C-14 Appendix C: Troubleshooting
Appendix C: Troubleshooting C-15

Appendix C

Troubleshooting

Contents

C-3C
Troubleshooting

C.1
Programming Style
C-4
C.2
Debugging Tools
C-6
C.2.1
masked
C-7
C.2.2
traceback
C-8
C.2.3
cat and print
C-9
C.2.4
browser
C-10
C.2.5
debugger
C-14
C.2.6
trace and inspect
C-16

C Troubleshooting

This section presents valuable information and tools to facilitate the development of S-PLUS functions.

· Programming Style gives some guidelines to keep in mind when writing functions.

· Debugging Tools provides information on functions in S-PLUS which aid in debugging when writing functions.

Programming Style

The S-news Frequently Asked Questions list contains the following suggestions for writing high-quality S-PLUS functions. Not all of these techniques will be required for every function written, but they are useful guidelines to keep in mind.

Before you write a major function, i.e. one implementing an involved statistical procedure, check whether such a function already exists. Places to look include

· The S-PLUS documentation Some procedures are implemented as special cases of other procedures, so the indices of the manuals may provide leads that help files do not.

· StatLib Look at the StatLib index to see if there is something similar to what you need.

· S-news Someone may have already written a function to do what you want. A question to the S-news list with a brief description of what you want might elicit useful responses. Remember that S-news is read by thousands of busy individuals, so exhaust the other options before turning to S-news and do not abuse the good-will of the list members.

Use full names for arguments and function names. Arguments can be abbreviated when calling the function, so the full name doesn’t hurt.

Provide reasonable defaults for arguments.

Read current S-PLUS code to see some examples of good style.

Start simply, get something working immediately and build capabilities gradually and interactively. Try to think of your computation in “whole data” terms. What is it trying to produce as a final result? Do not rush in to write it as a sequential Fortran algorithm.

Use self-checking computations while doing interactive data analysis. Try to think of ways to check your work. For example, sum(resid)==0.
Debugging functions such as browser and traceback may be of help.

Try to deal with the most general situation if doing so is not too onerous. For example, write code to treat NA’s, character data, lists, and zero-length arguments correctly, rather than expecting numeric vectors. One the other hand, it’s easy to over-develop code. It’s better to have short, simple computations that do 90% of all cases than to try to accommodate all possible cases.

Do appropriate error checks on arguments. Otherwise, the default error message may be cryptic.

Try to avoid explicit loops if there are suitable primitives available that can do the job. (Note that some primitives also use loops, e.g. apply. They are, however, likely to be written with more care than you might be willing to give.)

Be especially careful of building up a vector element by element in loops. When necessary, element by element computations should be done by creating an object and then replacing pieces of it rather than having an object grow by gluing together pieces.

Use comments where appropriate. Write documentation.

Graphics functions should change as little of the graphics state as possible. This allows the user (or function) that calls the graphics function to achieve its own specialization.

Use on.exit to clean up by resetting graphics parameters, removing temporary files, etc.

 Debugging Tools

The main functions available in S-PLUS for debugging, in approximate order of complexity of the debugging problem, are:

masked
Checks if a built-in function or data object had been masked by a user-defined object with the same name.

traceback
Prints out the sequence of function calls that was being executed when an error occurred.

cat and print
Print out text and object values.

browser
Freezes a function call at a particular frame and allows you to examine the current values of all objects in that frame.

debugger
Used in conjunction with dump.frames; allows you to examine the contents of the current frame and all calling frames.

trace
Prints out a message every time a particular function is called and prints the value the function returns.

inspect
Allows you to step through the computations of a function one expression at a time.

masked

As mentioned previously, the masked function will list objects in the working directory which are masking objects in other directories.

> c <- 2

> mean(c(1,2,3))
[1] 2
Warning messages:
 Looking for object "c" of mode "function", ignored one of mode "numeric"

> masked()
[1] ".Random.seed" "c"
In good cases the effect of calling a masked object will be a warning message. In bad cases masking an object will lead to incorrect results. This is most likely to occur if you use the name of a built-in function for a function you create.

traceback

The traceback function is used after an error has occurred to identify the sequence of function calls which led up to the error.

The output of traceback is the listing of calls that created the frames, starting with the frame in which the error occurred and going backwards to the expression frame.

Example Exploring the error in the previous section.

> my.lm.func(Mileage~Weight,fuel.frame)
Error: Object "my.formula" not found
Dumped

traceback()
Message: Object "my.formula" not found
12: model.frame(formula = my.formula, data =
y.data)
11: eval(m, sys.parent())
10: lm(formula = my.formula, data = my.data,
method = "model.frame")
9:
8: eval(oc, list())
7: model.frame.lm(lm)
6: model.matrix.default(lm$terms,
odel.frame(lm), contrasts = lm$contrasts
)
5: lm.influence(fit)
4: Cooks.lm(lm.obj)
3: plot.lm(fit)
2: my.lm.func(Mileage ~ Weight, fuel.frame)
1:

Knowing what function you were in when the expression failed can help isolate the problem.

 cat and print

The cat and print functions may be used to print out values of variables or messages to track what a function is doing.

Use cat.

> test.sqrt
function(x)
{

y <- sqrt(x)

cat(“after line 1, x=”, x, “ and y=”,

 y, “\n”)

y * y
}

> test.sqrt(3)
after line 1, x= 3 and y= 1.73205080756888
[1] 3

Use print.

> test.sqrt2
function(x)
{

y <- sqrt(x)

print(paste(“after line 1,x=”, x,

 “ and y=”, y))

y * y
}

> test.sqrt2(3)
[1] “after line 1,x= 3 and y= 1.73205080756888”
[1] 3
browser

Place a call to browser within a function. When the function encounters browser the function will pause and the user may

· examine the current values of variables;

· evaluate expressions in the current frame;

· assign new values to variables in the middle of the function.

Example
> test.sqrt3z
function(x)
{

y <- sqrt(x)

browser()

y * y
}

> test.sqrt3(3)
Called from: test.sqrt3(3)

Typing ? will give a list of variables in the
current evaluation frame.

b(2)> ?
1: y
2: x

Typing a number will give the value of the corresponding variable.

b(2)> 1
[1] 1.732051

Variables may also be referred to by name.

b(2)> y
[1] 1.732051

b(2)> x
[1] 3

Typing an expression will give the value of that expression.

b(2)> y*y
[1] 3

If the expression is an assignment it will change the value of the specified variable in the function.

b(2)> y<-5
Selecting 0 causes browser to exit so the function can continue.

b(2)> 0
[1] 25

Advanced Usage

The browser function can also be used to look at variables of a function that calls the active function. This involves knowing about the hierarchy of frames used by function calls.

Example Have browser within a function called by another function.

> test.plus1<- function(x) test.sqrt3(x+1)
When we hit browser the value of x is 4.

> test.plus1(3)
Called from: test.sqrt3(x + 1)

b(3)> x
[1] 4

In the frame preceding the one calling browser the value of x is 3.

b(3)> get("x",frame=sys.parent())
[1] 3

sys.calls will list the function calls leading up to our current position.

b(3)> sys.calls()
[[1]]:

[[2]]:
test.plus1(3)

[[3]]:
test.sqrt3(x + 1)

[[4]]:
browser()

[[5]]:
browser.default(nframe, message = paste("Called from:", msg))

[[6]]:
eval(i, eval.frame, parent)

sys.nframe gives the number of our current frame.

b(3)> sys.nframe()
[1] 3
b(3)> sys.calls()[2:sys.nframe()]
[[1]]:
test.plus1(3)

[[2]]:
test.sqrt3(x + 1)

b(3)> 0
[1] 4

debugger

The debugger function makes it easier to look at variables in different evaluation frames.

Use debugger after forcing a function to dump its list of frames to disk. Do this by calling dump.frames() from within a function or from the browser.

You can also set options(error=dump.frames) to cause the frames to be written out on every fatal error. It may take quite a while to write out the frames, so this is not the default setting.

Once you have created a copy of the frames, call debugger.

The easiest way to think of debugger is as a way to select which frame to browse with debugger. We then explore that frame just as we did with browser.
Example

Dump the frames.

> test.plus1(3)
Called from: test.sqrt3(x + 1)
b(3)> dump.frames()
Dumped
b(3)> 0
[1] 4

Start the debugger and selecting the test.plus1 frame to examine.

> debugger()
Message:

1:
2: test.plus1(3)
3: test.sqrt3(x + 1)
4: browser()
5: browser.default(nframe, message =
aste("Called from:", msg))
6: eval(i, eval.frame, parent)
Selection: 2
Frame of test.plus1(3)

Look at x in the test.plus1 frame.

d(2)> x
[1] 3

End examination of the test.plus1 frame and select the test.sqrt3 frame.

d(2)> 0
1:
2: test.plus1(3)
3: test.sqrt3(x + 1)
4: browser()
5: browser.default(nframe, message =
paste("Called from:", msg))
6: eval(i, eval.frame, parent)
Selection: 3
Frame of test.sqrt3(x + 1)

Look at the value of x in the test.sqrt3 frame.

d(3)> x
[1] 4

End examination of the test.sqrt3 frame and exit the debugger.

d(3)> 0
1:
2: test.plus1(3)
3: test.sqrt3(x + 1)
4: browser()
5: browser.default(nframe, message =
paste("Called from:", msg))
6: eval(i, eval.frame, parent)
Selection: 0
NULL

C.1.1 trace and inspect

The trace function will cause a message to be printed every time a specified function is called, and will print the value the function returns.

The inspect function is an interactive debugger which allows the user to walk through a function, exploring the contents of each frame as the evaluation proceeds. It has many more features than do browser and debugger.

