10-2 Writing Functions

Writing Functions 10-3

Chapter 10

Writing Functions

Contents

10-310
Writing Functions

10.1
Basic Structure
10-4
10.2
Editing Functions
10-5
10.3
Arguments
10-8
10.3.1
Defaulted Arguments
10-8
10.3.2
Variable Arguments
10-10
10.4
Conditionals
10-12
10.5
Iteration
10-14
10.6
Interacting with the User
10-16
10.7
Warnings and Errors
10-18
10.8
Time and Memory
10-21
10.8.1
Using Vectorized Calculations
10-21
10.8.2
Speed Differences
10-24
10.8.3
Vector Tricks
10-26

Writing Functions

One of the strengths of S-PLUS is that it may be extended by the user to implement new routines and customized to fit the particular type of data under consideration.

· You may write your own original functions.

· You may modify an already existing function.

 Basic Structure

The general syntax for defining a function is

function(arguments) {

body

}

where

· arguments gives the arguments, separated by commas;

· body is the body of the function, made up of one or more S-PLUS expressions.

Any S-PLUS objects may be passed as an argument to a function. Hence a function may be passed as an argument.

Variables defined within the body of a function are local to that function and last only as long as the function is executing.

· Variables within the body of a function are separate entities from objects stored on disk. Thus, you may name a variable within the body of a function the same name as a permanent object on disk without affecting the permanent object.

· To make a global assignment within the body of a function (i.e., to store the value on disk), you can use the global assignment operator <<- or the function assign.

A function returns the value of the last evaluated expression in the body of the function.

Editing Functions

There are several ways to create and edit functions, two within S-PLUS and one outside of S-PLUS.

Within S-PLUS:

At the command line, use an assignment statement followed by the function definition, e.g.,

> my.func <- function(args){
+
 body
+ }

For anything but trivial functions, it is easier to use the Edit function to open a script window for editing a function.

Outside of S-PLUS:
Use a Windows or DOS editor (e.g., Notepad or edit) in Windows outside of S-PLUS to create an ASCII file with a function definition, then use the source function to read this file into S-PLUS.

Any text editor may be used to create an ASCII file containing the function definition, which may then be read into S-PLUS using source. Alternatively the file may be opened in a script window and executed.

The file should contain just text and white space with no extra formatting information.

An advantage of using this approach is that a copy of the function is then stored as text outside of S-PLUS.

Example Using a Script window, write a function that takes an input vector x and outputs 3x + 5.

First open a Script window (or the text editor of your choice) using either the GUI (File ► New), or typing at the command line:

> Edit(my.fun, "MyWork")
In the resulting Script window, enter the following:

my.fun <- function(x){
 y <- 3 * x + 5
 return(y)
}

The Edit function creates a template for editing the function named as its first argument. If the function does not exist, a skeleton template is provided to fill in. NB: the function name will be enclosed in quotes.

Run the Script by pressing the Run button or by hitting the F10 function key.

Test the function at the command line.

> my.fun(14)
 [1] 47

> my.fun(c(2,-5,42))
 [1] 11 -10 131

Example Modify the function. Let’s make a new version of my.fun that outputs x^2 as well as 3*x^2 + 5.
In the My Work Script window, type the text:

my.fun2 <- function(x){
x.sq <- x^2
y<- 3* x.sq + 5
return(x.sq, y)
}

Run the Script by pressing the Run button or by hitting the F10 function key.

Test the function at the command line.

> my.fun2(14)
$x.sq
[1] 196

$y:
[1] 593

Note that the output is a list.

> my.fun2(c(2,-5,4,2))
$x.sq:
[1] 4 25 16 4
y$sq
[1] 17 80 53 17

> fun.out <- my.fun2(c(2,-5,4,2))

> fun.out$x.sq
[1] 4 25 16 4

> data.class(fun.out)
[1] "list"

Arguments

S-PLUS allows a great deal of flexibility in specifying arguments. The basic types of arguments are

· required arguments;

· optional arguments with default values;

· variable arguments using ...;
Any object may be passed as an argument.

Unlike many languages, arguments do not have to be explicitly typed, i.e. a particular argument might accept either a character vector or a logical matrix.

10.1.1 Defaulted Arguments

Arguments may be provided with default values by specifying them in the argument list.

· Defaulted arguments allow the function’s creator to set the argument values to cover the most common case.

· Defaulted arguments provide an easier access to the function for the default case.

Default values are specified by following the argument name by an equal sign, =, and an expression that evaluates to the default value.

> mean
function(x, trim = 0, na.rm = F)

Required arguments should be listed before defaulted arguments in the argument list.

S-PLUS uses lazy evaluation, which means that arguments are evaluated only as needed when they appear in the body of the function. A consequence of lazy evaluation is that arguments may have default values that depend on objects created inside the function.

It is also possible to perform default actions when required arguments are missing from the function call. Look at Help for the missing function for details.

Example Plot a specified function.
Create the following function in a script window. my.fun3 plots a function func evaluated at nx values between min.x and max.x.

my.fun3 <- function(func, min.x, max.x,
 nx=100, type="l") {
 x <- seq(min.x,max.x,length=nx)
 y<-func(x)
 plot(x,y,type=type)
}

In the function definition, we specify the argument nx to have a default value of 100 (nx determines the number of points in the interval (min.x, max.x)). The argument type="l" specifies that the plot be a line plot.

Run this script, then type the commands:
> my.fun3(sin,0,2*pi)

> title("Sin(x)")
[image: image1.wmf]x

y

0

1

2

3

4

5

6

-1.0

-0.5

0.0

0.5

1.0

Sin(x)

The user may wish to specify his/her own value for nx.

> my.fun3(sin,0,2*pi,12)

10.1.2 Variable Arguments

Use the special argument name ..., called the ellipsis, in the argument list of a function to specify a variable number of arguments. This will allow the user to pass a variable number of arguments to the function.

The only use of ... inside the body of a function is in passing it as an argument to another function.

Usually the ellipsis argument is the last one in the argument list of the function definition.

Arguments that follow the ellipsis must be named and cannot be abbreviated when calling the function.

Example Write the following script:

my.fun4 <-function(func,min.x,max.x,
nx=100, type="l",...){
x <- seq(min.x, max.x, length=nx)
+ y <- func(x)
+ plot(x,y,type=type,...)
}

Run the script and then type the command:

> my.fun4(sin,0,2*pi, ylab="sin(x)",
+ main="Sin(x) from 0 to 2*pi")
[image: image2.wmf]Sin(x) from 0 to 2*pi

x

sin(x)

0

1

2

3

4

5

6

-1.0

-0.5

0.0

0.5

1.0

The arguments ylab="sin(x)" and main="Sin(x) from 0 to 2*pi" are passed to the plot function in the function body of my.fun4.

Conditionals

As is the case in most programming languages, S-PLUS has if and if-else statements to perform conditional evaluation of expressions. It also has a vectorized version of these statements named ifelse.

· The if statement evaluates an expression if some condition is true.

if (condition) {expression}
· An else statement may be added if an alternate action should be performed when the statement is false.

if (condition) {

expression1

}
else {

expression2

}

· if-else statements may be nested to consider multiple alternatives.
· When examining whether a variable takes on one of a set of values, the switch command is useful. See Help on switch for details.
· The ifelse function takes a logical vector along with vectors of values to return if each element of the vector is true or false.

· ifelse(test.vec,yes.vec,no.vec)
Examples Conditionals

Remove NA’s from a vector when na.rm=T.

> if (na.rm){
+ x <- x[!is.na(x)]
+ }
Compute the variances of columns of a matrix.

> if (is.vector(x)){
+ vr<-var(x)
+}
+else
+{vr<-diag(var(x))
+ }
Here is a function that returns the larger of two numbers.

> larger <- function(x,y){
+ ifelse(x>y,x,y)
+ }
> larger(1:5, 5:1)
[1] 5 4 3 4 5
Iteration

A common task is to repeat a procedure multiple times for different variable values. The main functions used in iteration are for and while. Explicit iteration may often be avoided by using apply.
· Use for to loop over the values of a vector.

for (name in values){expression }
· Use while to repeat until some condition changes.

while (condition) { expression }
· Use apply to repeat a procedure for all rows or columns of a matrix.

apply (data, margin, function, ...)
Examples Iteration.

Create multiple lines of output.

> grocery <- c("apples","pears","oranges",

+ "grapes")

> for (fruit in grocery) {

+ cat("I like ", fruit, "\n") }

Make multiple histograms.

> par(mfrow=c(2,2))

> for (i in 1:ncol(stack)){

+

hist(stack[,i], xlab=names(stack)[i])

+

}
> par(mfrow=c(1,1))
Here is a simple example of while.

> n<-0

> while(n<3){
+

print("hello")
+

n<-n+1
+

}
[1] "hello"
[1] "hello"
[1] "hello"

Calculate the volatilities of returns of columns of a matrix (or data frame)
> returns.sd <- function(x)
+ sqrt(var(diff(log(x))))

> apply(ftse100data[, -1], 2, returns.sd)
 TELEWEST.COMMS. BRIT.SKY.BCAST. STAGECOACH.HDG.
 0.03401592 0.0211332 0.0224964
 ZENECA HSBC.HOLDINGS SCHRODERS.NV.
 0.02385557 0.02595453 0.03555272
...

Interacting with the User

It is often desirable to provide the user with output while a function runs, and to receive input from the user.

The functions cat and print will send output to the screen.

cat is the more primitive function. It coerces its arguments to mode "character" and sends them to standard output (i.e. the screen unless sink has been invoked.)

> cat(ages)
23 24 27 24 23 25 23 22 26 20

Note: The character "\n" forces a new line.

> cat(ages,"\n")
23 24 27 24 23 25 23 22 26 20

>

print formats its output before sending it to standard output. It uses the print method appropriate for the object being printed.

print is used to display objects when they are named on the command line.

> ages
[1] 23 24 27 24 23 25 23 22 26 20
> print(ages)
 [1] 23 24 27 24 23 25 23 22 26 20
The functions readline and scan will accept input from the user.

readline is useful in a function that requires interaction.

ans<-readline("Do you want to continue? (y/n)")

if (ans=="y")
 { action}
else
 { alternative action}
scan with no file specified will prompt the user for input. Enter a blank line to conclude data entry.

> temp<-scan()
1: 2 5
3: 1 6 9
6: 7
7: 11
8: 13 15
10:
> temp
 [1] 2 5 1 6 9 7 11 13 15
Warnings and Errors

It is easy to return warning messages to the user, and to stop the function if a problem occurs.

The warning function may be used in a function to send a warning message to the user.

· The warning function is usually used with an if statement to send the warning message if some condition occurs.

· The warning message is issued after the function finishes executing.

· If more than 5 warning messages are generated in the call to the function, the warnings are stored in the object last.warning.

· Use the function warnings to print out the warning messages stored in last.warning.
Example Here is a function that takes the square root of numbers and will handle negative numbers as input.

> complex.sqrt

function(x){

if (all(x>=0))

return(sqrt(x))

else {

warning("Negative numbers

were detected")

return(sqrt(as.complex(x)))

}

}

The stop function may be used to immediately stop execution and send an error message to the user. Information is stored in last.dump which may be used by various debugging tools.

Example Return the eigenvalues of a matrix.

> eigen.val
function(x){

if (is.matrix(x))

eigen(x)$values

else

stop("X must be a matrix")

}

> eigen.val(stack.x[1:3,])
[1] 193.08921993 3.94361136 -0.03283128

> eigen.val(stack.loss)
Error in eigen.val(stack.loss): X must be a matrix
Dumped

The on.exit function may be used to perform a task immediately prior to exiting the function (either normally or due to an error or interrupt).

· The call to on.exit can appear anywhere in the body of the function.

· If several calls to on.exit exist, only the most recently read one is executed unless the argument add=T is used, in which case the expression is added to the queue of actions that will be performed upon exiting the function.

Example Reset plotting parameters.

> multi.hist
function(x,nrow=2,ncol=ceiling(d/2))
{

d <- dim(x)[2]
#Save old settings in old.par
old.par <- par(mfrow = c(nrow,ncol))
0n.exit(par(old.par))
 for(i in 1:d) {

hist(x[, i], xlab = names(x)[i])
 }

 }

Time and Memory

10.1.3 Using Vectorized Calculations

Many new users to S-PLUS are used to writing in a language such as C or Fortran in which most calculations are done using loops rather than vectorized calculations. It takes a bit of practice to learn to think in terms of vectors.

This section presents a number of examples in which vectorized calculations are used to replace loops, with marked savings in evaluation time. These examples are actual user questions drawn from support calls to the Data Analysis Products Division (DAPD) of MathSoft, and the S‑news mailing list.

For the presentation here the questions and responses have been edited and made anonymous. Credit for the insightful answers goes to the readers of S-news and the support staff at DAPD.

A difference between S-PLUS and programming languages such as C and Fortran is that S‑PLUS is optimized to perform vectorized calculations efficiently. A tradeoff in this approach is that loops, and particularly nested loops, run slowly. This will initially frustrate many programmers who are familiar with looping but not familiar with vectorizing computations.

This section provides some examples of how particular computations might be done using vectorized calculations.

Calculate the mean.
> x <- c(2,5,6,4,9,5)

Built-In Function

> mean(x)
[1] 5.166667

Looping

> n <- length(x)

> temp <- 0

> for (i in 1:n) { temp <- temp + x[i] }

> temp/n
[1] 5.166667

Vectorized 1

> sum(x)/length(x)
[1] 5.166667
Vectorized 2

> x %*% rep(1,length(x))/length(x)
 [,1]
[1,] 5.166667
Calculate the variance.

Built-In Function

var(x)
[1] 5.366667
Looping

> mn<- mean(x)

> n <- length(x)

> temp <- 0

> for (i in 1:n) {
+ temp <- temp + (x[i]-mn)^2
+ }

> temp/(n-1)
[1] 5.366667
Vectorized 1

> sum((x-mean(x))^2)/(length(x)-1)
[1] 5.366667
Vectorized 2

> (x-mean(x))%*%(x-mean(x))/(length(x)-1)
 [,1]
[1,] 5.366667
Speed Differences

Question

How much difference is there in the time it takes to loop over a vector compared to the time taken to perform vector operations?

Answer

Here are some examples of operations using loops and vector operations. The dos.time function returns the time taken to evaluate the function in seconds. (In UNIX use the unix.time function instead. The comparable time is the sum of the first two numbers in the vector returned.)

Note that the time will vary a bit based on the memory situation at any particular evaluation.

Numeric Assignment

> dos.time(x<-1:10000)
[1] 0
> dos.time(for(i in 1:10000) x[i]<-i)
[1] 3.290039
Differencing two vectors

> a<-1:10000
> b<-10001:20000

> dos.time(d <- b-a)
[1] 0

> dos.time(for (i in 1:10000) d[i] <- b[i]-a[i])
[1] 10.88989

Shifting each element in a vector forward. Note that you define the index i outside a loop as a vector, instead of within a loop to gain performance.

> i<-1:10000

> set.seed(4)

> d<-rnorm(10000)

> dos.time(d[i]<-d[i+1])
[1] 0.06005859

> set.seed(4)

> d<-rnorm(10000)

> dos.time(for(j in 1:10000) d[j]<-d[j+1])
[1] 9.799927

The following demonstrates the use of the ifelse function. Use ifelse to perform vectorized arithmetic in the situation where you use an if and an else statement within a for loop.

> set.seed(4)

> d<-rnorm(10000)

> dos.time(d2<-ifelse(d>0,d*10,d*1000))
[1] 0.1199951

> set.seed(4)

> d<-rnorm(10000)

> dos.time(for(i in 1:10000){if(d[i]>0)
+ d2[i]<-d[i]*10 else d2[i]<-d[i]*1000})
[1] 15.5

10.1.4 Vector Tricks

Question

Suppose I have a vector of counts, for example

> y <- c(5, 3, 2, 4, 1, 2)

I want to produce a second vector that consists of

> y2 <- c(1:5, 1:3, 1:2, 1:4, 1:1, 1:2)

> y2
[1] 1 2 3 4 5 1 2 3 1 2 1 2 3 4 1 1 2

How can I do this for the general case without using a for loop?

Answers

This question to S-news brought out the S/S-PLUS gurus, each with their own nifty approach. We’ve added timings on each (remember that these will vary).

> y <- c(5, 3, 2, 4, 1, 2)
Answer 1 Use lapply.

> unlist(lapply(y,seq))
 [1] 1 2 3 4 5 1 2 3 1 2 1 2 3 4 1 1 2
> dos.time(unlist(lapply(y,seq)))
[1] 0.05078125
Answer 2 Use apply.
> unlist(apply(matrix(y), 1, function(x) 1:x))
 [1] 1 2 3 4 5 1 2 3 1 2 1 2 3 4 1 1 2

> dos.time(unlist(apply(matrix(y), 1,
+ function(x) 1:x)))
[1] 0.109375
Answer 3 Use paste, parse and eval.
> temp <- paste("c(", paste(paste("1", y,
+ sep=':'), collapse=','), ")")

> print(temp)
[1] "c(1:5,1:3,1:2,1:4,1:1,1:2)"

> eval(parse(text=temp))
 [1] 1 2 3 4 5 1 2 3 1 2 1 2 3 4 1 1 2
> dos.time(eval(parse(text=paste("c(",
+ paste(paste("1", y, sep=':'),collapse=','),
+ ")"))))
[1] 0
Although the paste statements look complex, they have the advantage of being easy to debug --- it's right once print(temp) looks right.

Answer 4 Use cumsum and sum.
> seq(sum(y)) - rep(c(0,cumsum(y[-length(y)])
+), y)
 [1] 1 2 3 4 5 1 2 3 1 2 1 2 3 4 1 1 2
> dos.time(seq(sum(y)) - rep(c(0,
+
cumsum(y[-length(y)])), y))
[1] 0

This works even if zeros are included in y.

Answer 5 Use cumsum or lapply.
Note that this is fast because cumsum is a primitive .Internal function in S-PLUS.

> f2
function(k)
{

storage.mode(k) <- "integer"
k <- k[k != 0]
val <- integer(sum(k))
val[] <- as.integer(1)
val[cumsum(k)[- length(k)] + 1] <-

 -k[- length(k)] + 1
 cumsum(val)
}

> f2(y)
[1] 1 2 3 4 5 1 2 3 1 2 1 2 3 4 1 1 2

> dos.time(f2(y))
[1] 0

This is faster than the equivalent for loop because lapply is also a primitive .Internal function.

> f1
function(k)
{
 k <- k[k != 0]
unlist(lapply(k, ":", e1 = 1))
}
> f1(y)
[1] 1 2 3 4 5 1 2 3 1 2 1 2 3 4 1 1 2

> dos.time(f1(y))
[1] 0

