S-PLUS in Finance: Examples and Exercises

These examples and exercises are intended to reinforce the material from the lecture notes, and to introduce new concepts and applications which can’t be covered in detail in the notes. Most examples have a worked section which introduce the commands and concepts for the exercises to follow.

Many of the exercises come from real-world applications, and are intended to form the basis of a more complete application. It is not intended that all the exercises be attempted during the course. Choose the exercises which are of the most interest or relevance to your work. You may choose to simply run the script files (where supplied) and inspect the results, or attempt to find the solution yourself using the scripts as guidance where necessary.

The examples use data from various data sources. Where necessary, the data have been corrupted or simulated to conform to confidentiality agreements. The data are provided for demonstration purposes only, and must not be used for any other purpose than for personal learning in the context of this course.

Each example has an associated script file, containing the commands from the worked section and suggested solutions for the exercises. Where data have been read in from the script file, the variable data.dir must be defined.

data.dir <- “c:/course/datadisk/”
You should type this into the Commands Window at the start of your S-PLUS session before running any of the scripts.
2Example 1.
Introductory session

Example 2.
Calculating Returns
6
Example 3.
Introduction to the command line
8
Example 4.
Basic vectors
9
Example 5.
Basic matrices
11
Example 6.
Basic data frames
14
Example 7.
Basic Lists
15
Example 8.
Factor Basics
17
Example 9.
Comparison basics
18
Example 10.
Calculating volatilities
19
Example 11.
Merging messy data & plotting yield curves
21
Example 12.
Factor models and robust betas
23
Example 13.
Monte-Carlo option pricing
23
Example 14.
Black-Scholes scenarios
25
Example 1.
Introductory session

Below is a listing of a sample S-PLUS session. This example is intended to familiarise you with entering commands at the command line, and to introduce some of the data objects we will be discussing in the course. Text to be typed by the user is typed next to the command prompt “>”, and is printed in bold face.

A description of what each performs is given in italics.

We will take a quick look at the following topics:

· Vectors

· Matrices and Data Frames

· Lists

To start this exercise, locate and /or open up a Command Window.

Vectors

To return a vector of integers from 1 to 10:

> 1:10
 [1] 1 2 3 4 5 6 7 8 9 10

To assign the vector of integers from 1 through 10 to a variable called x:

> x<-1:10
To return the value of x:

> x
 [1] 1 2 3 4 5 6 7 8 9 10

To get summary statistics of variable x:

> summary(x)
 Min. 1st Qu. Median Mean 3rd Qu. Max.

 1 3.25 5.5 5.5 7.75 10

To view the on-line help for the built-in S-PLUS function called summary:

> help(summary)
To assign the vector of values of –2 raised to the power of 1 through 10 to a variable called y:

> y<-(-2)^(1:10)
To take a look at y:

> y
 [1] -2 4 -8 16 -32 64 -128 256 -512 1024

To return only the 2nd, 4th and 5th components of vector y. An example of subscripting using a numeric vector:

> y[c(2,4,5)]
[1] 4 16 -32

To assign the values of the log of each component of y to a variable, z:

> z<-log(y)
Warning messages:

 NAs generated in: log(x)

Note above…. warning was generated because the log of a negative number is not defined, and y contains some negative elements.

Take a look at the values of z:

> z
 [1] NA 1.386294 NA 2.772589 NA 4.158883 NA

 [8] 5.545177 NA 6.931472

Note: For the components of y that are negative, the corresponding element of z is NA (the S-PLUS code for a missing value).

Return a logical vector specifying which components of z have missing values. The return value is a logical vector… T indicates TRUE, F indicates FALSE:

> is.na(z)
 [1] T F T F T F T F T F

Assign all known values of z to z2. ie. strip out the missing values of z. This is an example of subscripting using a logical vector:

> z2<-z[!is.na(z)]
Return the values of z2:

> z2
[1] 1.386294 2.772589 4.158883 5.545177 6.931472

Assign the value of zero to all components of z that have missing values:

> z[is.na(z)]<-0
Return z:

> z
 [1] 0.000000 1.386294 0.000000 2.772589 0.000000 4.158883 0.000000

 [8] 5.545177 0.000000 6.931472

To list all of the S-PLUS objects in the current working directory:

> objects()
 [1] ".Last.value" "cancer" "gamma" "gamma2"

 [5] "gamma3" "mlowess" "pbc" "udca"

 [9] "x" "y" "z" "z2"

Remove objects z and z2:

> rm(z,z2)
Take another look at the objects in the working directory:

> objects()
 [1] ".Last.value" "cancer" "gamma" "gamma2"

 [5] "gamma3" "mlowess" "pbc" "udca"

 [9] "x" "y"

Matrices and Data Frames

Create a matrix called mat1, which is produced by column binding the vectors x and y:

> mat1<-cbind(x,y)
Take a look at mat1:

> mat1
 x y

 [1,] 1 -2

 [2,] 2 4

 [3,] 3 -8

 [4,] 4 16

 [5,] 5 -32

 [6,] 6 64

 [7,] 7 -128

 [8,] 8 256

 [9,] 9 -512

[10,] 10 1024

Return the dimensions of mat2:

> dim(mat1)
[1] 10 2

Return the values of column 1 of mat1. Note, not specifying any row numbers in the subscription (leaving the row subscription blank), will result in S-PLUS returning all row values:

> mat1[,1]
 [1] 1 2 3 4 5 6 7 8 9 10

Return the values of rows 3 and 4 only (all columns) from mat1:

> mat1[c(3,4),]
 x y

[1,] 3 -8

[2,] 4 16

Produce a vector, trmt, which has “A” repeated 5 times followed by “B” repeated 5 times:

> trmt<-c(rep("A",5),rep("B",5))
Take a look at trmt:

> trmt
 [1] "A" "A" "A" "A" "A" "B" "B" "B" "B" "B"

Column bind x and trmt. Note this returns a matrix in which all elements have been converted to character mode. This is because cbind outputs a matrix object and all elements of a matrix MUST be of the same mode:

> cbind(x,trmt)
 x trmt

 [1,] "1" "A"

 [2,] "2" "A"

 [3,] "3" "A"

 [4,] "4" "A"

 [5,] "5" "A"

 [6,] "6" "B"

 [7,] "7" "B"

 [8,] "8" "B"

 [9,] "9" "B"

[10,] "10" "B"

Create a data.frame called df1, from x and trmt:

> df1<-data.frame(x,trmt)
Take a look at df1. Note column x is still numeric, column trmt has been converted to a factor:

> df1

 x trmt

 1 1 A

 2 2 A

 3 3 A

 4 4 A

 5 5 A

 6 6 B

 7 7 B

 8 8 B

 9 9 B

10 10 B

Return a summary of df1:

> summary(df1)
 x trmt

 Min. : 1.00 A:5

 1st Qu.: 3.25 B:5

 Median : 5.50

 Mean : 5.50

 3rd Qu.: 7.75

 Max. :10.00

Return the dimensions of df1:

> dim(df1)

[1] 10 2

Return the column names of df1:

> names(df1)
[1] "x" "trmt"

Return the row names of df1:

> row.names(df1)
 [1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10"

Lists

Create a list called list1 which has components x and trmt:

> list1<-list(x=x,trmt=trmt)
Return the values of list1. Note all data modes are preserved:

> list1
$x:

 [1] 1 2 3 4 5 6 7 8 9 10

$trmt:

 [1] "A" "A" "A" "A" "A" "B" "B" "B" "B" "B"

Return the names of list1:

> names(list1)
[1] "x" "trmt"

Return the values of the component called trmt from list1:

> list1$trmt
 [1] "A" "A" "A" "A" "A" "B" "B" "B" "B" "B"

Return the values of the second component of list1:

> list1[[2]]
 [1] "A" "A" "A" "A" "A" "B" "B" "B" "B" "B"

Delete x,y,mat1,df1 and list1:

> rm(x,y,mat1,df1,list1)
Summary of Commands Used

Below is a summary of the commands used in the example session, with a brief description of each command. We will discuss most of these commands in greater detail during the course.

	Basic Commands
	

	<-
	Assignment operator.

	help
	Get help on an object.

	objects
	List S-PLUS objects.

	rm
	Remove an object.

	search
	List directories where objects kept.

	q
	Quit S-PLUS.

	
	

	Vectors
	

	:
	Create sequence of numbers.

	c
	Combine elements into a vector.

	rep
	Replicate an element to form a vector.

	length
	Get length of an object.

	
	

	Matrices
	

	cbind
	Combine vectors into a matrix.

	dim
	Get dimension of matrix.

	
	

	Data Frames
	

	data.frame
	Construct a data frame.

	names
	Get column names.

	row.names
	Get row names.

	attach
	Make columns available by name.

	detach
	Remove data frame from search list.

	
	

	Lists
	

	list
	Construct a list.

	$
	Subscript a list.

	
	

	Summaries
	

	is.na
	Flag missing values.

	summary
	Get summary statistics for object.

Example 2. Calculating Returns

Script file: returns.ssc
Open ftse100vec.sdd to create the vector ftse100vec. This is a vector of 522 daily FTSE values, from February 14 1997 to February 15 1999. Create a time series graph of the index with

tsplot(ftse100vec)

We wish to calculate daily returns of the series Rt = log(Pt/Pt-1). This can be done easily using S-PLUS’s vector arithmetic. First, count the number of values we have:

N <- length(ftse100vec)

Next, calculate the ratios Pt/Pt-1, starting at t=2. This is done by selecting a sub-vector of the last N-1 values (ftse100vec[2:N]) and dividing by the first N-1 (ftse100vec[1:(N-1)]) to create a new vector ratios:
ratios <- ftse100vec[2:N]/ftse100vec[1:(N-1)]

Finally, take the natural log of each value in the vector ratios to create a vector of returns.

ftse100.r <- log(ratios)
Note that the log function is a vector function and returns a vector value (the log of all the elements of its argument.)

A more concise solution makes use of the built-in diff function which returns pairwise differences vi – vi-1 (the result has one value fewer than the argument):

ftse100.r <- diff(log(ftse100vec))

Exercises

1. Plot the FTSE100 returns using tsplot
2. Open sp500vec.sdd to create the vector sp500vec. This is the daily S&P 500 index from 1 Oct 1997 to 31 Aug 1998. Calculate and plot returns of this index (save the returns in a vector called sp500.r)

3. Since calculating returns from a time series is something we will wish to do often, it’s useful to create a function to create them:

returns <- function(vec) { diff(log(vec)) }

(We will discuss functions in more detail later in the course.) Open nikkeivec.sdd and use the newly-defined returns function to calculate returns from nikkeivec (daily Nikkei, from 1 Oct 1997 to 31 Aug 1998).

nikkei.r <- returns(nikkeivec)

Since the Nikkei and S&P500 data are over the same period, it makes sense to plot the returns on the same graph:

tsplot(nikkei.r,sp500.r, lty=1)

See help(tsplot) for an explanation of the lty=1 argument.

4. Calculate cumulative returns Ct = (Pt-P1)/P1 (the percentage increase since the start of the series) of the FTSE100 index, and plot them.
5. Programmers of C or Fortran might be tempted to calculate returns using a for loop:

N <- length(ftse100vec)
ftse100.r <- rep(0,N-1) # a vector of N-1 zeroes
for(i in 1:(N-1)) {
 ftse100.r[i] <- log(ftse100vec[i+1]/ftse100vec[i])
}

This method is much slower than using S-PLUS’s vector capabilities. You can time an expression by using the dos.time function. Compare the results of

dos.time({

N <- length(ftse100vec)

ftse100.r <- rep(0,N-1)

for(i in 1:(N-1)) {

ftse100.r[i] <- log(ftse100vec[i+1]/ftse100vec[i])

}
})

with

dos.time({

ftse100.r <- diff(log(ftse100vec))
})

Example 3. Introduction to the command line

Exercise: Finding Objects

1. The S-PLUS function lm is used in classical linear regression modeling.

a. Type search() at the prompt to identify the directories in your current search list. Guess which directory contains the object lm. Then use the function find to check your guess.

b. The function objects contains an argument called pattern. Read about this by typing help(objects) at the command line. Use the pattern argument of objects to identify all the objects in the above directory which begin with "lm".

The asterisk * is a symbol used for pattern matching. For example, pattern = "cow*" in the argument for objects mean to list those objects which start with the letters cow followed by any other character string.

c. Identify all the objects in the above directory which contain "lm". This list should be longer than that in part b.

Answers

> find("lm",num=T)
[1] c:\\program files\\sp2000\\splus_Functio
 2
The function lm can be found in the second database in the search path.
a. > objects(where = 2, pattern = "lm*")
 [1] "lm" "lm.fit.qr"
 [3] "lm.fit.svd" "lm.influence"
 [5] "lm.wfit "lmList"
 [7] "lmRo "lmRobMM.effvy"
 [9] "lmRobMM.fit" "lmRobMM.fit.computations"
 . . .
Designating where = 2 tells S-PLUS to look in the second database in the search path.

b. > objects(where = 2, pattern = "*lm*"),
 [1] "add1.lmRobMM" "add1.mlm"
 [3] "anova.glm" "anova.glmlist"
 [5] "anova.lm" "anova.lmRobMM"
 [7] "anova.lmRobMM.list" "anova.lme"

The argument pattern="*lm*" indicates objects whose name begins with any string, contains "lm", followed by any string. The use of * is similar but not identical to the use of * in UNIX.
Example 4. Basic vectors

Script file: basicvector.ssc
This exercise is intended to familiarise you with basic vector manipulation.

Exercises

1. Find the values of the following:

> rep(2,1)

> rep(1,2)

> rep(1:10,2)

> rep(1:10,1:10)

2. How many elements are there in rep(1:10,1:10)? Use the function length to answer the question.

3. Automatic coercion.

a. Perform c(letters, 1, 2). What has happened to the letters?

b. Perform c(letters, T, F). What has happened to the logical values T and F? Explain.

c. Perform c(7, 5, T, F). What has happened to the values? Explain.

4. Assign w to be the vector 3 4 –5 7 8 12 10 4 -3
a. What is happening here?

> w[w < 0]
[1] –5 –3

b. What is happening here?

> (1:length(w))[w < 0]
[1] 3 9
c. What is happening here?

> w[w==8] <- 100
[1] 3 4 –5 7 100 12 10 4 -3
d. What is happening here?

> w[w < mean(w)]
[1] 3 4 –5 4 –3

> (1:length(w)][w < mean(w)]
1 2 3 8 9
5. Find the built-in object corn.rain. It contains measurements of the annual rainfall, in inches, in the six U.S. corn-belt states during the years 1890 to 1927.

a. What is happening here?

> corn.rain[corn.rain > 10]
[1] 12.9 12.5 13.0 10.1 10.1 10.1 10.8 16.2
[9] 14.1 10.6 11.5 13.6 12.1 12.0 11.0 16.5
[17] 11.6 12.1 10.7 13.9 11.3 11.6 10.4

b. What is happening here?

> (1:length(corn.rain))[corn.rain > 10]
[1] 2 6 7 8 9 10 11 13 14 15 17 18 19
[14] 20 23 26 31 32 34 35 36 37 38
Answers

> rep(2,1)
[1] 2

> rep(1,2)
[1] 1 1

> rep(1:10,2)
[1] 1 2 3 4 5 6 7 8 9 10 1 2 3 4
[15] 5 6 7 8 9 10

> rep(1:10,1:10)
[1] 1 2 2 3 3 3 4 4 4 4 5 5 5
[14] 5 5 6 6 6 6 6 6 7 7 7 7 7
[27] 7 7 8 8 8 8 8 8 8 8 9 9 9
[40] 9 9 9 9 9 9 10 10 10 10 10 10 10
[53] 10 10 10

1. There are 55 elements; 1 one, 2 twos, 3 threes, etc., making a total of 1+2+3+...+10=55 elements.

> length(rep(1:10,1:10))
[1] 55
3. a. The numbers have been forced into "character" mode, since all elements of a vector must have the same mode. The "character" mode of letters has less information than the "numeric" mode of 1 and 2, so everything is put into "character" mode.

> c(letters, 1, 2)
[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j"
[11] "k" "l" "m" "n" "o" "p" "q" "r" "s" "t"
[21] "u" "v" "w" "x" "y" "z" "1" "2"

b.
The logical values T and F have changed to mode "character".
> c(letters, T, F)
[1] "a" "b" "c" "d" "e" "f"
[7] "g" "h" "i" "j" "k" "l"
[13] "m" "n" "o" "p" "q" "r"
[19] "s" "t" "u" "v" "w" "x"
[25] "y" "z" "TRUE" "FALSE"

c. The logical values T and F have changed to mode "numeric".
> c(7, 5, T, F)
[1] 7 5 1 0

4. > w <- c(3, 4, -5, 7, 8, 12, 10, 4, -3)

a. w < 0 will produce the vector F F T F F F F F T. Thus, w[w<0] is equivalent to w[c(F,F,T,F,F,F,F,F,T)] and hence, your output will consist of –5 and –3.

b. > (1:length(w))
[1] 1 2 3 4 5 6 7 8 9
Thus, (1:length(w))[w < 0] will pick out those indices for which w < 0, namely 3 and 9.

c. Replace those entries of w equal to 8 with 100.

> w[w==8]<- 100
[1] 3 4 –5 7 100 12 10 4 –3

d. First, note that

> mean(w)
[1] 4.44

Thus, w[w < mean(w)] is producing those values of w that are less than 4.4.

Since (1:length(w)) yields the sequence 1 2 3 4 5 6 7 8 9, (1:length(w))[w < mean(w)] results in the positions (coordinates) of those values of w that are less than the mean of w.

5. a.
This first command selects the measurements that are greater than 10 inches.

(corn.rain > 10) produces a logical vector.

> mode(corn.rain>10)
[1] "logical"

> corn.rain > 10
1890: F T F F F T T T T T T F T T T F T T T T
1910: F F T F F T F F F F T T F T T T T T
b.
The actual subscripts corresponding to the measurements over 10 inches are returned by the command in this part of the question. To see this, notice first that there are 38 observations in corn.rain.

> length(corn.rain)
[1] 38
> 1:length(corn.rain)
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13
[14] 14 15 16 17 18 19 20 21 22 23 24 25 26
[27] 27 28 29 30 31 32 33 34 35 36 37 38
The logical vector corn.rain > 10 can now be used to subscript the numerical vector 1:length(corn.rain).

Example 5. Basic matrices

Script file: basicmatrix.ssc
1. Create a matrix that looks like this:

a. [,1] [,2] [,3] [,4]
[1,] 12 9 6 3
[2,] 11 8 5 2
[3,] 10 7 4 1

b. Now make one that looks like this:

 [,1] [,2] [,3] [,4]
[1,] 12 11 10 9
[2,] 8 7 6 5
[3,] 4 3 2 1

c. Create this matrix:

 [,1] [,2] [,3]
[1,] 2 -3 0
[2,] 4 -2 0
[3,] 6 -1 0
[4,] 8 0 0
[5,] 10 1 0

2. Create a 5 by 2 matrix named B using the first 10 elements of the letters vector. What is the mode of this matrix? What is the dim? What is the length?

3. What is the effect of trying to form a matrix using cbind with vectors of differing lengths? Try

> cbind(1:5, 6:10,11:20)

> cbind(1:5, 6:10, 11:22)

4. (optional) What is happening in these lines?

> A <- matrix(1:9, ncol=3)

> A
 [,1] [,2] [,3]
 [1,] 1 4 7
 [2,] 2 5 8
 [3,] 3 6 9

> A[A[,2] > 4,]
 [,1] [,2] [,3]
 [1,] 2 5 8
 [2,] 3 6 9

> A[A[,2] > 4,A[1,] > 2]
 [,1] [,2]
 [1,] 5 8
 [2,] 6 9

> A[A > 4]
 [1] 5 6 7 8 9

Answers

a. > matrix(12:1, nrow = 3)

creates the first matrix.

b. A possible way to create the second matrix:

> matrix(12:1, nrow = 3, byrow=T)

c. A possible solution for the third matrix:

> cbind(seq(2,10,by=2),-3:1 , rep(0,5)

2.
> B <- matrix(letters[1:10], nrow=5, ncol=2)

 > B
 [,1] [,2]
[1,] "a" "f"
[2,] "b" "g"
[3,] "c" "h"
[4,] "d" "i"
[5,] "e" "j"

is one possible 5x2 matrix you can make for this exercise. What other commands can you use to create a 5x2 matrix with this data?

3. In both cases, columns 1 and 2 are cyclically replicated. Since the length of column 1 (and column 2) divides evenly into the length of column 3 (5 goes into 10), S-PLUS does this replication without complaint. In the second example, since the length of column 1 (and 2) does not divide evenly into the length of column 3 (5 does not divide 12), S-PLUS will produce a warning message.

4. > A[A[,2] > 4,]
 [,1] [,2] [,3]
[1,] 2 5 8
[2,] 3 6 9

These are the rows of A for which the second element from the left is at least 4.

> A[A[,2] > 4,A[1,] > 2]
 [,1] [,2]
[1,] 5 8
[2,] 6 9

These are the same rows of A as the first example, but in each of these two selected rows, we only select certain columns. Those columns are the ones which have value greater than 2 in the first row, namely columns 2 and 3. This works out to a 2x2 submatrix of A. It is the same as:

> A[2:3,2:3]
 [,1] [,2]
[1,] 5 8
[2,] 6 9

> A[A > 4]
[1] 5 6 7 8 9

These are the elements of A which are greater than 4. These elements do not form a submatrix of A, and are thus represented in vector format by S‑PLUS.

Example 6. Basic data frames

Script file: dfbasics.ssc
Exercises

1. Construct the data frame that is shown below.

 Odds Evens
 1 2
 3 4
 5 6
 7 8
 9 10
 11 12
 13 14
 15 16
 17 18
 19 20
2. Add a column to the above data frame called Integers that contains the integers from 1 to 10.

3. Create a new data frame that contains the first and last three columns of ftse100data.

4. The built-in object ethanol is a data frame. What are the row and column names of ethanol?

5. Attach the built-in ethanol data frame and then find the values of NOx (concentration of NO and NO2) for which C (the compression ratio of the engine) is greater than 11.

6. (optional) Compare the examples below:

> ethanol$E[1:3]

> ethanol[1:3]$E

How would you alter line two to give the same result as line 1?

Answers
1. Note the vector arithmetic used with the sequence operator ":".

> oddevens <- data.frame(Odds=1+2*(0:9), Evens=2*(1:10))

> oddevens
 Odds Evens
 1 2
 3 4
 5 6
 7 8
 9 10
 11 12
 13 14
 15 16
 17 18
 19 20
2. > oddevens <-cbind(oddevens, Integers=1:10)

Another way:

> oddevens[3] <- 1:10

> names(oddevens)[3] <- "Integers"

> oddevens

3. > length(ftse100data)
[1] 20 #Note: answers may vary here
> states.temp <- states1998[18:20]

4. The column names are given by names(ethanol), and the row names are given by row.names(ethanol).
> names(ethanol)
 [1] "NOx" "C" "E"

> row.names(ethanol)
[1] "1" "2" "3" "4" "5" "6" "7" "8"
[9] "9" "10" "11" "12" "13" "14" "15" "16"
[17] "17" "18" "19" "20" "21" "22" "23" "24"
[25] "25" "26" "27" "28" "29" "30" "31" "32"
[33] "33" "34" "35" "36" "37" "38" "39" "40"
[41] "41" "42" "43" "44" "45" "46" "47" "48"
[49] "49" "50" "51" "52" "53" "54" "55" "56"
[57] "57" "58" "59" "60" "61" "62" "63" "64"
[65] "65" "66" "67" "68" "69" "70" "71" "72"
[73] "73" "74" "75" "76" "77" "78" "79" "80"
[81] "81" "82" "83" "84" "85" "86" "87" "88"
5. > attach(ethanol)

> NOx[C > 11]
1 2 3 4 5 6 7 8
3.741 2.295 1.498 2.881 0.76 2.358 0.606 3.669
…

> detach("ethanol")

6. The first line selects the column labeled E from ethanol and then further selects the first 3 elements from that column vector. This is the same as ethanol[1:3,3].
The second line selects the first 3 columns from the data sheet ethanol. To see what is meant by this, simply type ethanol[1:3] at the S-PLUS command line. This returns all of ethanol since there are only three columns in this data sheet. Next, the column E is selected from these three columns. As a result, exactly the column E is returned. This is the same as ethanol[,3].
A simple way to alter the second line, making it equal to the first, would be to insert a comma after 1:3, making this a row specification:

> ethanol[1:3,]$E
[1] 0.907 0.761 1.108

> ethanol$E[1:3]
[1] 0.907 0.761 1.108

Example 7. Basic Lists

Script file: basiclists.ssc
Exercises

1. We will investigate lists some more.

a. Create two lists with the following commands.

> easy <- list(x=1:10, y=20:10, z=c("first", "second"))

> hard<-list(easy=easy,new=list(1,4:5,9),-43)

b. Print the name of the components using the names function.

c. Find the values of these:

easy$z hard$easy$z hard[[3]]
d. What is the difference between hard[[3]] and hard[3]? (Hint: try adding 1 to each.)

2. Many S‑PLUS expressions return lists as their output. For example, dimnames always returns a list. Find the components of dimnames(swiss.x).

Answers

1. a. > easy <- list(x=1:10, y=20:10, z=c("first", "second"))

> hard<-list(easy=easy,new=list(1,4:5,9),-43)

b.
> names(easy)
[1] "x" "y" "z"

> names(hard)
 [1] "easy" "new" ""

c. > easy$z
[1] "first" "second"

> hard$z
NULL

> hard[[3]]
[1] -43

> hard[3]
 [[1]]:
 [1] -43

d. > mode(hard[[3]])
[1] "numeric"

> mode(hard[3])
 [1] "list"

> hard[[3]] + 1
[1] -42

> hard[3] + 1
Error in hard[3] + 1: Non-numeric first operand
 Dumped
From the output of mode, we see that hard[3] is a list, while hard[[3]] is a numeric character. Thus it makes no sense to add 1 to hard[3].
2. dimnames(swiss.x)

[[1]]:
character(0)

[[2]]:
[1] "Agriculture" "Examination" "Education"
[4] "Catholic" "Infant Mortality"

Example 8. Factor Basics

Script file: factorbasics.ssc
1. Look at the help file for the cut function, then study the example below to see how this function works.

> x<-c(9,2,3,1,4,5,5,10,5,6,1,1)

> y<-cut(x,breaks=c(0,3,7,10))
> y
[1] 3 1 1 1 2 2 2 3 2 2 1 1
attr(, "levels"):
[1] "0+ thru 3" "3+ thru 7" "7+ thru 10"
> data.class(y)
[1] "factor"

2. Create a factor object sp500.quin from sp500.r (returns of SP500, as calculated in the exercise “Calculating Returns”) as follows. Use the cut function to divide into 5 levels v.low, low, mod, high, v.high, with the quintiles of the data defining the breaks. Use quantiles(sp500.r, seq(0,1,length=6)) to find the break points.

Answers

1. cut determines the interval ("level") into which each element of x falls:

level 1 is the interval from 0 to 3 (inclusive);
level 2 is the interval from 3 to 7 (inclusive);
level 3 is the interval from 7 to 10 (inclusive).

2. Try this.

> quins <- quantile(sp500.r, seq(0, 1, length = 6))

> sp500.quin <- cut(sp500.r, breaks = quins)

> sp500.quin <- ordered(sp500.quin,

+ labels = c(“v.low", "low", "mod", "high", "v.high"))

> sp500.quin[1:10]
 [1] high high v.high v.low low low

 [7] mod mod low v.low

 v.low < low < mod < high < v.high

> table(sp500.quin)
 v.low low mod high v.high

Example 9. Comparison basics

Script file: comparison.ssc

This exercise is designed to introduce logical vectors and the comparison operators.

Exercises

1. Comparison of vectors

a. Create a vector w consisting of 3 6 2 –1 8 –2 –1.

b. Write an S-PLUS command that returns a vector of logical values that indicates T when the elements of w are negative and F when they are non-negative.

c. Write an S-PLUS command that returns a vector of those positive elements of w.

d. Write an S-PLUS command that returns the indices of w for which the elements of w are positive.

e. Write an S-PLUS command that returns the sum of the squares of the elements of w.

2. Find the minimum of each of the last three columns in the built-in data set car.test.frame.

3. Create a vector d of length 20 using the built-in function rnorm. Suppose we wish to replace those entries of d that are less than –1 with the value of –1. Use ifelse to find this new vector.

Answers

1.

a. > w <- c(3,6,2,-1,8,-2,-1)

b. > w < 0
[1] F F F T F T T
> w[w > 0]
[1] 3 6 2 8

> seq(along=w)[w > 0]
[1] 1 2 3 5

> w %*% w
 [,1]
[1,] 119

or

> sum(w^2)
 [1] 119

2. > length(car.test.frame)
 [1] 8

> apply(car.test.frame[6:8],2,min)
 Weight Disp. HP
 1845 73 63

3. To standardize the answer, we’ll set the seed for the random number generator.
> set.seed(0)
> d<-rnorm(20)

> d
 [1] 0.0086292430 -0.0382391091
 [3] -1.0168024543 -0.1324462528
 [5] -0.3603491998 -0.0337469778
 [7] -1.8831606111 0.3368386818
 [9] -0.0003541437 1.2066770747
[11] -0.0204049459 -1.0119328923
[13] 0.9163081264 -1.3829848791
[15] -0.4695526978 -0.8035892599
[17] 0.9026407992 -1.1558698525
[19] 0.1049802819 0.2302154933
> ifelse(d < -1, -1, d)
[1] 0.0086292430 -0.0382391091 -1.0000000000 –
[4] 0.1324462528 -0.3603491998 -0.0337469778 –
[7] 1.0000000000 0.3368386818 -0.0003541437
[10] 2066770747 -0.0204049459 -1.0000000000
[13] 0.9163081264 -1.0000000000 -0.4695526978
[16] -0.8035892599 0.9026407992 -1.0000000000
[19] 0.1049802819 0.2302154933
Caution: Be sure that there is a space between the less than sign and the minus sign in the first argument to ifelse.

Example 10. Calculating volatilities

Script file: vols.ssc
In this example we calculate various kinds of volatilities from returns of a time series. Open the data file fxrets.ssc (see Chapter 7 of the lecture notes for a description of the data).

Historic Volatilities

The historic volatility is just the standard deviation of the returns, appropriately annualised. A simple function to do this is

vol.h <- function(x) sqrt(250*var(x))*100

For example, to calculate the historic vol of the DEM series

> vol.h(fxrets[, "DEM"])
[1] 11.92981
This can be calculated for every column of a matrix using apply.

Moving-Average volatilities

Historic volatilities give all returns equal weight, however far back in time they are. A moving-average vol uses a fixed-size window (e.g. the past 30 days), and calculates the standard deviation (or equivalently, the sum of the squared returns assuming zero mean) over that period. The ‘logical’ way to do this is with a for loop:

> x <- fxrets[, "JPY"]

> n <- length(x)
> JPY.30.s <- rep(NA, n)
> for(i in 30:length(x))

+
JPY.30.s[i] <- 100 * sqrt(250 * mean(x[(i - 29):i]^2))
However, this is computationally inefficient. A much faster way is to use the inbuilt function filter, which sweeps a multiplicative vector of coefficients across a vector.

vols.nday <- function(x,n=30) {

 100*sqrt(250*filter(x^2,rep(1,n)/n,sides=1))

}

Verify for yourself that this gives the same answer as the previous method (in much less time!).

RiskMetrics volatilities

RiskMetrics uses Exponentially Weighted Moving Average (EWMA) estimates of volatility. Unlike the MA method where the window is of a fixed size N and the weights are uniformly 1/N, the EWMA “window” stretches back indefinitely with weights (, (2, (3, (4, … (scaled to add to 1). This uses all of the historical data, but puts greater weight on recent returns. We can compute this again using the filter function with the method=”recursive” option to implement the updating formula volt = (1-()rt + (volt-1.

ewma <- function(series, lambda = 0.94)
{

series <- series^2

ou <- filter((1-lambda)*series,lambda,

 method="recursive",init=series[1]/lambda)

100*sqrt(250*ou)

}

GARCH volatilities

The garch function (from the optional GARCH module) can be used to fit a variety of GARCH models. The sigma.t component of the model object contains the daily volatilities under the model. In this function, we fit a garch(1,1) model and return the annualised volatilities from the model object.

garch.vols <- function(y) {

obj <- garch(y~1, ~garch(1,1), trace=F)

100*sqrt(250)*obj$sigma.t

}

Note: you must load the GARCH module with

> module(garch)

before you can use this function.

Exercises

1. Calculate the historical volatility (over all 5 years of data) for each of the supplied currency returns. Sort the result to find the currencies with the highest and lowest volatilities.

2. Calculate 60-day moving average vols for the JPY series, and plot on the same graph with the 30-day vols.

3. Calculate 45-day moving average vols for all currencies, and plot on a single graph.

4. Calculate RiskMetrics vols for each series at every time point, and plot on a single graph.

5. Calculate Garch(1,1) vols for each series and plot on the same graph

6. Plot the historic (horizontal line), 45-day MA, RiskMetrics and Garch vols for the ITL series on the same graph. How do these change if the large negative return is deleted?

Example 11. Merging messy data & plotting yield curves

Script file: yieldcurve.ssc
In this example, we wish to merge together several data files (each containing daily yields for treasury bonds at a single maturity) into a single data frame whose rows are dates, and whose columns are the different maturities. The data files are tb3mo.csv, tb6mo.csv, tb1yr.csv, tb5yr.csv, tb10yr.csv, tb30yr.csv. Each file has five columns – the first is a column of dates (in yymmdd format, as a number), and the remaining 5 columns are the open, high, low, close (all equal) and the volatility (always zero). This strange format is what was supplied by the data vendor, and there are other problems as well:

· Until mid-1998, the 10yr series was only recorded weekly, and erratically after that

· One value was not supplied for each of the 3mo, 6mo and 1yr series

So it won’t do simply to combine the columns into a single matrix; we need to align the dates.

First, read in all the .csv files. This could be done manually using the menus, but here’s a way of automating the process with import.data. First, create a pointer to the directory where the files reside, and a vector of file names (sans extension):

dirname <- "D:\\course\\data disk\\"

filenames <- c("Tb3mo","Tb6mo","Tb1yr","Tb5yr","Tb10yr","Tb30yr")

Note the use of \\ in the filename (\ is a quoting character in S strings). / may also be used as a path separator in S-PLUS. Next, loop through the filenames (using paste to glue on the filename and extension) to import the data:

for(filename in filenames) {

import.data(FileName = paste(dirname,filename,".csv",sep=""),

FileType = "ASCII",

DataFrame = filename,

Delimiters = ",",

SeparateDelimiters = T)

}
}

This creates the data frame objects Tb3mo, Tb6mo, Tb1yr, Tb5yr, Tb10yr, Tb30yr. Next, create a sorted vector daterange of all the dates represented in the data files.

daterange <- sort(unique(c(Tb3mo[,1],Tb6mo[,1],Tb1yr[,1],
 Tb5yr[,1],Tb10yr[,1],Tb30yr[,1])))

c() concatenates vectors into a single vector, and unique() returns a vector of the unique values (so each date only appears once). Next, count the number of unique dates – this will be the number of rows in the final data frame.

N <- length(daterange)

Next, build up a data frame whose first column is the dates, with a further 6 columns (initially a dummy column containing missing values) for the yields.

dummy <- rep(NA,N)
treasurybill <- data.frame(date=daterange, Tb3mo=dummy,
 Tb6mo=dummy, Tb1yr=dummy, Tb5yr=dummy,
 Tb10yr=dummy, Tb30yr=dummy)

Finally, replace the values in each column where we have data with the yields. match() is used to find the rows of the column where we have data to replace.

treasurybill[match(Tb3mo[,1],daterange),"Tb3mo"] <- Tb3mo[,2]
treasurybill[match(Tb6mo[,1],daterange),"Tb6mo"] <- Tb6mo[,2]
treasurybill[match(Tb1yr[,1],daterange),"Tb1yr"] <- Tb1yr[,2]
treasurybill[match(Tb5yr[,1],daterange),"Tb5yr"] <- Tb5yr[,2]
treasurybill[match(Tb10yr[,1],daterange),"Tb10yr"] <- Tb10yr[,2]
treasurybill[match(Tb30yr[,1],daterange),"Tb30yr"] <- Tb30yr[,2]

Exercises

1. Convert the date column (currently numeric) to a dates object.

2. Plotting the yield history. View the treasurybill data frame in a data window. (Use the Object Explorer, or Data ► Select Data from the menu, or Edit.data(treasurybill) from the command line.). Click on the header of the date column, then control-click on the remaining columns. Open up the 2-D plot palette ([image: image1.png]

) and press [image: image2.bmp] (line plot).
3. Not much of the 10yr series is shown, because the line is being broken at the missing values. Right-click on the 10yr series (light blue) and choose “Line” in the context menu. Clear the “Break line at missing values” checkbox.
4. Add a legend by clicking on the Auto Legend button [image: image3.bmp], and insert a suitable title with Insert ► Titles ► Main (click outside the text box to close it). Click on the Y axis (a green square will appear on it) and select Insert ► Titles ► Axes. Enter “Yield” in the text box. Save the graphsheet or export it to a file if you wish, or choose Edit ► Copy GraphSheet page to copy and paste it into another document.

[image: image4.png]ck Columns [

P To
Data et freasuybil 7] | | DataSet fostack =]
Stock Coams: [Tb3maThomo, =] | | StackCoune: il]
Replcae Cols [dae <] | Pegicato s [dae
IV Create Group Column Group Column: | maturity

ok | carce | _tont | [o T 5

5. Plotting the yield curve. We first need to restructure the data frame into a new data frame with a single column of yields (with another column indicating the maturity). From the menu, choose Data ► Restructure ► Stack and fill in the dialog as shown above. (For the Stack Columns field, select Tb3mo through Tb30yr with Ctrl-click.)

6. Click on the header of the maturity column in tbstack. This column is of class factor, which means if we use it for plotting the points will be sorted alphabetically (tb10yr, tb1yr, …) which isn’t what we want. Click on the Change Data Type button [image: image5.bmp] and change the type to character.

[image: image6.png]Change Data Type

[_[C1x]

From Tope

Data et bstack]| | curertIvpe: Jfactor

Coluns: matuty]| NewType: T~
Cancel i [eurent Help

7. Control-click on the column headers maturity and yield (in that order), and click on the Spline button [image: image7.bmp].
Example 12. Factor models and robust betas

Script file: robustbeta.ssc

Follow the example of Chapter 7 in calculating alpha and beta for Yahoo, but instead of using the function lm, use lmRobMM instead. This function uses an advanced estimation procedure where the parameter estimates are unbiased even when the data are contaminated by a small number of outliers (unusual values). Compare the alphas and betas from the two methods.

Example 13. Monte-Carlo option pricing

Script file: mcoptions.ssc
In this example, we investigate various Monte-Carlo methods for pricing options on the FTSE100 Index.

Exercises

1. Do a time series plot of ftse100 returns (open ftse100vec.sdd if you don’t have the object). Does the volatility seem constant?

2. Draw a histogram of the returns (use hist). Does the distribution seem symmetric?

3. Draw a Normal Scores plot of the returns (use qqplot). Do the returns seem to come from a Normal distribution?

4. Plot the autocorrelation function of the returns (use acf). Do the returns seem serially independent?

Monte-Carlo Option Pricing

We wish to sell a European call option for a certain security with a strike price of X. If we could see into the future, the perfect (zero-profit) price of the call option sold at time 0 with maturity in T days would be

C = max(P(T)-X,0)

where P(T) is the price of the security after T days. We can’t see into the future, but suppose instead we could simulate a price path PS(t) (t = 0, …,T) under some reasonable model. This would give us a simulated price CS. An S function to do this, given a price path in the vector path and the scalar value strike is:

price <- function(path,strike) {

N <- length(path)

max(path[N]-strike,0)

}

Better yet, simulate a large number N of price paths to get N simulated prices CS1,…,CSN, and look at the distribution of the simulated call prices. For example, we could use the average of the simulated prices to price the option. (This might not be a good idea, though.)

Simulating Normal paths

The plots generated in the exercises strongly suggest that the distribution of the returns is not normal (rather, it seems heavy tailed), although the autocorrelation is minimal. Nonetheless, many models (e.g. Black-Scholes) assume normality of the returns. A function to simulate N returns from a Normal distribution (of specified mean m and volatility vol expressed as a percentage), and convert it to a price path beginning with value start is simple
:

sim.Npath <- function(N, vol=10, m=0, start=100) {

r <- rnorm(N-1, m, vol/(100*sqrt(250)))

start*exp(cumsum(c(0,r)))

}

5. Try plotting simulated paths of length 100 with various volatility and mean values. Try using the actual mean and volatility of the SP500 returns.

6. Simulate N=1000 price paths (use a for loop) and calculate the 90-day option price based on the simulated path. Use the mean and volatility from the actual SP500 returns, with a starting value of 5000 and a strike price of 5500. Save the simulated option prices into a vector, and plot a histogram. Calculate the mean and median of the simulated prices. Does using the mean seem like a good method of pricing the option?

Normal Mixtures

Simulating from a Normal distribution of returns is clearly incorrect. We need to take into account the leptokurtotic (heavy-tailed) nature of the returns somehow. A common practice is to model the returns as a mixture of two Normal distributions (i.e. a return comes from N(m1,s1) with probability p, and N(m1,s2) otherwise). S-PLUS has no built-in functions for this distribution, but the script file defines functions dnormix (density function) and rnormix (generate random numbers) for this distribution, and uses Maximum Likelihood (function nlminb) to estimate the parameters.

7. Run the script file to estimate the mixture parameters, and then simulate 90-day price paths with a strike of 5500 and a start of 5000. How does this option price distribution compare with the simulation based on the Normal distribution?

Bootstrap

Even the Normal Mixture is only an approximation to the true, unknown distribution of returns. By randomly sampling from the historic returns, we are guaranteed to have a distribution which is the same as the true distribution. Repeated random samples can then form the basis of a simulation. S-PLUS has a function bootstrap designed to do just this. (Consult the help files for this function for details.)

8. Run the commands from the script file for the bootstrap, and compare the results to the other methods.

Example 14. Black-Scholes scenarios

Script file: blackscholes.ssc
The script file defines a number of useful functions for calculating call/put prices for European options under the Black-Scholes model.

1. Use callprice.bs to price a 30-day option with a strike of 95, a current price of 100. Assume a risk-free rate of interest of 0%, and a volatility of 7% (sigma=0.07).

2. callprice.bs is a vectorised function. Use this fact to calculate call prices for the same option as above for a range of strikes between 50 and 120. Plot the call against the strike.

3. Open a Trellis Device with trellis.device(). This is a special graphsheet with colours set for use with Trellis graphics. Call the function example.bs.callprice.cond() to create a trellis graph showing the call price calculated using callprice.bs for a strike of 100 for a range of current prices between 30 and 129. The four panels show for different times to expiration (0, 26, 39 and 51 weeks) and the lines on each panel show different volatilities. Experiment with the arguments of example.bs.callprice.cond()to display other scenarios.

4. Run the function example.bs.trellis.all(). This creates a 4-page graphsheet; the first 2 pages are trellis graphs of the call price, and the second two are trellis graphs of vega (a Greek). Have a look at the functions it calls to see what’s going on.

� This does not take into account the continuity correction (Ito’s Lemma). See the script file for a version of the function that does.

PAGE
25

