
Chapter 1

Return Calculations

Updated: June 24, 2014

In this Chapter we cover asset return calculations with an emphasis on

equity returns. Section 1.1 covers basic time value of money calculations.

Section 1.2 covers asset return calculations, including both simple and contin-

uously compounded returns. Section 1.3 illustrates asset return calculations

using R.

1.1 The Time Value of Money

This section reviews basic time value of money calculations. The concepts of

future value, present value and the compounding of interest are defined and

discussed.

1.1.1 Future value, present value and simple interest.

Consider an amount $ invested for  years at a simple interest rate of 

per annum (where  is expressed as a decimal). If compounding takes place

only at the end of the year the future value after  years is:

 = $ (1 +)× · · · × (1 +) = $ · (1 +) (1.1)

Over the first year, $ grows to $ (1+) = $ +$× which represents the
initial principle $ plus the payment of simple interest $ × for the year.

Over the second year, the new principle $ (1+) grows to $ (1+)(1+) =

$ (1 +)2 and so on.

1
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Example 1 Future value with simple interest.

Consider putting $1000 in an interest checking account that pays a simple

annual percentage rate of 3% The future value after  = 1 5 and 10 years

is, respectively,

1 = $1000 · (103)1 = $1030
5 = $1000 · (103)5 = $115927
10 = $1000 · (103)10 = $134392

Over the first year, $30 in interest is paid; over three years, $15927 in interest

is accrued; over five years, $34392 in interest is accrued ¥
The future value formula (1.1) defines a relationship between four vari-

ables:    and  Given three variables, the fourth variable can be

determined. Given   and  and solving for  gives the present value

formula:

 =


(1 +)
 (1.2)

Given   and  the annual interest rate on the investment is defined

as:

 =

µ




¶1
− 1 (1.3)

Finally, given   and  we can solve for  :

 =
ln( )

ln(1 +)
 (1.4)

The expression (1.4) can be used to determine the number years it takes

for an investment of $ to double. Setting  = 2 in (1.4) gives:

 =
ln(2)

ln(1 +)
≈ 07




which uses the approximations ln(2) = 06931 ≈ 07 and ln(1 + ) ≈  for

 close to zero (see the Appendix). The approximation  ≈ 07 is called

the rule of 70.

Example 2 Using the rule of 70.
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The table below summarizes the number of years it takes for an initial in-

vestment to double at different simple interest rates.

 ln(2) ln(1 +) 07

0.01 69.66 70.00

0.02 35.00 35.00

0.03 23.45 23.33

0.04 17.67 17.50

0.05 14.21 14.00

0.06 11.90 11.67

0.07 10.24 10.00

0.08 9.01 8.75

0.09 8.04 7.77

0.10 7.28 7.00

¥

1.1.2 Multiple compounding periods.

If interest is paid  times per year then the future value after  years is:

 
 = $ ·

µ
1 +





¶·




is often referred to as the periodic interest rate. As , the frequency of

compounding, increases the rate becomes continuously compounded and it

can be shown that future value becomes

 
 = lim

→∞
$ ·

µ
1 +





¶·
= $ · ·

where (·) is the exponential function and 1 = 271828

Example 3 Future value with different compounding frequencies.
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If the simple annual percentage rate is 10% then the value of $1000 at the

end of one year ( = 1) for different values of  is given in the table below.

Compounding Frequency Value of $1000 at end of 1 year ( = 10%)

Annually ( = 1) 1100

Quarterly ( = 4) 1103.8

Weekly ( = 52) 1105.1

Daily ( = 365) 1105.515

Continuously ( =∞) 1105.517

¥
The continuously compounded analogues to the present value, annual

return and horizon period formulas (1.2), (1.3) and (1.4) are:

 = −

 =
1


ln

µ




¶


 =
1


ln

µ




¶


1.1.3 Effective annual rate

We now consider the relationship between simple interest rates, periodic

rates, effective annual rates and continuously compounded rates. Suppose

an investment pays a periodic interest rate of 2% each quarter. This gives

rise to a simple annual rate of 8% (2% ×4 quarters) At the end of the year,
$1000 invested accrues to

$1000 ·
µ
1 +

008

4

¶4·1
= $108240

The effective annual rate,  on the investment is determined by the rela-

tionship

$1000 · (1 +) = $108240
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Solving for  gives

 =
$108240

$1000
− 1 = 00824

or  = 824% Here, the effective annual rate is the simple interest rate

with annual compounding that gives the same future value that occurs with

simple interest compounded four times per year. The effective annual rate

is greater than the simple annual rate due to the payment of interest on

interest.

The general relationship between the simple annual rate  with payments

 time per year and the effective annual rate,  is

(1 +) =

µ
1 +





¶



Given the simple rate  we can solve for the effective annual rate using

 =

µ
1 +





¶

− 1 (1.5)

Given the effective annual rate  we can solve for the simple rate using

 = 
£
(1 +)

1 − 1¤ 
The relationship between the effective annual rate and the simple rate

that is compounded continuously is

(1 +) = 

Hence,

 =  − 1
 = ln(1 +)



Example 4 Determine effective annual rates.
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The effective annual rates associated with the investments in Example 2 are

given in the table below:

Compounding Frequency Value of $1000 at end of 1 year ( = 10%) 

Annually ( = 1) 1100 10%

Quarterly ( = 4) 1103.8 1038%

Weekly ( = 52) 1105.1 1051%

Daily ( = 365) 1105.515 1055%

Continuously ( =∞) 1105.517 1055%

¥

Example 5 Determine continuously compounded rate from effective annual

rate

Suppose an investment pays a periodic interest rate of 5% every six months

( = 2 2 = 005). In the market this would be quoted as having an annual

percentage rate,  of 10%. An investment of $100 yields $100 · (105)2 =
$11025 after one year. The effective annual rate,  is then 1025% To find

the continuously compounded simple rate that gives the same future value

as investing at the effective annual rate we solve

 = ln(11025) = 009758

That is, if interest is compounded continuously at a simple annual rate of

9758% then $100 invested today would grow to $100 · 009758 = $11025 ¥

1.2 Asset Return Calculations

In this section, we review asset return calculations given initial and future

prices associated with an investment. We first cover simple return calcula-

tions, which are typically reported in practice but are often not convenient for

statistical modeling purposes. We then describe continuously compounded

return calculations, which are more convenient for statistical modeling pur-

poses.
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1.2.1 Simple Returns

Consider purchasing an asset (e.g., stock, bond, ETF, mutual fund, option,

etc.) at time 0 for the price 0  and then selling the asset at time 1 for the

price 1  If there are no intermediate cash flows (e.g., dividends) between 0
and 1 the rate of return over the period 0 to 1 is the percentage change in

price:

(0 1) =
1 − 0

0

 (1.6)

The time between 0 and 1 is called the holding period and (1.6) is called the

holding period return. In principle, the holding period can be any amount

of time: one second; five minutes; eight hours; two days, six minutes, and

two seconds; fifteen years. To simply matters, in this chapter we will assume

that the holding period is some increment of calendar time; e.g., one day, one

month or one year. In particular, we will assume a default holding period of

one month in what follows.

Let  denote the price at the end of month  of an asset that pays no

dividends and let −1 denote the price at the end of month − 1. Then the
one-month simple net return on an investment in the asset between months

− 1 and  is defined as

 =
 − −1

−1
= %∆ (1.7)

Writing
−−1
−1

= 
−1
− 1, we can define the simple gross return as

1 + =


−1
 (1.8)

The one-month gross return has the interpretation of the future value of $1

invested in the asset for one-month. Unless otherwise stated, when we refer to

returns we mean net returns. Since asset prices must always be non-negative

(a long position in an asset is a limited liability investment), the smallest

value for  is −1 or −100%

Example 6 Simple return calculation.

Consider a one-month investment in Microsoft stock. Suppose you buy the

stock in month  − 1 at −1 = $85 and sell the stock the next month for
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 = $90 Further assume that Microsoft does not pay a dividend between

months − 1 and  The one-month simple net and gross returns are then

 =
$90− $85
$85

=
$90

$85
− 1 = 10588− 1 = 00588

1 + = 10588

The one-month investment in Microsoft yielded a 588% per month return.

Alternatively, $1 invested in Microsoft stock in month − 1 grew to $10588
in month  ¥

Multi-period returns

The simple two-month return on an investment in an asset between months

− 2 and  is defined as

(2) =
 − −2

−2
=



−2
− 1

Writing 
−2

= 
−1

· −1
−2

the two-month return can be expressed as:

(2) =


−1
· −1
−2

− 1
= (1 +)(1 +−1)− 1

Then the simple two-month gross return becomes:

1 +(2) = (1 +)(1 +−1) = 1 +−1 + +−1

which is a product of the two simple one-month gross returns and not one

plus the sum of the two one-month returns. Hence,

(2) = −1 + +−1

If, however, −1 and  are small then −1 ≈ 0 and 1 + (2) ≈ 1 +
−1 + so that (2) ≈ −1 +

Adding two simple one-period returns to arrive at a two-period return

when one-period returns are large can lead to very misleading results. For

example, suppose that −1 = 05 and  = −05 Adding the two one-period
returns gives a two-period return of zero. However, the actual two-period
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return is (2) − 1 = (15)(05) − 1 = −025 This example highlights the
fact that equal positive and negative percentage changes do not affect wealth

symmetrically.

In general, the -month gross return is defined as the product of  one-

month gross returns:

1 +() = (1 +)(1 +−1) · · · (1 +−+1) (1.9)

=

−1Y
=0

(1 +−)

Example 7 Computing two-period returns

Continuing with the previous example, suppose that the price of Microsoft

stock in month  − 2 is $80 and no dividend is paid between months  − 2
and  The two-month net return is

(2) =
$90− $80
$80

=
$90

$80
− 1 = 11250− 1 = 01250

or 12.50% per two months. The two one-month returns are

−1 =
$85− $80
$80

= 10625− 1 = 00625

 =
$90− 85
$85

= 10588− 1 = 00588

and the geometric average of the two one-month gross returns is

1 +(2) = 10625× 10588 = 11250

¥

Portfolio Returns

Consider an investment of $ in two assets, named asset A and asset B.

Let  denote the fraction or share of wealth invested in asset A, and let

 denote the remaining fraction invested in asset  The dollar amounts

invested in assets A and B are $ ×  and $ ×  respectively. We

assume that the investment shares add up to 1, so that  +  = 1 The

collection of investment shares ( ) defines a portfolio. For example, one
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portfolio may be ( = 05  = 05) and another may be ( = 0  = 1)

Negative values for  or  represent short sales. Let  and  denote

the simple one-period returns on assets A and B We wish to determine the

simple one-period return on the portfolio defined by ( ) . To do this,

note that at the end of period  the investments in assets A and B are worth

$ × (1+) and $ × (1+) respectively. Hence, at the end of

period  the portfolio is worth

$ × [(1 +) + (1 +)] 

Hence, (1 +) + (1 +) defines the gross return on the portfolio.

The portfolio gross return is equal to a weighted average of the gross returns

on assets A and B where the weights are the portfolio shares  and 

To determine the portfolio rate of return , re-write the portfolio gross

return as

1 + =  +  +  +  = 1 +  + 

since  +  = 1 by construction. Then the portfolio rate of return is

 =  + 

which is equal to a weighted average of the simple returns on assets A and

B where the weights are the portfolio shares  and 

Example 8 Compute portfolio return

Consider a portfolio of Microsoft and Starbucks stock in which you initially

purchase ten shares of each stock at the end of month  − 1 at the prices
−1 = $85 and −1 = $30 respectively The initial value of the

portfolio is −1 = 10 × $85 + 10 × 30 = $1 150 The portfolio shares are

 = 8501150 = 07391 and  = 301150 = 02609 Suppose at the

end of month   = $90 and  = $28 Assuming that Microsoft and

Starbucks do not pay a dividend between periods − 1 and  the one-period
returns on the two stocks are

 =
$90− $85
$85

= 00588

 =
$28− $30
$30

= −00667
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The one-month rate of return on the portfolio is then

 = (07391)(00588) + (02609)(−00667) = 002609

and the portfolio value at the end of month  is

 = −1(1 +) = $1 100× (102609) = $1 180

¥
In general, for a portfolio of  assets with investment shares  such that

1+· · ·+ = 1 the one-period portfolio gross and simple returns are defined
as

1 + =

X
=1

(1 +) (1.10)

 =

X
=1

 (1.11)

Adjusting for dividends

If an asset pays a dividend, , sometime between months  − 1 and , the

total net return calculation becomes


 =

 + − −1
−1

=
 − −1

−1
+



−1
 (1.12)

where
−−1
−1

is referred as the capital gain and 

−1
is referred to as the

dividend yield. The total gross return is

1 +
 =

 +

−1
 (1.13)

The formula (1.9) for computing multiperiod return remains the same except

that one-period gross returns are computed using (1.13).

Example 9 Compute total return when dividends are paid

Consider a one-month investment in Microsoft stock. Suppose you buy the

stock in month  − 1 at −1 = $85 and sell the stock the next month for
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 = $90 Further assume that Microsoft pays a $1 dividend between months

− 1 and  The capital gain, dividend yield and total return are then

 =
$90 + $1− $85

$85
=
$90− $85
$85

+
$1

$85
= 00588 + 00118

= 00707

The one-month investment in Microsoft yields a 707% per month total re-

turn. The capital gain component is 588% and the dividend yield component

is 118% ¥

Adjusting for Inflation

The return calculations considered so far are based on the nominal or current

prices of assets. Returns computed from nominal prices are nominal returns.

The real return on an asset over a particular horizon takes into account the

growth rate of the general price level over the horizon. If the nominal price

of the asset grows faster than the general price level then the nominal return

will be greater than the inflation rate and the real return will be positive.

Conversely, if the nominal price of the asset increases less than the general

price level then the nominal return will be less than the inflation rate and

the real return will be negative.

The computation of real returns on an asset is a two step process:

• Deflate the nominal price of the asset by the general price level

• Compute returns in the usual way using the deflated prices

To illustrate, consider computing the real simple one-period return on an

asset. Let  denote the nominal price of the asset at time  and let 
denote an index of the general price level (e.g. consumer price index) at time

1 The deflated or real price at time  is

Real
 =






1The CPI is usually normalized to 1 or 100 in some base year. We assume that the

CPI is normalized to 1 in the base year for simplicity.
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and the real one-period return is

Real =
Real
 − Real

−1
Real
−1

=



− −1

−1
−1

−1

(1.14)

=


−1
· −1


− 1

The one-period gross real return return is

1 +Real =


−1
· −1


 (1.15)

If we define inflation between periods − 1 and  as

 =
 − −1

−1
= %∆ (1.16)

then 1 +  =


−1
and (1.14) may be re-expressed as

Real =
1 +

1 + 
− 1 (1.17)

Example 10 Compute real return

Consider, again, a one-month investment in Microsoft stock. Suppose the

CPI in months  − 1 and  is 1 and 101 respectively, representing a 1%

monthly growth rate in the overall price level. The real prices of Microsoft

stock are

Real
−1 =

$85

1
= $85 Real

 =
$90

101
= $891089

and the real monthly return is

Real =
$8910891− $85

$85
= 00483

The nominal return and inflation over the month are

 =
$90− $85
$85

= 00588  =
101− 1
1

= 001

Then the real return computed using (1.17) is

Real =
10588

101
− 1 = 00483
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Notice that simple real return is almost, but not quite, equal to the simple

nominal return minus the inflation rate:

Real ≈  −  = 00588− 001 = 00488

¥

Annualizing returns

Very often returns over different horizons are annualized, i.e., converted to

an annual return, to facilitate comparisons with other investments. The an-

nualization process depends on the holding period of the investment and an

implicit assumption about compounding. We illustrate with several exam-

ples.

To start, if our investment horizon is one year then the annual gross and

net returns are just

1 + = 1 +(12) =


−12
= (1 +)(1 +−1) · · · (1 +−11)

 = (12)

In this case, no compounding is required to create an annual return.

Next, consider a one-month investment in an asset with return What

is the annualized return on this investment? If we assume that we receive the

same return  =  every month for the year, then the gross annual return

is

1 + = 1 +(12) = (1 +)12

That is, the annual gross return is defined as the monthly return compounded

for 12 months. The net annual return is then

 = (1 +)12 − 1

Example 11 Compute annualized return from one-month return

In the first example, the one-month return,  on Microsoft stock was 588%

If we assume that we can get this return for 12 months then the annualized

return is

 = (10588)
12 − 1 = 19850− 1 = 09850

or 9850% per year. Pretty good! ¥
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Now, consider a two-month investment with return (2) If we assume

that we receive the same two-month return (2) = (2) for the next six

two-month periods, then the gross and net annual returns are

1 + = (1 +(2))6

 = (1 +(2))6 − 1
Here the annual gross return is defined as the two-month return compounded

for 6 months.

Example 12 Compute annualized return from two-month return

Suppose the two-month return, (2) on Microsoft stock is 125% If we

assume that we can get this two-month return for the next 6 two-month

periods then the annualized return is

 = (11250)
6 − 1 = 20273− 1 = 10273

or 102.73% per year ¥
Now suppose that our investment horizon is two years. That is, we start

our investment at time  − 24 and cash out at time  The two-year gross
return is then 1+(24) =


−24

What is the annual return on this two-year

investment? The process is the same as computing the effective annual rate.

To determine the annual return we solve the following relationship for  :

(1 +)
2 = 1 +(24) =⇒

 = (1 +(24))
12 − 1

In this case, the annual return is compounded twice to get the two-year

return and the relationship is then solved for the annual return.

Example 13 Compute annualized return from two-year return

Suppose that the price of Microsoft stock 24 months ago is −24 = $50 and
the price today is  = $90 The two-year gross return is 1 +(24) =

$90
$50
=

18000 which yields a two-year net return of (24) = 080 = 80% The

annual return for this investment is defined as

 = (1800)
12 − 1 = 13416− 1 = 03416

or 3416% per year ¥
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1.2.2 Continuously Compounded Returns

In this section we define continuously compounded returns from simple re-

turns, and describe their properties.

One-period Returns

Let  denote the simple monthly return on an investment. The continuously

compounded monthly return,  is defined as:

 = ln(1 +) = ln

µ


−1

¶
 (1.18)

where ln(·) is the natural log function2. To see why  is called the contin-

uously compounded return, take the exponential of both sides of (1.18) to

give:

 = 1 + =


−1


Rearranging we get

 = −1


so that  is the continuously compounded growth rate in prices between

months  − 1 and . This is to be contrasted with  which is the simple

growth rate in prices between months − 1 and  without any compounding.
Furthermore, since ln

³



´
= ln()− ln() it follows that

 = ln

µ


−1

¶
= ln()− ln(−1)

=  − −1

where  = ln(). Hence, the continuously compounded monthly return, 

can be computed simply by taking the first difference of the natural loga-

rithms of monthly prices.

Example 14 Compute continuously compounded returns

2The continuously compounded return is always defined since asset prices,  are

always non-negative. Properties of logarithms and exponentials are discussed in the ap-

pendix to this chapter.
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Using the price and return data from Example 1, the continuously com-

pounded monthly return on Microsoft stock can be computed in two ways:

 = ln(10588) = 00571

 = ln(90)− ln(85) = 44998− 44427 = 00571

Notice that  is slightly smaller than  Why?

Given a monthly continuously compounded return  is straightforward

to solve back for the corresponding simple net return  :

 =  − 1 (1.19)

Hence, nothing is lost by considering continuously compounded returns in-

stead of simple returns. Continuously compounded returns are very similar

to simple returns as long as the return is relatively small, which it generally

will be for monthly or daily returns. Since  is bounded from below by −1
the smallest value for  is −∞ This, however, does not mean that you could

lose an infinite amount of money on an investment. The actual amount of

money lost is determined by the simple return (1.19).

For modeling and statistical purposes it is often much more convenient

to use continuously compounded returns due to the additivity property of

multiperiod continuously compounded returns discussed in the next sub-

section.

Example 15 Determine simple return from continuously compounded re-

turn

In the previous example, the continuously compounded monthly return on

Microsoft stock is  = 571% The simple net return is then

 = 0571 − 1 = 00588

¥

Multi-Period Returns

The relationship between multi-period continuously compounded returns and

one-period continuously compounded returns is more simple than the rela-

tionship between multi-period simple returns and one-period simple returns.
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To illustrate, consider the two-month continuously compounded return de-

fined as:

(2) = ln(1 +(2)) = ln

µ


−2

¶
=  − −2

Taking exponentials of both sides shows that

 = −2
(2)

so that (2) is the continuously compounded growth rate of prices between

months  − 2 and  Using 
−2

= 
−1

· −1
−2

and the fact that ln( · ) =
ln() + ln() it follows that

(2) = ln

µ


−1
· −1
−2

¶
= ln

µ


−1

¶
+ ln

µ
−1
−2

¶
=  + −1

Hence the continuously compounded two-month return is just the sum of

the two continuously compounded one-month returns. Recall, with simple

returns the two-month return is a multiplicative (geometric) sum of two one-

month returns.

Example 16 Compute two-month continuously compounded returns.

Using the data from Example 2, the continuously compounded two-month

return on Microsoft stock can be computed in two equivalent ways. The first

way uses the difference in the logs of  and −2:

(2) = ln(90)− ln(80) = 44998− 43820 = 01178
The second way uses the sum of the two continuously compounded one-month

returns. Here  = ln(90) − ln(85) = 00571 and −1 = ln(85) − ln(80) =
00607 so that

(2) = 00571 + 00607 = 01178

Notice that (2) = 01178  (2) = 01250 ¥
The continuously compounded −month return is defined by

() = ln(1 +()) = ln

µ


−

¶
=  − −
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Using similar manipulations to the ones used for the continuously com-

pounded two-month return, we can express the continuously compounded

−month return as the sum of  continuously compounded monthly returns:

() =

−1X
=0

− (1.20)

The additivity of continuously compounded returns to form multiperiod re-

turns is an important property for statistical modeling purposes.

Portfolio Returns

The continuously compounded portfolio return is defined by (1.18), where

 is computed using the portfolio return (1.11). However, notice that

 = ln(1 +) = ln(1 +

X
=1

) 6=
X
=1

 (1.21)

where  denotes the continuously compounded one-period return on asset

 If the portfolio return  =
P

=1  is not too large then  ≈ 

otherwise,   

Example 17 Compute continuously compounded portfolio returns

Consider a portfolio of Microsoft and Starbucks stock with  = 025

 = 075  = 00588  = −00503 and  = −002302.
Using (1.21), the continuous compounded portfolio return is

 = ln(1− 002302) = ln(0977) = −002329

Using  = ln(1 + 00588) = 00572 and  = ln(1 − 00503) =
−005161 notice that

 +  = −002442 6= 

¥



20 CHAPTER 1 RETURN CALCULATIONS

Adjusting for Dividends

The continuously compounded one-period return adjusted for dividends is

defined by (1.18), where  is computed using (1.12)
3.

Example 18 Compute continuously compounded total return

From example 9, the total simple return using (1.12) is  = 00707 The

continuously compounded total return is then

 = ln(1 +) = ln(10707) = 00683

¥

Adjusting for Inflation

Adjusting continuously compounded nominal returns for inflation is particu-

larly simple. The continuously compounded one-period real return is defined

as:

Real = ln(1 +Real ) (1.22)

Using (1.15), it follows that

Real = ln

µ


−1
· −1


¶
(1.23)

= ln

µ


−1

¶
+ ln

µ
−1


¶
= ln()− ln(−1) + ln(−1)− ln()
= ln()− ln(−1)− (ln()− ln(−1))
=  −  

where  = ln()− ln(−1) = ln(1 + ) is the nominal continuously com-

pounded one-period return and  = ln() − ln(−1) = ln(1 + )

is the one-period continuously compounded growth rate in the general price

level (continuously compounded one-period inflation rate). Hence, the real

continuously compounded return is simply the nominal continuously com-

pounded return minus the the continuously compounded inflation rate.

3Show formula from Campbell, Lo and MacKinlay.
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Example 19 Compute continuously compounded real return

From example 10, the nominal simple return is  = 00588, the monthly

inflation rate is  = 001 and the real simple return is Real = 00483

Using (1.22), the real continuously compounded return is

Real = ln(1 +Real ) = ln(10483) = 0047

Equivalently, using (1.23) the real return may also be computed as

Real =  −  = ln(10588)− ln(101) = 0047

¥

Annualizing Continuously Compounded Returns

Just as we annualized simple monthly returns, we can also annualize continu-

ously compounded monthly returns. For example, if our investment horizon

is one year then the annual continuously compounded return is just the sum

of the twelve monthly continuously compounded returns:

 = (12) =  + −1 + · · ·+ −11

=

11X
=0

−

The average continuously compounded monthly return is defined as:

 =
1

12

11X
=0

−

Notice that

12 ·  =
11X
=0

−

so that we may alternatively express  as

 = 12 · 

That is, the continuously compounded annual return is twelve times the

average of the continuously compounded monthly returns.
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Figure 1.1: Monthly adjusted closing prices on Microsoft and Starbucks stock

over the period March, 1993 through March, 2008.

As another example, consider a one-month investment in an asset with

continuously compounded return  What is the continuously compounded

annual return on this investment? If we assume that we receive the same

return  =  every month for the year, then the annual continuously com-

pounded return is just 12 times the monthly continuously compounded re-

turn:

 = (12) = 12 · 

1.3 Return Calculations in R

This section discusses the calculation and manipulation of returns in R. We

first discuss the use of core R functions to compute returns. We then we

discuss some R packages that contain functions for return calculations.

The examples in this section are based on the monthly adjusted clos-

ing price data for Microsoft and Starbucks stock over the period March,

1993 through March, 2008, downloaded from finance.yahoo.com, in the files

msftPrices.csv and sbuxPrices.csv, respectively. These prices can be

imported into data.frame objects in R using the function read.csv():

> loadPath = "C:\\Users\\ezivot\\Documents\\FinBook\\Data\\"
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> sbux.df = read.csv(file=paste(loadPath, "sbuxPrices.csv", sep=""),

+ header=TRUE, stringsAsFactors=FALSE)

> msft.df = read.csv(file=paste(loadPath, "msftPrices.csv", sep=""),

+ header=TRUE, stringsAsFactors=FALSE)

1.3.1 Return Calculations Using Core R Functions

In the data.frame objects sbux.df and msft.df, the first column contains

the date information and the second column contains the adjusted closing

price data (adjusted for dividend and stock splits):

> colnames(sbux.df)

[1] "Date" "Adj.Close"

> head(sbux.df)

Date Adj.Close

1 3/31/1993 1.19

2 4/1/1993 1.21

3 5/3/1993 1.50

4 6/1/1993 1.53

5 7/1/1993 1.48

6 8/2/1993 1.52

Notice that the dates do not always match up with the last trading day of

the month. Figure 1.1 shows the monthly prices of the two stocks created

using

> plot(msft.df$Adj.Close, type = "l", lty = "solid", lwd = 2,

+ col = "blue", ylab = "return")

> lines(sbux.df$Adj.Close, lty = "dotted", lwd = 2, col = "black")

> legend(x = "topleft", legend=c("MSFT", "SBUX"), lwd = 2,

+ lty = c("solid", "dotted"), col = c("blue", "black"))

In Figure 1.1 the x-axis, unfortunately, does not show the dates. We will see

later how better time series plots can be created.

To compute simple monthly returns use

> n = nrow(sbux.df)

> sbux.ret = sbux.df$Adj.Close[2:n]/sbux.df$Adj.Close[1:n-1] - 1

> msft.ret = msft.df$Adj.Close[2:n]/msft.df$Adj.Close[1:n-1] - 1

> head(cbind(sbux.ret, msft.ret))
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sbux.ret msft.ret

[1,] 0.01681 -0.07407

[2,] 0.23967 0.08444

[3,] 0.02000 -0.04918

[4,] -0.03268 -0.15948

[5,] 0.02703 0.01538

[6,] 0.12500 0.09596

To compute continuously compounded returns use

> sbux.ccret = log(1 + sbux.ret)

> msft.ccret = log(1 + msft.ret)

or, equivalently, use

> sbux.ccret = log(sbux.df$Adj.Close[2:n]/sbux.df$Adj.Close[1:n-1])

> sbux.ccret = log(sbux.df$Adj.Close[2:n]/sbux.df$Adj.Close[1:n-1])

> head(cbind(sbux.ccret, msft.ccret))

sbux.ccret msft.ccret

[1,] 0.01667 -0.07696

[2,] 0.21484 0.08107

[3,] 0.01980 -0.05043

[4,] -0.03323 -0.17374

[5,] 0.02667 0.01527

[6,] 0.11778 0.09163

1.3.2 R Packages for Return Calculations

There are several R packages that contain functions for creating, manipulat-

ing and plotting returns. An up-to-date list of packages relevant for finance

is given in the finance task view on the comprehensive R archive network

(CRAN). This section briefly describes some of the functions in the Perfor-

manceAnalytics, quantmod, zoo, and xts packages.

The PerformanceAnalytics package, written by Brian Peterson and

Peter Carl, contains functions for performance and risk analysis of financial

portfolios. Table 1.1 summarizes the functions in the package for performing

return calculations and for plotting financial data.

The functions in PerformanceAnalytics work best with the financial data

being represented as zoo objects (see the zoo package for details). A zoo
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Function Description

CalculateReturns Calculate returns from prices

Drawdowns Find the drawdowns and drawdown levels

maxDrawdown Calculate the maximum drawdown from peak

Return.annualized Calculate an annualized return

Return.cummulative Calculate a compounded cumulative return

Return.excess Calculate returns in excess of a risk free rate

Return.Geltner Calculate Geltner liquidity-adjusted return

Return.read Read returns data with different date formats

chart.CumReturns Plot cumulative returns over time

chart.Drawdown Plot drawdowns over time

chartRelativePerformance Plot relative performance among multiple assets

chart.TimeSeries Plot time series

charts.PerformanceSummary Combination of performance charts.

Table 1.1: PerformanceAnalytics return calculation and plotting functions
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object is a rectangular data object with an associated time index. The time

index can be any ordered object, but it is usually some object that represents

dates (e.g., Date, yearmon, yearqtr, POSIXct, timeDate) To convert the

data.frame objects msft.df and sbux.df to zoo objects use:

> library(zoo)

> dates.sbux = as.yearmon(sbux.df$Date, format="%m/%d/%Y")

> dates.msft = as.yearmon(msft.df$Date, format="%m/%d/%Y")

> sbux.z = zoo(x=sbux.df$Adj.Close, order.by=dates.sbux)

> msft.z = zoo(x=msft.df$Adj.Close, order.by=dates.msft)

> class(sbux.z)

[1] "zoo"

> head(sbux.z)

Mar 1993 Apr 1993 May 1993 Jun 1993 Jul 1993 Aug 1993

1.19 1.21 1.50 1.53 1.48 1.52

For monthly time series the zoo "yearmon" class, which represents dates in

terms of the month and year, is the most convenient time index. For general

daily time series, use the core R "Date" class as the time index.

There are several advantages of using "zoo" objects to represent a time

series data. For extracting observations, "zoo" objects can be subsetted

using dates and the window() function:

> sbux.z[as.yearmon(c("Mar 1993", "Mar 1994"))]

Mar 1993 Mar 1994

1.19 1.52

> window(sbux.z, start=as.yearmon("Mar 1993"), end=as.yearmon("Mar 1994"))

Mar 1993 Apr 1993 May 1993 Jun 1993 Jul 1993 Aug 1993 Sep 1993 Oct 1993

1.19 1.21 1.50 1.53 1.48 1.52 1.71 1.67

Nov 1993 Dec 1993 Jan 1994 Feb 1994 Mar 1994

1.39 1.39 1.50 1.45 1.52

Two or more "zoo" objects can be merged together and aligned to a

common date index:

> sbuxMsft.z = merge(sbux.z, msft.z)

> head(sbuxMsft.z)

sbux.z msft.z

Mar 1993 1.19 2.43

Apr 1993 1.21 2.25
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Figure 1.2: Time series plot for zoo object.

May 1993 1.50 2.44

Jun 1993 1.53 2.32

Jul 1993 1.48 1.95

Aug 1993 1.52 1.98

As illustrated in Figures 1.2 and 1.3, time series graphs with dates on the

axes can be easily created:

# two series on same graph

> plot(msft.z, lwd=2, col="blue", ylab="Prices", xlab="Months")

> lines(sbux.z, col="black", lwd=2, lty="dotted")

> legend(x="topleft", legend=c("MSFT", "SBUX"), col=c("blue", "black"),

+ lwd=2, lty=c("solid", "dotted"))

# two series in two separate panels

> plot(sbuxMsft.z, lwd=c(2,2), plot.type="multiple",

+ col=c("black", "blue"), lty=c("solid", "dotted"),

+ ylab=c("SBUX", "MSFT"), main="")

With prices in a zoo object, simple and continuously compounded returns

can be easily computed using the diff() and lag() functions:
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Figure 1.3: Multi-panel time series plot for zoo objects.

> sbuxRet.z = diff(sbux.z)/lag(sbux.z, k=-1)

> sbuxRetcc.z = diff(log(sbux.z))

> head(merge(sbuxRet.z, sbuxRetcc.z))

sbuxRet.z sbuxRetcc.z

Apr 1993 0.01681 0.01667

May 1993 0.23967 0.21484

Jun 1993 0.02000 0.01980

Jul 1993 -0.03268 -0.03323

Aug 1993 0.02703 0.02667

Sep 1993 0.12500 0.11778

Simple and continuously compounded returns can also be computed using

the PerformanceAnalytics function CalculateReturns():

> sbuxMsftRet.z = CalculateReturns(sbuxMsft.z, method="simple")

> head(sbuxMsftRet.z)

sbux.z msft.z

Apr 1993 0.01681 -0.07407

May 1993 0.23967 0.08444

Jun 1993 0.02000 -0.04918
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Jul 1993 -0.03268 -0.15948

Aug 1993 0.02703 0.01538

Sep 1993 0.12500 0.09596

> sbuxMsftRetcc.z = CalculateReturns(sbuxMsft.z, method="compound")

> head(sbuxMsftRetcc.z)

sbux.z msft.z

Apr 1993 0.01667 -0.07696

May 1993 0.21484 0.08107

Jun 1993 0.01980 -0.05043

Jul 1993 -0.03323 -0.17374

Aug 1993 0.02667 0.01527

Sep 1993 0.11778 0.09163

The PerformanceAnalytics package contains several useful charting

functions specially designed for financial time series. Fancy time series plots

with event labels and shading can be created with chart.TimeSeries():

# dates are formated the same way they appear on the x-axis

> shading.dates = list(c("Jan 98", "Oct 00"))

> label.dates = c("Jan 98", "Oct 00")

> label.values = c("Start of Boom", "End of Boom")

> chart.TimeSeries(msft.z, lwd=2, col="blue", ylab="Price",

+ main="The rise and fall of Microsoft stock",

+ period.areas=shading.dates, period.color="yellow",

+ event.lines=label.dates, event.labels=label.values,

+ event.color="black")

Two or more investments can be compared by showing the growth of $1

invested over time using the function chart.CumReturns():

> chart.CumReturns(sbuxMsftRet.z, lwd=2, main="Growth of $1",

+ legend.loc="topleft")

quantmod

The quantmod package for R, written by Jeff Ryan, is designed to assist the

quantitative trader in the development, testing, and deployment of statisti-

cally based trading models. See www.quantmod.com for more information

about the quantmod package. Table 1.1 summarizes the functions in the
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Figure 1.4: Fancy time series chart created with chart.TimeSeries().

package for retrieving data from the internet, performing return calculations,

and plotting financial data.

Several functions in quantmod (i.e., those starting with get) auto-

matically download specified data from the internet and import this data

into R objects (typically "xts" objects). For example, to download from

finance.yahoo.com all of the available daily data on Yahoo! stock (ticker

symbol YHOO) and create the "xts" object YHOO use the getSymbols()

function:

> library(quantmod)

> getSymbols("YHOO")

[1] "YHOO"

> class(YHOO)

[1] "xts" "zoo"

> colnames(YHOO)

[1] "YHOO.Open" "YHOO.High" "YHOO.Low" "YHOO.Close"

[5] "YHOO.Volume" "YHOO.Adjusted"

> start(YHOO)

[1] "2007-01-03"

> end(YHOO)
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Figure 1.5: Growth of $1 invested in Microsoft and Starbucks stock.

[1] "2009-10-02"

> head(YHOO)

YHOO.Open YHOO.High YHOO.Low YHOO.Close YHOO.Volume

2007-01-03 25.85 26.26 25.26 25.61 26352700

2007-01-04 25.64 26.92 25.52 26.85 32512200

2007-01-05 26.70 27.87 26.66 27.74 64264600

2007-01-08 27.70 28.04 27.43 27.92 25713700

2007-01-09 28.00 28.05 27.41 27.58 25621500

2007-01-10 27.48 28.92 27.44 28.70 40240000

YHOO.Adjusted

2007-01-03 25.61

2007-01-04 26.85

2007-01-05 27.74

2007-01-08 27.92

2007-01-09 27.58

2007-01-10 28.70

To create the daily price-volume chart of the YHOO data shown in Figure

1.6, use the chartSeries() function:

> chartSeries(YHOO,theme=chartTheme(’white’))
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Function Description

chartSeries Create financial charts

getDividends Download dividend data from Yahoo!

getFX Download exchange rates from Oanda

getFinancials Download financial statements from google

getMetals Download metals prices from Oanda

getQuote Download quotes from various sources

getSymbols Download data from various sources

periodReturn Calculate returns from prices

Table 1.2: quantmod return calculation and plotting functions

1.4 Notes and Complements

This chapter describes basic asset return calculations with an emphasis on

equity calculations. Campbell, Lo and MacKinlay (1997) provide a nice

treatment of continuously compounded returns. A useful summary of a broad

range of return calculations is given in Watsham and Parramore (1998).

A comprehensive treatment of fixed income return calculations is given in

Stigum (1981), and the official source of fixed income calculations is the

so-called “The Pink Book”.
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Figure 1.6: Daily price-volume plot for Yahoo! stock created with the quant-

mod function chartSeries().

1.5 Appendix: Properties of exponentials and

logarithms

The computation of continuously compounded returns requires the use of

natural logarithms. The natural logarithm function, ln(·) is the inverse of
the exponential function, (·) = exp(·) where 1 = 2718 That is, ln() is

defined such that  = ln() Figure 1.7 plots  and ln(). Notice that 

is always positive and increasing in . ln() is monotonically increasing in 

and is only defined for   0 Also note that ln(1) = 0 and ln(−∞) = 0
The exponential and natural logarithm functions have the following prop-

erties

1. ln( · ) = ln() + ln()    0
2. ln() = ln()− ln()    0
3. ln() =  ln()   0

4.
 ln()


= 1


   0

5. 

ln(()) = 1

()


() (chain-rule)
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Figure 1.7: Exponential and natural logarithm functions.

6.  = +

7. − = −

8. () = 

9. ln() = 

10. 

 = 

11. 

() = () 


() (chain-rule)
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