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Bivariate Probability Distribution

Example - Two discrete rv's X and Y

Bivariate pdf
Y

% 0 1 |Pr(X)

0 1/8 0 1/8
X 1 2/8 1/8| 3/8

2 1/8 2/8| 3/8

3 0O 1/8| 1/8

Pr(Y) | 4/8 4/8 1

p(z,y) = Pr(X = z,Y = y) = values in table
e.g., p(0,0)=Pr(X=0,Y =0)= 1/8



Properties of joint pdf p(x,y)

Sxy = {(070)7 (Ov 1)7 (170)7 (17 1)7
(2,0), (2,1), (3,0), (3,1)}
p(x,y) >0 for x,y € Sxy

> plzy)=1

T,YyESxYy



Marginal pdfs

p(z) =Pr(X =2)= ) p(z,v)
yESy

= sum over columns in joint table

p(y) =Pr(Y =y)= > p(z,y)
xESx

— sum over rows in joint table



Conditional Probability

Suppose we know Y = 0. How does this knowledge affect the probability that
X = 0,1, 2, or 37 The answer involves conditional probability.

Example
Pr(X=0,Y =0
Pr(X — 0]y = 0) = 21 ’ )
Pr(Y = 0)
_ J'oirft probabilit.y. _1/8 _ 1/4
marginal probability  4/8
Remark

Pr(X=0Y =0)=1/4#Pr(X=0)=1/8
—> X depends on Y

The marginal probability, Pr(X = 0), ignores information about Y.



Definition - Conditional Probability

e The conditional pdf of X given Y =y is, for all x € S,

Pr( X =z, =y)
Pr(Y = y)

plzly) = Pr(X = z|Y =y) =

e The conditional pdf of Y given X = x is, for all values of y € Sy

Pr(X =x,Y =y)

p(ylz) = Pr(Y =y|X = z) = Pr(X — )




Conditional Mean and Variance

pxly—y = BEIX[Y =yl = > 2z -Pr(X =z|Y =y),
rxeSx

py|x=g = ElY|X =2] =} y-Pr(Y =y|X =2z).
yeSy

2 2
oxly—y =Var(X|Y =y)= > (z—pxy—,)" Pr(X =z[Y =y),
rESx

oy =var(Y X =2) = 3 (y— iy x—o)? - Pr(Y = y|X = ).
yESy



Example:

E[X]=0-1/8+1-3/84+2-3/8+3-1/8=3/2
E[X]Y =0=0-1/4+1-1/2+2-1/4+3.0=1,
E[X|]Y =1]=0-0+1-1/4+4+2-1/2+4+3-1/4=2,

var(X) = (0 —3/2)?-1/8 + (1 — 3/2)%-3/8
+(2—3/2)?-3/8+4(3—3/2)%-1/8 = 3/4,
var(X|Y =0)=(0—1)%-1/4+ (1 —1)%-1/2
+(2-1)%-1/2+(3-1)?-0=1/2,
var(X|Y =1)=(0—2)%2-0+ (1 —2)%>-1/4
+(2—-2)%-1/2+(3—-2)2-1/4=1/2.



Independence

Let X and Y be discrete rvs with pdfs p(x), p(y), sample spaces Sx, Sy and
joint pdf p(x,y). Then X and Y are independent rv's if and only if

p(z,y) = p(z) - p(y)
for all values of x € Sx and y € Sy

Result: If X and Y are independent rv's, then

p(z|ly) = p(x) forallx € Sx, y € Sy
p(ylz) = p(y) forallz € Sx, y € Sy

Intuition
Knowledge of X does not influence probabilities associated with Y

Knowledge of Y does not influence probablities associated with X



Bivariate Distributions - Continuous rv's

The joint pdf of X and Y is a non-negative function f(x,y) such that

/_O:O/_O:Of(xay)dwdy: 1

Let [x1, z2] and [y1, yo]| be intervals on the real line. Then
Pr(zy < X <2,y1 <Y <o)
T2 Y2
= / f(z, y)dzdy
r1 Jy1

— volume under probability surface

over the intersection of the intervals

[x1,22] and [y1, yo]



Marginal and Conditional Distributions

The marginal pdf of X is found by integrating y out of the joint pdf f(z,y)
and the marginal pdf of Y is found by integrating x out of the joint pdf:

f@) = [ J@ vy,

fw) = [ fay)de

The conditional pdf of X given that Y = vy, denoted f(z|y), is computed as

f(z,y)
flzly) = :
f(y)
and the conditional pdf of Y given that X = x is computed as
flz,y
Flylr) = 1420

f(z)



The conditional means are computed as

pxiy—y = EIX)Y =4 = [ 2 plaly)da,
py|x=a = EIVIX = 3] = [y p(yla)dy
and the conditional variances are computed as
2
Rtymy = V(XY = y) = [(@ = nxjy—y)?p(aly)ds.

o} 1xmp =Var(Y1X =2) = [(y— iy |x—o)*p(ylw)dy.



Independence.

Let X and Y be continuous random variables. X and Y are independent iff

f(z|ly) = f(x), for —oo < x,y < oo,
flylx) = f(y), for —oo < z,y < oo.

Result: Let X and Y be continuous random variables . X and Y are indepen-
dent iff

f(z,y) = f(z)f(y)

The result in the above proposition is extremely useful in practice because it
gives us an easy way to compute the joint pdf for two independent random
variables: we simple compute the product of the marginal distributions.



Example: Bivariate standard normal distribution

Let X ~ N(0,1), Y ~ N(0,1) and let X and Y be independent. Then

1 1.2 1
x, — T — ¢ 27
fl,y) = J@)fly) = - N
_ 1 3
2T
To find Pr(—1 < X < 1,—-1 <Y < 1) we must solve

/ / 1270 ) dady

which, unfortunately, does not have an analytical solution. Numerical approx-

e 2Y

imation methods are required to evaluate the above integral. See R package

mvtnorm.



Independence continued

Result: If the random variables X and Y (discrete or continuous) are inde-

pendent then the random variables g(X) and h(Y") are independent for any
functions g(-) and h(-).

For example, if X and Y are independent then X2 and Y2 are also independent.



Covariance and Correlation - Measuring linear dependence between two

rv’s

Covariance: Measures direction but not strength of linear relationship between

2rv's

oxy = E[(X — px)(Y — py)]

= Y (z—px)(y—py) plz,y) (discrete)
x.YyeSxy

= [ [ @ = ) — ) y)dady (cts)



Example: For the data in Table 2, we have
ocxy = Cov(X,Y)=(0-3/2)(0—-1/2)-1/8

+(0—-3/2)(1—1/2)-0+---
+(3-3/2)(1-1/2)-1/8=1/4



Properties of Covariance

Cov(X,Y) = Cov(Y, X)
Cov(aX,bY)=a-b-Cov(X,Y)=a-b-oxy
Cov(X, X) = Var(X)
X,Y independent =— Cov(X,Y)=0
Cov(X,Y) =0 X and Y are independent
Cov(X,Y) = E[XY] — E[X]E[Y]



Correlation: Measures direction and strength of linear relationship be-
tween 2 rv’s
Cov(X,Y)
SD(X) -SD(Y)
OXY

— — - — scaled covariance
ox Oy

pxy = Cor(X,Y) =



Example: For the Data in Table 2
1/4
V(3/4) - (1/2)

PXY — COI’(X, Y) — = 0.577




Properties of Correlation

1< pxy <1
pxy =1ifY =aX +banda >0
pxy =—1ifY =aX +banda <0
pxy =0ifand only if oxy =0
pxy = 0= X and Y are independent in general
pxy =0 = independence if X and Y are normal



Bivariate normal distribution

Let X and Y be distributed bivariate normal. The joint pdf is given by
1

flz,y) =
2o yoy\/1 — p?

expd L (a: — ux)z N (y — uy)2 ~2p(z — px)(y — py)
2(1 — p?) ox oy OXOY

where E[X] = px, E[Y] = py, SD(X) = ox, SD(Y) = oy, and p =
cor(X,Y).

X




Linear Combination of 2 rv’s

Let X and Y be rv's. Define a new rv Z that is a linear combination of X and
Y :
/Z =aX + by
where a and b are constants. Then
wyz = E[Z] = ElaX + bY]
= aE[X] + bE[Y]
=a-px +b-py
and
0% =Var(Z) =Var(a- X +b-Y)
— a’Var(X) + b°Var(Y) + 2a - b- Cov(X,Y)
= a2a§( + b2c7§2/ +2a-b-oxy
If X ~ N(uyx,0%) and Y ~ N(py,0%) then Z ~ N(uz,0%)



Example: Portfolio returns
R4 = return on asset A with E[R4] = g and Var(R4) = 0124

Rp = return on asset B with E[Rg| = pup and Var(Rp) = a%

OAB
OA0R

Cov(Rg, Rg) = ogp and Cor(Ry4, R) = pap =
Portfolio

x A = share of wealth invested in asset A,xp = share of wealth invested in
asset B

x4+ xp = 1 (exhaust all wealth in 2 assets)

Rp=x4-Rpg+ xp - Rp = portfolio return



Portfolio Problem: How much wealth should be invested in assets A and B?

Portfolio expected return (gain from investing)
E|Rp] = pp = Elza- Ra+zp - Rp]
= zAE[RA] + zpE[Rp]
= TAMHA T ZBUB
Portfolio variance (risk from investing)
Var(Rp) = 0% = Var(z 4 R4 + 2 gRp)
= x4 Var(R4) + z5Var(Rp)+
2-x4-xp-Cov(Ry4, RpR)
= 2303 + 2R0B + 2w ATpoAR
SD(Rp) = \/Var(Rp) = op

2 2 2 D 172
= ($A0A+$BUB+2$A$BUAB>




Linear Combination of N rv’s.

Let X1, Xo,:-+, X bervsandlet aj,an,...,apn be constants. Define
N
Z=a1X1+axXo+: - -+anyXy= ZaiX’i
1=1
Then

pz = E[Z] = a1 E[X1] + ap E[Xo] + - - - + an E[X N]

N N
=) aE[X{] =) aip
i=1 i=1



For the variance,

a% = Var(Z) = afVar(X1) + - - + a%VVar(XN)
+ 2a1a2Cov(X1, X5) + 2aja3Cov(X7, X3)+---
+ 2apa3Cov( X2, X3) + 2araqCov(Xp, Xg)+ ---
+2an_1anCov(XN_1, XN)
Note: N variance terms and N(N — 1) = N? — N covariance terms. If
N = 100, there are 100 x 99 = 9900 covariance terms!

Result: If X7, Xo,---, X are each normally distributed random variables

then
N g
Z =)y a;X;~ N(ug,0%)
i—1



Example: Portfolio variance with three assets

R4, Rp, R are simple returns on assets A, B and C

T A, TR, T are portfolio shares such that x4 +xp+ 2o =1
Ry =2pARpA+xpRp+zcRc

Portfolio variance

O'%) = x1240124 —+ x%a%; + x%aé

+ 2w p4xB0AB + 2xA2Cc0AC + 20BTCOBC



Note: Portfolio variance calculation may be simplified using matrix layout

A T IO
LA 0'?4 OAB OAC
LB O0AB J%} 9BC
LC 0AC 9BC J%’



Example: Multi-period continuously compounded returns and the square-root-
of-time rule

r¢ = In(1 + R¢) = monthly cc return
re ~ N(u, 02) for all t
Cov(r¢, rs) = 0 for all t # s

Annual return

11
’I"t(12) = Z Tt—j
j=0

=T+ Tp—1 T+ T TE—11



Then

11
E[r{(12)] = ) Elri_;]
j=0

11
=Y pu  (E[rd = pfor all t)
j=0

= 12 (o = mean of monthly return)



Then

11
Var(r¢(12)) = Var (Z rtj)

7=0
11 11
= > Var(re_;) = >_ o
j=0 j=0

= 1202 (0? = monthly variance)
SD(r¢(12)) = v/12 - o (square root of time rule)

r¢(12) ~ N(12p, 120°)



For example, suppose

r¢ ~ N(0.01, (0.10)?)

Then
E[r¢(12)] = 12 x (0.01) = 0.12
Var(r4(12)) = 12 x (0.10)? = 0.12
SD(r¢(12)) = v/0.12 = 0.346
r¢(12) ~ N(0.12, (0.346)?)
and

(C)r =12 x p+ V12 X 0 X 24
— 0.12 4 0.346 X zq

(¢F)A = o(an)* _ 1 = 0.124+0.346xz0 _ q



Covariance between two linear combinations of random variables

Consider two linear combinations of two random variables
X =X1+ X
Y=Y1+Y>
Then
cov(X,Y) = cov(X7 + X, Y7 + Y?)

= cov(X1, Y1) + cov(X1, ¥?2)
+ cov(X2, Y1) + cov(X2, Y2)

The result generalizes to linear combinations of N random variables in the

obvious way.



