6-2 Command Line Graphics

Command Line Graphics 6-25

Chapter 6

Command Line Graphics

Contents

6-36
Command Line Graphics

6.1
Graphics Devices
6-4
6.1.1
Multiple Graphics Devices
6-5
6.2
High-Level Graphics Functions
6-6
6.2.1
Examples
6-7
6.3
Low-Level Graphics Commands
6-9
6.3.1
Adding Lines to Plots
6-10
6.3.2
Adding Points to Plots
6-12
6.3.3
Adding Text to Plots
6-14
6.4
Graphics Parameters
6-16
6.5
An Advanced Graphics Example
6-19
6.5.1
Overlaying Figures Setting new=TRUE
6-19
6.6
Trellis Graphics
6-22
6.6.1
Trellis General Display Functions
6-25
6.6.2
The Panel Argument
6-26

Command Line Graphics

In this chapter we discuss creating basic graphics in S-PLUS at the command line. Topics include:

· Graphics devices

· High-level graphics functions

· Graphics parameters

· Adding to plots

· Trellis graphics

Graphics Devices

There are two kinds of graphics devices:

· Graphics Windows These appear on your screen.

· Printing Devices These send instructions to your printer or save the instructions in a file which you can then send later to your printer.

Starting a graphics window can be accomplished by creating a plot.

To open a graphics window without plotting data, type

> graphsheet()

at the S-PLUS prompt.

To close a graphics device, type

> dev.off()

A printer device must be closed to send the graph to the printer or the specified file.

Multiple Graphics Devices

Once you initiate a graphics device, it becomes active. You can open a new graph sheet by typing

> graphsheet()

A blank graph sheet will open up on your screen.

You may have several active graphics devices, but only one is the current graphics device.

When plots are created at the command line, S-PLUS sends plots to the current graphics device, over-writing previously created graphs.

Use the dev.list and dev.cur functions to keep track of active graphics devices and the current graphics device.

dev.list tells you what graphics devices are active.

> dev.list()
 graphsheet graphsheet
 2 3

dev.cur tells you which graphics device is the current graphics device.

> dev.cur()
 graphsheet
 3

Use the dev.set function to change the current graphics device.

> dev.set(2)
 graphsheet
 2

> dev.cur()
 graphsheet
 2

Use the dev.off function to turn off a graphics device.

> dev.off(3)
 graphsheet
 2

6.1 High-Level Graphics Functions

A high-level graphics function creates a complete plot.

Table 6.1 Commonly Used High-Level Graphics Functions

Function
Explanation

Univariate Data

barplot
simple bar plot

boxplot
simple box plot

hist
histogram

dotchart
dot chart

pie
pie chart

qqnorm
quantile-quantile plot for one sample against standard normal

Bivariate Data

plot
scatterplot

barplot
simple bar plot

boxplot
side-by-side box plots.

qqplot
quantile-quantile plot for two samples

Three-Dimensional Plots

contour
contour plot

persp
perspective (mesh) plot

image
color or greyscale image plot

Multivariate Data

pairs
pairwise scatterplot matrix

coplot
scatterplots conditioned on a third variable

symbols
scatterplot with symbols determined by third variable

Dynamic Graphics

brush
create linked scatterplots and rotatable point cloud

Examples

Example We will start off with a simple plot of y=sin(x) in the interval from 0 to 2*(. First, create a vector of x values:

> x<-seq(0,2*pi,length=25)
> x
[1] 0.0000000 0.2617994 0.5235988 0.7853982
[5] 1.0471976 1.3089969 1.5707963 1.8325957
[9] 2.0943951 2.3561945 2.6179939 2.8797933
[13] 3.1415927 3.4033920 3.6651914 3.9269908
[17] 4.1887902 4.4505896 4.7123890 4.9741884
[20] 5.2359878 5.4977871 5.7595865 6.0213859
[25] 6.2831853

> plot(x,sin(x))

[image: image1.wmf]x

sin(x)

0

1

2

3

4

5

6

-1.0

-0.5

0.0

0.5

1.0

Note that the default plot is to plot points.

High-level plotting commands accept many options that control layout of your graphs. The following table lists several of the available options.

Table 6.2 Options to a high-level plotting command
Option
Explanation

xlim
range of first variable

ylim
range of second variable

type
points (p), lines (l), both (b), nothing (n).

pch
plotting character (default: pch="o")

col
color of points/lines (default: col=1)

lty
line type (lty=1, solid, lty=2, dashed)

xlab
label of first variable

ylab
label of second variable

main
main title at top of plot

sub
subtitle under plot

Try the following commands

> plot(x,sin(x), type="b", pch="$")

> hist(fuel.frame$Mileage)
> hist(fuel.frame$Mileage,col=4,
+ main="Histogram of Mileage")

Note that each new plot erases the existing plot on the graph sheet.

See Chapter 8, pg 248-258 of the Programmer's Guide for a summary of some of the arguments listed above in Table 3.2

 Low-Level Graphics Commands

Low-level graphics functions add elements to an existing plot. Table 3.3 lists some functions commonly used to add elements to scatter plots.

Table 6.3 Low-Level Graphics Functions
Function
Explanation

points
add points

text
add text

lines
add lines connecting points

abline
add straight line

lsfit
fit least-squares line

lowess
fit lowess scatter plot smooth

title
add title

legend
add legend

identify
interactively identify points

 Adding Lines to Plots

Example We will revisit the sine graph.

> plot(x, sin(x), type="l")

> abline(-1,1, col=2)

> abline(v=c(0,2,4,6),col=3)

> title("Example of high-level command",
"plus low-level commands")

[image: image2.png]Example of high-level commands

X
plus lowlevel commands

For the next example, we will use data from a plant that monitored ammonia loss over 21 consecutive days. The first column of stack.x contains data regarding air flow to the plant and stack.loss contains percent of ammonia lost (times 10). Use the Help files for an explanation of some of the commands below.

> plot(stack.x[,1],stack.loss,xlab="Air Flow",
+ pch="o")

(recall that the syntax stack.x[,1] yields column 1 of the matrix stack.x)

> abline(lsfit(stack.x[,1],stack.loss),lty=2)

> lines(lowess(stack.x[,1],stack.loss))
> legend(50,40,c("lowess",
+ "least‑squares"),lty=c(1,2))
> title("Stack Loss vs. Air Flow")

[image: image3.wmf]o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

Air Flow

stack.loss

50

55

60

65

70

75

80

10

20

30

40

lowess

least-squares

Stack Loss vs. Air Flow

Adding Points to Plots

The points function adds points to an existing plot.

When plotting multiple groups of points, it is often necessary to force the range of the plot to include all of the points.

· One way to do this is to first create an empty plot using all of the observations (the argument type = "n" in the plot command accomplishes this)

· In some situations the matplot function is useful when plotting points for multiple groups. See Help on matplot for details.

Example

> attach(fuel.frame)
> plot(Weight,Mileage, type="n",
+ xlab="Type: Small = * , Medium = + ")

> points(Weight[Type=="Small"],
+ Mileage[Type=="Small"], pch="*")

> points(Weight[Type=="Medium"],
+ Mileage[Type=="Medium"], pch="+")

> detach("fuel.frame")
[image: image4.png]Mileage

35

a0

25

20

2000

T
2500

Scatter plot of Weight versus Mileage
Adding Text to Plots

The command text adds text at the specified points. The col argument may be a vector specifying the color of each text string.

Example Here is a simple example where we use the letters of the alphabet as points.

> plot(1:26, 1:26, type = "n")

> text(1:26, 1:26, letters)

The argument type = "n" tells plot to not place any points on the graphsheet.

Example

> attach(fuel.frame)

> plot(Weight,Mileage,type="n")

> text(Weight,Mileage,as.character(Type),
col=Type, cex=.75)

> detach("fuel.frame")

The labels used as text must be of type character. Since the variable Type in fuel.frame is of class "factor", the function as.character coerces Type into character mode.

The col=Type argument will color-code the symbols by the variable Type.

The cex=.75 shrinks the fonts by a factor of .75.

[image: image5.png]E3

0

E3

Eil

Smal

Sman
Sman
Sportsmamal small
Small sman
Spory
Sman
small sporty
Compact Tumpact
Sraatal Compact 5 Dompact
Sman Compact Compact
Compact Commpatt
Compact MaGmagsct Laige. Mediutagiom
Medium Miadium, Mediom
MediuMSoipact Compatedium Medium
Vet van Lage
Spory vadan
van Vanvan Large
T T T
2000 2500 3000 3500

Scatter plot of Weight versus Mileage, with text symbols and color coded by Type.

Graphics Parameters

General graphics parameters may be set and examined using the par function. These parameters specify the overall look of the plotting region and store the default values of plotting parameters.

To see all the default parameters, type

> par()

To see the value of a specific parameter, type par()$parameter.name. or par("parameter.name"). For example, to see the current line type

> par()$lty

> par("lty")

Here is a sample of some of the layout parameters that you can set.

Table 3.4 Layout Options
Option
Explanation

mrow=c(m,n)
Multiple figure lay-out (by row)

mcol=c(m,n)
Multiple figure lay-out (by column)

font
Font size. Device dependent

cex
Character expansion as percent of default size

lty
Line type: solid=1, dashed=2, etc.

pch
Point character: default ="o"

lwd
Line width: default=1, twice as thick = 2, etc.

fin=c(m,n)
Width (m) and height (n) of figure in inches

To reset the default plotting character, the command will have the form par(parameter.name="new.value").

Now, it will often be the case that you will reset the default parameters, work for awhile, then want to set the parameters back to their original settings. To store your default system parameters, type

> par.orig <- par()

then set your new paramenters

> par(new settings)

Example Let’s add some formatting to the plots. We will use the built-in data set stack.loss which gives the percent of ammonia lost through oxidation at a plant.

> par.orig <- par()

> par(mfrow=c(2,2), col= 3)

The above command will place four plots in a 2x2 array on one graph sheet.

> hist(stack.loss)

> qqnorm(stack.loss)
> boxplot(stack.loss)

> plot(stack.x[,1],stack.loss)

[image: image6.wmf]10

20

30

40

0

2

4

6

8

stack.loss

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Quantiles of Standard Normal

stack.loss

-2

-1

0

1

2

10

20

30

40

10

20

30

40

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

stack.x[, 1]

stack.loss

50

55

60

65

70

75

80

10

20

30

40

Now, restore the default settings:

> par(par.orig)

An Advanced Graphics Example

6.1.1 Overlaying Figures Setting new=TRUE

High-level plotting functions are programmed to erase any existing graph that is on a page and place the new plot on top of it.

Whenever a graphics device is initialized, the graphics parameter new is set to TRUE, meaning there are currently no plots on it.

· When new=T, a call to a high-level plotting function will not erase the canvas before putting up a plot.

· As soon as a high-level graphics function is called, new is set to FALSE.

When new=F, high-level graphics functions such as plot move to the next figure (or erase the current figure if there is only one) in order to avoid overwriting a plot.

You can take advantage of the new graphics parameter to call two high-level plotting functions in succession without having the first plot disappear:

1. Call the first high-level plotting function.

2. Set new=T.

3. Call the second high-level plotting function.

Example Overlaying two time series plots with par(new=T).

In this example we plot two different time series that span the same time period but are on totally different scales: they share the same x-axis but have two different y-axes. The time series plots in S-PLUS are high-level graphics functions. We also use some more advanced layout parameters in this example.

First set mar so that there is room for a labeled axis on both the left and the right, then produce the first plot. (The mar parameter specifies the number of blank lines of space in each margin).

> par(mar=c(5,4,4,5) + 0.1)

> tsplot(hstart, ylab="Housing Starts")

Now set new to TRUE so that the first plot won't be erased, and make the x-axis direct for the second plot. (This means that the same x-axis is used as was used in the last plot.)

> par(new=T, xaxs="d")
Finally, put up the second time series, but suppress the axes. Then add the y-axis tick marks and labels on the right-hand side, and add the legend:

> tsplot(ship, axes=F, lty=2)

> axis(side=4)

> mtext(side=4, line=3.8,
+ "Manufacturing (millions of dollars)")

> legend(1964.8, 93500, c("Housing Starts",
+ "Manufacturing Shipments"), lty=1:2)
Restore the system defaults.

> par(par.orig)
[image: image7.png]—— Housing Starts
Manufacturing Shipments

Housing Starts

200
I

150
I

100
I

50
I

T T T T T T T T T T
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975

60000 70000 80000 90000

50000

s of dollars)

Manufacturing (rmi

Overlay of two time series plots, Housing and Manufacturing.

 Trellis Graphics

Trellis Graphics implement the latest statistical graphics techniques from Bell Labs.

· The main idea behind Trellis is to use conditioning plots to display how distributions or relationships vary based on one or more conditioning variables.

· The simplest example of a Trellis plot is a scatter plot of one variable versus another for different ranges of a third variable.

· Trellis supports a wide variety of basic plot types, including scatter plots, histograms, density plots, dotplots, wireframe surfaces, contour plots, and scatter plot matrices.

Trellis Graphics differ from the other traditional S-PLUS graphics in a few important ways.

· To get optimal colors, open a graphics device using trellis.device() rather than graphsheet() or motif().
· The model in Trellis is to generate the entire plot with a single high-level plotting command. Arguments to the Trellis function control titles and legends.

· The contents of each panel in a Trellis plot may be specified by passing a function as the panel argument to the Trellis function. This allows the user to produce the same types of plots as would be done previously using separate calls to add points and lines.

Example The data frame fuel.frame contains data from the April, 1990 issue of Consumer Reports related to fuel usage for 60 vehicles. The variables are weight in pounds (Weight), engine displacement in liters (Disp.), mileage in miles per gallon (Mileage), a transform 100/Mileage (Fuel), and a factor indicating the general type of vehicle (Type).

Histograms of Mileage by Type.

> histogram(~ Mileage | Type, fuel.frame)
[image: image8.wmf]0

20

40

60

80

100

Compact

20

25

30

35

Large

Medium

20

25

30

35

Small

Sporty

20

25

30

35

0

20

40

60

80

100

Van

Mileage

Percent of Total

Scatter plot of Mileage versus Weight for four ranges of Disp.
> xyplot(Mileage~Weight | cut(Disp.,4),
+ fuel.frame)

[image: image9.wmf]20

25

30

35

 70.68+ thru 129.84

2000

2500

3000

3500

129.84+ thru 189.00

189.00+ thru 248.16

20

25

30

35

248.16+ thru 307.32

2000

2500

3000

3500

Weight

Mileage

Trellis General Display Functions

The following table lists the high-level Trellis graphics functions (also known as general display functions). It indicates the type of data for which each function is intended.

Table 3.5 Function usage table
Function Usage
Example Functions

Bivariate Scatterplot

xyplot(numeric1~numeric2)
example.coplot.two()

Compare Sample Distributions

bwplot(factor~numeric)
example.bwplot()

stripplot(factor~numeric)
example.strip()

qq(factor~numeric)
example.qqplot()

Measurements with Labels

dotplot(character~numeric)
example.dotplot()

barchart(character~numeric)
No example function.

piechart(character~numeric)
No example function.

Sample Distribution One Data set

qqmath(~numeric)
example.normal.qq()

histogram(~numeric)
example.histo()

densityplot(~numeric)
example.density()

Multivariate Data

splom(~data.frame)
example.splom()

parallel(~data.frame)
example.parallel()

Function of Two Variables on Grid

contourplot(numeric1~

 numeric2*numeric3)
example.contour()

levelplot(numeric1~

 numeric2*numeric3)
example.level()

wireframe(numeric1~

 numeric2*numeric3)
example.wire()

The Panel Argument

The contents of each panel in a Trellis plot may be customized by using a panel argument to the Trellis function specifying which lower-level graphics functions to invoke.

By default, each Trellis general display function invokes a panel function of the same name. The following are equivalent:

> xyplot(Mileage~Weight, fuel.frame)

> xyplot(Mileage~Weight, fuel.frame,
+ panel = panel.xyplot)

[image: image10.wmf]20

25

30

35

2000

2500

3000

3500

Weight

Mileage

The panel argument expects a function utilizing low-level graphics functions to produce the contents of each panel. This includes:

· Functions such as points, text, lines, abline, and identify.

· Pre-written panel functions such as panel.xyplot and panel.smooth.
Examples Add a least-squares lines to an xyplot.

> xyplot(Mileage~Weight | Type, data=fuel.frame,
+ panel = function(x,y){points(x,y);abline(lsfit(x,y))})
[image: image11.png]200 2500 aopo ss00

2000 2800 3000 3500 2000 2500 3000 3800

_1004211861.bin

