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Time Series Processes

Stochastic (Random) Process

{'"7Y17Y27"'7}/ta}/t—|—17"'} — {}/75}7?2—00
sequence of random variables indexed by time

Observed time series of length T’

Vi=y,Yo=1w0,....,Yr =yr} = {ui}i,



Stationary Processes

e Intuition: {Y;} is stationary if all aspects of its behavior are unchanged by
shifts in time

e A stochastic process {Y;}72 is strictly stationary if, for any given finite
integer r and for any set of subscripts t1, to, ..., t, the joint distribution
of

(Yey, Yip, -, Y3,)

depends only on t1 — t,to — t,...,tr — t but not on t.



Remarks

1. For example, the distribution of (Y7, Y5) is the same as the distribution of
(Y12, Y16).

2. For a strictly stationary process, Y; has the same mean, variance (mo-

ments) for all ¢.

3. Any function/transformation g(-) of a strictly stationary process, {g(Yz)}
is also strictly stationary. E.g., if {Y;} is strictly then {Y,?} is strictly

stationary.



Covariance (Weakly) Stationary Processes {Y;} :
o F[Y:] = p for all ¢
o var(Y;) = o2 for all ¢
o cov(Y%, Y;_;) = v, depends on j and not on ¢

Note 1: cov(Y:, Y;—;) = <, is called the j-lag autocovariance and measures

the direction of linear time dependence

Note 2: A stationary process is covariance stationary if var(Y;) < oo and
cov(Yy, Yi_j) < o0



Autocorrelations
cov(Yy, Yi—5) v
\/var(Y%)var(Y}_j) o2

corr(¥1, Y;_j) = pj =

Note 1: corr(Y%, Y;_;) = p; is called the j-lag autocorrelation and measures
the direction and strength of linear time dependence

Note 2: By stationarity var(Y:) = var(Y;_;) = o2,

Autocorrelation Function (ACF): Plot of p; against j



Example: Gaussian White Noise Process

Y; ~ iid N(0,5?) or Y; ~ GWN(0, 0%)
E[Y:] = 0, var(¥;) = ¢?
Y: independent of Ys for t # s
= cov(Ys, Yi—g) =0 fort # s

Note: “iid" = “independent and identically distributed”.

Here, {Y};} represents random draws from the same N(0, o2) distribution



Example: Independent White Noise Process

Y; ~ iid (0,02) or Y; ~ IWN(0, 0%)
E[Y:] = 0, var(¥;) = ¢?
Y: independent of Ys for t # s

Here, {Y:} represents random draws from the same distribution. However, we
don't specify exactly what the distribution is - only that it has mean zero and
variance o2. For example, Y; could be iid Student’s t with variance equal to
o2. This is like GWN but with fatter tails (i.e., more extreme observations).



Example: Weak White Noise Process

Y; ~ WN(0,o?)
E[Y:] = 0, var(¥;) = ¢?
cov(Y:, Ys) =0 fort # s
Here, {Y;} represents an uncorrelated stochastic process with mean zero and

variance o2. Recall, the uncorrelated assumption does not imply independence.
Hence, Y; and Ys can exhibit non-linear dependence (e.g. Y;52 can be correlated

with Y;2)



Nonstationary Processes

Defn: A nonstationary stochastic process is a stochastic process that is not
covariance stationary.

Note: A non-stationary process violates one or more of the properties of covari-
ance stationarity.

Example: Deterministically trending process

Y: = Bo + Bt + 1, et ~ WN(0,02)
E[Y:] = Bo + B1t depends on ¢

Note: A simple detrending transformation yield a stationary process:

Xt =Y — Bo— B1t = &¢



Example: Random Walk

Y = Y 1+ &1, et ~ WN(0,02), Yy is fixed
t
=Yp+ Y ej = var(V;) = o2 x t depends on ¢
j=1

Note: A simple detrending transformation yield a stationary process:

AY; =Y —Y; 1 =&



Time Series Models

Defn: A time series model is a probability model to describe the behavior of a
stochastic process {Y;}.

Note: Typically, a time series model is a simple probability model that describes
the time dependence in the stochastic process {Y;}.



Moving Average (MA) Processes

|dea: Create a stochastic process that only exhibits one period linear time
dependence

MA(1) Model

Yi=pu+e+0g_1, —00<6O< o0
et ~ iid N(0,02) (i.e., e ~ GWN(0,02))

0 determines the magnitude of time dependence
Properties

ElYy] = p+ Ele] + 0E[es—1]
=pu+0+0=pu



var(Y;) = 02 = E[(Y; — p)?]

= B[(et + 0e1-1)°]
= Ele7] + 20E[ete;—1] + 0°Ele?_{]
= 02 + 0+ 0%02 = o2(1 + 0°)

cov(Yy, Yi_1) = v1 = El(er + 0g4_1)(e¢—1 + 0g4_5)]
= Eleter—1] + 0E[ere—2]
+ 0E[e;_1] + 0°Eley—15—2]
=040+ 002 +0 = o2



Furthermore,

cov(Ys, Yi_2) = vo = E[(et + 0g4_1)(e4_o + 0g4_3)]
= FEletet_o] + 0FE[erer_3]
+ 0E[e;_154—2] + 0°Eles—154—3]
=04+04+0+0=0

Similar calculation show that

cov(Y:, Y;_j) =v; =0for j > 1



Autocorrelations

O fo2 _ 0
L7 52 o2(1+62) (1+02)
Vg :
=5 =0f > 1
Pj 2 or j
Note:
p1=0if6 =0
p1 >0if 6 >0
p1 <0if6 <0

Result: MA(1) is covariance stationary for any value of 0



Example: MA(1) model for overlapping returns

Let r+ denote the 1—month cc return and assume that
i, 2
r¢ ~ iid N(ur, o)
Consider creating a monthly time series of 2—month cc returns using
r4(2) = re + 11
These 2—month returns observed monthly overlap by 1 month
re(2) = r¢ +rpq

re-1(2) = re—1 + 712
rt—2(2) = 14— + 143

Claim: The stochastic process {r¢(2)} follows a MA(1) process



Autoregressive (AR) Processes

|ldea: Create a stochastic process that exhibits multi-period geometrically de-
caying linear time dependence

AR(1) Model (mean-adjusted form)

Vi—p=¢(Ye1—p)te, —1<o<1
et ~ iid N(0, 02)

Result: AR(1) model is covariance stationary provided —1 < ¢ < 1



Properties

E[Yi] =
var(Y;) = 0% = Us/(l — ¢°)
cov(Y;, Yi_1) = 71 = 0°¢
corr(Yy, Yi—1) = p1 = 11/0° = ¢
cov(Y;, Y;—j) = vj = o°¢/
corr(Yy, Y ;) = pj = /0% = ¢’

Note: Since |¢p| < 1

lim p; = qu =0

J—00



AR(1) Model (regression model form)

Yi—p=¢(Yi—1—p)+er =
Yi=p—op+ @Y1+ €t
=c+ QY1+ &t

where
C

1—-¢

c=(1-Q)p=p=

Remarks:

e Regression model form is convenient for estimation by linear regression



The AR(1) model and Economic and Financial Time Series

The AR(1) model is a good description for the following time series

e Interest rates on U.S. Treasury securities, dividend yields, unemployment

e Growth rate of macroeconomic variables
— Real GDP, industrial production, productivity
— Money, velocity, consumer prices

— Real and nominal wages



