon_t \sim WN(0, \sigma^2)
\]

Express second equation in terms of \(y_t \)

\[
y_t = y_{t-1} - (1 - \lambda)y_{t-1} + (1 - \lambda)y_t^* + \varepsilon_t
\]

\[
= \lambda y_{t-1} + (1 - \lambda)y_t^* + \varepsilon_t
\]

Substitute \(y_t^* = \alpha + \beta x_t \) to give

\[
y_t = \lambda y_{t-1} + (1 - \lambda)(\alpha + \beta x_t) + \varepsilon_t
\]

\[
= \alpha(1 - \lambda) + \lambda y_{t-1} + \beta(1 - \lambda)x_t + \varepsilon_t
\]

\[
= \gamma + \lambda y_{t-1} + \pi x_t + \varepsilon_t
\]
Interpretation of Coefficients in Partial Adjustment Model

\[y_t^* = \alpha + \beta x_t \]
\[y_t = \alpha(1 - \lambda) + \lambda y_{t-1} + \beta(1 - \lambda)x_t + \varepsilon_t \]
\[= \gamma + \lambda y_{t-1} + \pi x_t + \varepsilon_t \]
\[\gamma = \alpha(1 - \lambda), \quad \pi = \beta(1 - \lambda) \]

Dynamic multipliers

\[\frac{\partial y_t}{\partial x_t} = \pi = \beta(1 - \lambda) \leq \beta \text{ bc } 0 \leq \lambda < 1 \]
\[= \text{ short-run impact} \]
\[\frac{\partial y_t^*}{\partial x_t} = \beta = \text{ long-run impact} \]
Interpretation of long-run impact

\[y_t = \gamma + \lambda y_{t-1} + \pi x_t + \varepsilon_t \Rightarrow \]
\[(1 - \lambda L)y_t = \gamma + \pi x_t + \varepsilon_t \Rightarrow \]
\[y_t = (1 - \lambda L)^{-1}\gamma + (1 - \lambda L)^{-1}\pi x_t + (1 - \lambda L)^{-1}\varepsilon_t \]
\[= \frac{\gamma}{(1 - \lambda)} + \pi \sum_{k=0}^{\infty} \lambda^k x_{t-k} + \sum_{k=0}^{\infty} \lambda^k \varepsilon_{t-k} \]
\[= \alpha + \pi \left(x_t + \lambda x_{t-1} + \cdots + \lambda^k x_{t-k} + \cdots \right) + \sum_{k=0}^{\infty} \lambda^k \varepsilon_{t-k} \]
\[y_t = \alpha + \pi \left(x_t + \lambda x_{t-1} + \cdots + \lambda^k x_{t-k} + \cdots \right) + \sum_{k=0}^{\infty} \lambda^k \varepsilon_{t-k} \]

Then

\[
\frac{\partial y_t}{\partial x_t} = \pi = \beta(1 - \lambda)
\]

\[
\frac{\partial y_t}{\partial x_{t-1}} = \frac{\partial y_{t+1}}{\partial x_t} = \pi \lambda < \pi
\]

\[
\vdots
\]

\[
\frac{\partial y_t}{\partial x_{t-k}} = \frac{\partial y_{t+k}}{\partial x_t} = \pi \lambda^k
\]
Note

$$\lim_{k \to \infty} \frac{\partial y_{t+k}}{\partial x_t} = \lim_{k \to \infty} \pi \lambda^k = 0$$

$$\sum_{k=0}^{\infty} \frac{\partial y_{t+k}}{\partial x_t} = \pi (1 + \lambda + \lambda^2 + \cdots) = \frac{\pi}{(1 - \lambda)} = \beta$$
Another way to think about the long-run impact is to consider the unconditional mean for y_t:

$$
E[y_t] = \gamma + \lambda E[y_{t-1}] + \pi E[x_t] = \gamma + \lambda E[y_t] + \pi E[x_t] \Rightarrow
$$

$$(1 - \lambda) \mu_y = \gamma + \pi \mu_x \Rightarrow
$$

$$
\mu_y = \frac{\gamma}{(1 - \lambda)} + \frac{\pi}{(1 - \lambda)} \mu_x = \frac{\alpha(1 - \lambda)}{(1 - \lambda)} + \frac{\beta(1 - \lambda)}{(1 - \lambda)} \mu_x
$$

$$
= \alpha + \beta \mu_x
$$

Then

$$
\frac{\partial \mu_y}{\partial \mu_x} = \beta = \text{long-run impact}
$$
Autoregressive Distributed Lag (ADL) Model

\[\phi(L)y_t = c + \beta(L)x_t + \varepsilon_t \]
\[\phi(L) = 1 - \phi_1L - \cdots - \phi_pL^p \]
\[\beta(L) = \beta_0 + \beta_1L + \cdots + \beta_qL^q \]
\[x_t = \text{strictly exogenous and is } I(0) \]

roots of \(\phi(z) = 0 \) have modulus \(> 1 \)

Special case: ADL(1,1)

\[y_t = c + \phi y_{t-1} + \beta_0 x_t + \beta_1 x_{t-1} + \varepsilon_t \]

Q: How to interpret coefficients in ADL(1,1)?
Linear Regression with AR(1) Errors as Restricted ADL(1,1)

\[y_t = \alpha + \beta x_t + u_t \]
\[u_t = \phi u_{t-1} + \varepsilon_t, \quad |\phi| < 1 \]

Note: \((1 - \phi L)u_t = \varepsilon_t\)

Multiply both sides by \((1 - \phi L)\) and re-arrange

\[(1 - \phi L)y_t = (1 - \phi L)\alpha + (1 - \phi L)\beta x_t + (1 - \phi L)u_t \]
\[\Rightarrow y_t = (1 - \phi)\alpha + \phi y_{t-1} + \beta x_t - \phi \beta x_{t-1} + \varepsilon_t \]
\[= c + \phi y_{t-1} + \beta_0 x_t + \beta_1 x_{t-1} + \varepsilon_t \]
\[c = \alpha(1 - \phi) \]
\[\beta_0 = \beta \]
\[\beta_1 = -\phi \beta \]