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Time Series Processes

Stochastic (Random) Process

{    1 2      +1   } = {}∞=−∞
sequence of random variables indexed by time

Observed time series of length 

{1 = 1 2 = 2      = } = {}=1



Stationary Processes

• Intuition: {} is stationary if all aspects of its behavior are unchanged by
shifts in time

• A stochastic process {}∞=1 is strictly stationary if, for any given finite
integer  and for any set of subscripts 1 2      the joint distribution
of

(1 2     )

depends only on 1 −  2 −       −  but not on 



Remarks

1. For example, the distribution of (1 5) is the same as the distribution of
(12 16)

2. For a strictly stationary process,  has the same mean, variance (mo-
ments) for all 

3. Any function/transformation (·) of a strictly stationary process, {()}
is also strictly stationary. E.g., if {} is strictly then { 2 } is strictly
stationary.



Covariance (Weakly) Stationary Processes {} :

• [] =  for all 

• var() = 2 for all 

• cov( −) =  depends on  and not on 

Note 1: cov( −) =  is called the j-lag autocovariance and measures
the direction of linear time dependence

Note 2: A stationary process is covariance stationary if var()  ∞ and
cov( −) ∞



Autocorrelations

corr( −) =  =
cov( −)q
var()var(−)

=


2

Note 1: corr( −) =  is called the j-lag autocorrelation and measures
the direction and strength of linear time dependence

Note 2: By stationarity var() = var(−) = 2

Autocorrelation Function (ACF): Plot of  against 



Example: Gaussian White Noise Process

 ∼ iid (0 2) or  ∼ (0 2)

[] = 0 var() = 2

 independent of  for  6= 

⇒ cov( −) = 0 for  6= 

Note: “iid” = “independent and identically distributed”.

Here, {} represents random draws from the same (0 2) distribution



Example: Independent White Noise Process

 ∼ iid (0 2) or  ∼ (0 2)

[] = 0 var() = 2

 independent of  for  6= 

Here, {} represents random draws from the same distribution. However, we
don’t specify exactly what the distribution is - only that it has mean zero and
variance 2 For example,  could be iid Student’s t with variance equal to
2 This is like GWN but with fatter tails (i.e., more extreme observations).



Example: Weak White Noise Process

 ∼(0 2)

[] = 0 var() = 2

cov( ) = 0 for  6= 

Here, {} represents an uncorrelated stochastic process with mean zero and
variance 2 Recall, the uncorrelated assumption does not imply independence.
Hence,  and  can exhibit non-linear dependence (e.g.  2 can be correlated
with  2 )



Nonstationary Processes

Defn: A nonstationary stochastic process is a stochastic process that is not
covariance stationary.

Note: A non-stationary process violates one or more of the properties of covari-
ance stationarity.

Example: Deterministically trending process

 = 0 + 1+   ∼(0 2)

[] = 0 + 1 depends on 

Note: A simple detrending transformation yield a stationary process:

 =  − 0 − 1 = 



Example: Random Walk

 = −1 +   ∼(0 2) 0 is fixed

= 0 +
X

=1

 ⇒ var() = 2 ×  depends on 

Note: A simple detrending transformation yield a stationary process:

∆ =  − −1 = 



Time Series Models

Defn: A time series model is a probability model to describe the behavior of a
stochastic process {}

Note: Typically, a time series model is a simple probability model that describes
the time dependence in the stochastic process {}



Moving Average (MA) Processes

Idea: Create a stochastic process that only exhibits one period linear time
dependence

MA(1) Model

 = +  + −1 −∞   ∞
 ∼  (0 2) (i.e.,  ∼ (0 2))

 determines the magnitude of time dependence

Properties

[] = +[] + [−1]

= + 0 + 0 = 



var() = 2 = [( − )2]

= [( + −1)
2]

= [2 ] + 2[−1] + 2[2−1]

= 2 + 0 + 22 = 2(1 + 2)

cov( −1) = 1 = [( + −1)(−1 + −2)]

= [−1] + [−2]

+ [2−1] + 2[−1−2]

= 0 + 0 + 2 + 0 = 2



Furthermore,

cov( −2) = 2 = [( + −1)(−2 + −3)]

= [−2] + [−3]

+ [−1−2] + 2[−1−3]

= 0 + 0 + 0 + 0 = 0

Similar calculation show that

cov( −) =  = 0 for   1



Autocorrelations

1 =
1
2
=

2
2(1 + 2)

=


(1 + 2)

 =


2
= 0 for   1

Note:

1 = 0 if  = 0

1  0 if   0

1  0 if   0

Result: MA(1) is covariance stationary for any value of 



Example: MA(1) model for overlapping returns

Let  denote the 1−month cc return and assume that

 ∼ iid ( 2)

Consider creating a monthly time series of 2−month cc returns using

(2) =  + −1

These 2−month returns observed monthly overlap by 1 month

(2) =  + −1
−1(2) = −1 + −2
−2(2) = −2 + −3

...

Claim: The stochastic process {(2)} follows a MA(1) process



Autoregressive (AR) Processes

Idea: Create a stochastic process that exhibits multi-period geometrically de-
caying linear time dependence

AR(1) Model (mean-adjusted form)

 −  = (−1 − ) +  − 1    1

 ∼ iid (0 2)

Result: AR(1) model is covariance stationary provided −1    1



Properties

[] = 

var() = 2 = 2(1− 2)

cov( −1) = 1 = 2

corr( −1) = 1 = 1
2 = 

cov( −) =  = 2

corr( −) =  = 
2 = 

Note: Since ||  1

lim
→∞

 =  = 0



AR(1) Model (regression model form)

 −  = (−1 − ) + ⇒
 = − + −1 + 

= + −1 + 

where

 = (1− )⇒  =


1− 

Remarks:

• Regression model form is convenient for estimation by linear regression



The AR(1) model and Economic and Financial Time Series

The AR(1) model is a good description for the following time series

• Interest rates on U.S. Treasury securities, dividend yields, unemployment

• Growth rate of macroeconomic variables

— Real GDP, industrial production, productivity

— Money, velocity, consumer prices

— Real and nominal wages


