
Chapter 1

Introduction to Portfolio

Theory

Updated: August 9, 2013.

This chapter introduces modern portfolio theory in a simplified setting

where there are only two risky assets and a single risk-free asset.

1.1 Portfolios of Two Risky Assets

Consider the following investment problem. We can invest in two non-

dividend paying stocks Amazon (A) and Boeing (B) over the next month.

Let denote monthly simple return on Amazon and denote the monthly

simple return on stock Boeing. These returns are to be treated as random

variables because the returns will not be realized until the end of the month.

We assume that the returns  and  are jointly normally distributed,

and that we have the following information about the means, variances and

covariances of the probability distribution of the two returns:

 = [] 
2
 = var()  = [] 

2
 = var() (1.1)

 = cov( )  = cor( ) =



 (1.2)

We assume that these values are taken as given. Typically, they are estimated

from historical return data for the two stocks. However, they can also be

subjective guesses by an analyst.

1



2 CHAPTER 1 INTRODUCTION TO PORTFOLIO THEORY

The expected returns,  and , are our best guesses for the monthly

returns on each of the stocks. However, because the investment returns are

random variables we must recognize that the realized returns may be different

from our expectations. The variances, 2 and 2, provide measures of the

uncertainty associated with these monthly returns. We can also think of the

variances as measuring the risk associated with the investments. Assets with

high return variability (or volatility) are often thought to be risky, and assets

with low return volatility are often thought to be safe. The covariance 
gives us information about the direction of any linear dependence between

returns. If   0 then the two returns tend to move in the same direction;

if   0 the returns tend to move in opposite directions; if  = 0 then

the returns tend to move independently. The strength of the dependence

between the returns is measured by the correlation coefficient  If 
is close to one in absolute value then returns mimic each other extremely

closely, whereas if  is close to zero then the returns may show very little

relationship.

Example 1 Two risky asset portfolio information

Table 1.1 gives annual return distribution parameters for two hypothetical

assets A and B. Asset A is the high risk asset with an annual return of

 = 175% and annual standard deviation of  = 258% Asset B is a

lower risk asset with annual return  = 55% and annual standard deviation

of  = 115% The assets are assumed to be slightly negatively correlated

with correlation coefficient  = −0164 Given the standard deviations and
the correlation, the covariance can be determined from  =  =

(−0164)(00258)(0115) = −0004875 In R, the example data is

> mu.A = 0.175

> sig.A = 0.258

> sig2.A = sig.A^2

> mu.B = 0.055

> sig.B = 0.115

> sig2.B = sig.B^2

> rho.AB = -0.164

> sig.AB = rho.AB*sig.A*sig.B

¥
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  2 2    

0.175 0.055 0.06656 0.01323 0.258 0.115 -0.004866 -0.164

Table 1.1: Example data for two asset portfolio.

The portfolio problem is set-up as follows. We have a given amount of

initial wealth 0 and it is assumed that we will exhaust all of our wealth

between investments in the two stocks. The investment problem is to decide

how much wealth to put in asset A and how much to put in asset B. Let

 denote the share of wealth invested in stock A, and  denote the share

of wealth invested in stock B. The values of  and  can be positive or

negative. Positive values denote long positions (purchases) in the assets.

Negative values denote short positions (sales).1 Since all wealth is put into

the two investments it follows that  +  = 1 If asset  is shorted, then

it is assumed that the proceeds of the short sale are used to purchase more

of asset  Therefore, to solve the investment problem we must choose the

values of  and 

Our investment in the two stocks forms a portfolio, and the shares  and

 are referred to as portfolio shares or weights. The return on the portfolio

over the next month is a random variable, and is given by

 =  +  (1.3)

which is a linear combination or weighted average of the random variables

 and . Since  and  are assumed to be normally distributed, 

is also normally distributed. We use the properties of linear combinations of

random variables to determine the mean and variance of this distribution.

1.1.1 Portfolio expected return and variance

The distribution of the return on the portfolio (1.3) is a normal with mean,

variance and standard deviation given by

1To short an asset one borrows the asset, usually from a broker, and then sells it. The

proceeds from the short sale are usually kept on account with a broker and there often

restrictions that prevent the use of these funds for the purchase of other assets. The short

position is closed out when the asset is repurchased and then returned to original owner.

If the asset drops in value then a gain is made on the short sale and if the asset increases

in value a loss is made.
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 = [] =  +  (1.4)

2 = var() = 2
2
 + 2

2
 + 2 (1.5)

 = SD() =

q
2

2
 + 2

2
 + 2 (1.6)

That is,

 ∼ ( 
2
)

The results (1.4) and (1.5) are so important to portfolio theory that it is

worthwhile to review the derivations. For the first result (1.4), we have

[] = [ + ] = [] + [] =  + 

by the linearity of the expectation operator. For the second result (1.5), we

have

var() = [( − )
2] = [(( − ) + ( − ))

2]

= [2( − )
2 + 2( − )

2 + 2( − )( − )]

= 2[( − )
2] + 2[( − )

2] + 2[( − )( − )]

= 2
2
 + 2

2
 + 2

Notice that the variance of the portfolio is a weighted average of the variances

of the individual assets plus two times the product of the portfolio weights

times the covariance between the assets. If the portfolio weights are both

positive then a positive covariance will tend to increase the portfolio variance,

because both returns tend to move in the same direction, and a negative

covariance will tend to reduce the portfolio variance. Thus finding assets with

negatively correlated returns can be very beneficial when forming portfolios

because risk, as measured by portfolio standard deviation, is reduced. What

is perhaps surprising is that forming portfolios with positively correlated

assets can also reduce risk as long as the correlation is not too large.

Example 2 Two asset portfolios

Consider creating some portfolios using the asset information in Table 1.1.

The first portfolio is an equally weighted portfolio with  =  = 05 Using
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(1.4)-(1.6), we have

 = (05) · (0175) + (05) · (0055) = 0115
2 = (05)2 · (0067) + (05)2 · (0013)

+2 · (05)(05)(−0004866)
= 001751

 =
√
001751 = 01323

This portfolio has expected return half-way between the expected returns

on assets A and B, but the portfolio standard deviation is less than half-

way between the asset standard deviations. This reflects risk reduction via

diversification. In R, the portfolio parameters are computed using

> x.A = 0.5

> x.B = 0.5

> mu.p1 = x.A*mu.A + x.B*mu.B

> sig2.p1 = x.A^2 * sig2.A + x.B^2 * sig2.B + 2*x.A*x.B*sig.AB

> sig.p1 = sqrt(sig2.p)

> mu.p1

[1] 0.115

> sig2.p1

[1] 0.01751

> sig.p1

[1] 0.1323

Next, consider a long-short portfolio with  = 15 and  = −05 In this
portfolio, asset B is sold short and the proceeds of the short sale are used to

leverage the investment in asset A. The portfolio characteristics are

 = (15) · (0175) + (−05) · (0055) = 0235
2 = (15)2 · (0067) + (−05)2 · (0013)

+2 · (15)(−05)(−0004866)
= 01604

 =
√
01604 = 04005

This portfolio has both a higher expected return and standard deviation than

asset A. In R, the portfolio parameters are computed using
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> x.A = 1.5

> x.B = -0.5

> mu.p2 = x.A*mu.A + x.B*mu.B

> sig2.p2 = x.A^2 * sig2.A + x.B^2 * sig2.B + 2*x.A*x.B*sig.AB

> sig.p2 = sqrt(sig2.p2)

> mu.p2

[1] 0.235

> sig2.p2

[1] 0.1604

> sig.p2

[1] 0.4005

¥

1.1.2 Portfolio Value-at-Risk

Consider an initial investment of $0 in the portfolio of assets A and B

with return given by (1.3), expected return given by (1.4) and variance given

by (1.5). Then  ∼ ( 
2
). For  ∈ (0 1) the  × 100% portfolio

value-at-risk is given by

VaR = 0 (1.7)

where  is the  quantile of the distribution of  and is given by

 =  + 

 (1.8)

where  is the  quantile of the standard normal distribution.
2

What is the relationship between portfolio VaR and the individual asset

VaRs? Is portfolio VaR a weighted average of the individual asset VaRs?

In general, portfolio VaR is not a weighted average of the asset VaRs. To

see this consider the portfolio weighted average of the individual asset return

quantiles



 + 


 = ( + 


) + ( + 


)

=  +  + ( + )



=  + ( + )

 (1.9)

2If  is a continuously compounded return then the implied simple return quantile is

 = exp( + 

)− 1
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The weighted asset quantile (1.9) is not equal to the portfolio quantile (1.8)

unless  = 1 Hence, weighted asset VaR is in general not equal to portfolio

VaR because the quantile (1.9) ignores the correlation between  and 

Example 3 Portfolio VaR

Consider an initial investment of 0 =$100,000. Assuming that returns are

simple, the 5% VaRs on assets A and B are

VaR005 = 

0050 = ( + 

05)0

= (0175 + 0258(−1645)) · 100 000 = −24 937
VaR005 = 

0050 = ( + 

05)0

= (0055 + 0115(−1645)) · 100 000 = −13 416

The 5% VaR on the equal weighted portfolio with  =  = 05 is

VaR005 = 


0050 =
¡
 + 


05

¢
0

= (0115 + 01323(−1645)) · 100 000 = −10 268

and the weighted average of the individual asset VaRs is

VaR005 + VaR005 = 05(−24 937) + 05(−13 416) = −19 177

The 5% VaR on the long-short portfolio with  = 15 and  = −05 is

VaR005 = 


0050 = (0235 + 04005(−1645)) · 100 000 = −42 371

and the weighted average of the individual asset VaRs is

VaR005 + VaR005 = 15(−24 937)− 05(−13 416) = −30 698

Notice that VaR005 6= VaR005 + VaR005 because  6= 1
Using R, these computations are

> w0 = 100000

> VaR.A = (mu.A + sig.A*qnorm(0.05))*w0

> VaR.A

[1] -24937

> VaR.B = (mu.B + sig.B*qnorm(0.05))*w0

> VaR.B
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[1] -13416

> VaR.p1 = (mu.p1 + sig.p1*qnorm(0.05))*w0

> VaR.p1

[1] -10268

> x.A*VaR.A + x.B*VaR.B

[1] -19177

> VaR.p2 = (mu.p2 + sig.p2*qnorm(0.05))*w0

> VaR.p2

[1] -42371

> x.A*VaR.A + x.B*VaR.B

[1] -30698

¥

Example 4 Create R function to compute portfolio VaR

The previous example used repetitive R calculations to compute the 5% VaR

of an investment. An alternative approach is to first create an R function to

compute the VaR given    (VaR probability) and 0, and then apply

the function using the inputs of the different assets. A simple function to

compute VaR based on normally distributed asset returns is

normalVaR <- function(mu, sigma, w0, tail.prob = 0.01, invert=FALSE) {

## compute normal VaR for collection of assets given mean and sd vector

## inputs:

## mu n x 1 vector of expected returns

## sigma n x 1 vector of standard deviations

## w0 scalar initial investment in $

## tail.prob scalar tail probability

## invert logical. If TRUE report VaR as positive number

## output:

## VaR n x 1 vector of left tail return quantiles

## References:

## Jorian (2007) pg 111.

if ( length(mu) != length(sigma) )

stop("mu and sigma must have same number of elements")

if ( tail.prob < 0 || tail.prob > 1)

stop("tail.prob must be between 0 and 1")

VaR = w0*(mu + sigma*qnorm(tail.prob))



1.2 EFFICIENT PORTFOLIOS WITH TWO RISKY ASSETS 9

if (invert) {

VaR = -VaR

}

return(VaR)

}

Using the normalVaR() function, the 5%VaR values of asset A, B and equally

weighted portfolio are:

> normalVaR(mu=c(mu.A, mu.B, mu.p1),

+ sigma=c(sig.A, sig.B, sig.p1),

+ w0=100000, tail.prob=0.05)

[1] -24937 -13416 -10268

¥

1.2 Efficient portfolios with two risky assets

In this section we describe how mean-variance efficient portfolios are con-

structed. First we make the following assumptions regarding the probability

distribution of asset returns and the behavior of investors:

1. Returns are covariance stationary and ergodic, and jointly normally

distributed over the investment horizon. This implies that means, vari-

ances and covariances of returns are constant over the investment hori-

zon and completely characterize the joint distribution of returns.

2. Investors know the values of asset return means, variances and covari-

ances.

3. Investors only care about portfolio expected return and portfolio vari-

ance. Investors like portfolios with high expected return but dislike

portfolios with high return variance.

Given the above assumptions we set out to characterize the set of efficient

portfolios: those portfolios that have the highest expected return for a given

level of risk as measured by portfolio variance. These are the portfolios that

investors are most interested in holding.
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Figure 1.1: Portfolio frontier of example data.

For illustrative purposes we will show calculations using the data in the

Table 1.1. The collection of all feasible portfolios, or the investment possi-

bilities set, in the case of two assets is simply all possible portfolios that can

be formed by varying the portfolio weights  and  such that the weights

sum to one ( +  = 1). We summarize the expected return-risk (mean-

variance) properties of the feasible portfolios in a plot with portfolio expected

return, , on the vertical axis and portfolio standard deviation, , on the

horizontal axis. The portfolio standard deviation is used instead of variance

because standard deviation is measured in the same units as the expected

value (recall, variance is the average squared deviation from the mean).

Example 5 Investment possibilities set for example data

The investment possibilities set or portfolio frontier for the data in Table 1.1

is illustrated in Figure 1.1. Here the portfolio weight on asset A, , is varied

from -0.4 to 1.4 in increments of 0.1 and, since  = 1 −  the weight on

asset B then varies from 1.4 to -0.4. This gives us 18 portfolios with weights
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( ) = (−04 14) (−03 13)  (13−03) (14−04) For each of these
portfolios we use the formulas (1.4) and (1.6) to compute  and . We then

plot these values. In R, the computations are

> x.A = seq(from=-0.4, to=1.4, by=0.1)

> x.B = 1 - x.A

> mu.p = x.A*mu.A + x.B*mu.B

> sig2.p = x.A^2 * sig2.A + x.B^2 * sig2.B + 2*x.A*x.B*sig.AB

> sig.p = sqrt(sig2.p)

> plot(sig.p, mu.p, type="b", pch=16,

+ ylim=c(0, max(mu.p)), xlim=c(0, max(sig.p)),

+ xlab=expression(sigma[p]), ylab=expression(mu[p]),

+ col=c(rep("red", 6), rep("green", 13)))

> plot(sig.p, mu.p, type="b", pch=16,

+ ylim=c(0, max(mu.p)), xlim=c(0, max(sig.p)),

+ xlab=expression(sigma[p]), ylab=expression(mu[p]),

+ col=c(rep("red", 6), rep("green", 13)))

> text(x=sig.A, y=mu.A, labels="Asset A", pos=4)

> text(x=sig.B, y=mu.B, labels="Asset B", pos=4)

¥
Notice that the plot in ( )− space looks like a parabola turned on its

side (in fact, it is one side of a hyperbola). Since it is assumed that investors

desire portfolios with the highest expected return,  for a given level of risk,

 combinations that are in the upper left corner are the best portfolios and

those in the lower right corner are the worst. Notice that the portfolio at the

bottom of the parabola has the property that it has the smallest variance

among all feasible portfolios. Accordingly, this portfolio is called the global

minimum variance portfolio.

Efficient portfolios are those with the highest expected return for a given

level of risk. These portfolios are colored green in Figure 1.1. Inefficient port-

folios are then portfolios such that there is another feasible portfolio that has

the same risk () but a higher expected return (). These portfolios are

colored red in Figure 1.1. From Figure 1.1 it is clear that the inefficient

portfolios are the feasible portfolios that lie below the global minimum vari-

ance portfolio, and the efficient portfolios are those that lie above the global

minimum variance portfolio.
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1.2.1 Computing the Global Minimum Variance Port-

folio

It is a simple exercise in calculus to find the global minimum variance port-

folio. We solve the constrained optimization problem3

min


2 = 2
2
 + 2

2
 + 2

  +  = 1

This constrained optimization problem can be solved using two methods.

The first method, called the method of substitution, uses the constraint to

substitute out one of the variables to transform the constrained optimization

problem in two variables into an unconstrained optimization problem in one

variable. The second method, called the method of Lagrange multipliers, in-

troduces an auxiliary variable called the Lagrange multiplier and transforms

the constrained optimization problem in two variables into an unconstrained

optimization problem in three variables.

The substitution method is straightforward. Substituting  = 1 − 
into the formula for 2 reduces the problem to

min


2 = 2
2
 + (1− )

22 + 2(1− )

The first order conditions for a minimum, via the chain rule, are

0 =
2


= 2min 2 − 2(1− min )2 + 2(1− 2min )

and straightforward calculations yield

min =
2 − 

2 + 2 − 2
 min = 1− min  (1.10)

The method of Lagrange multipliers involves two steps. In the first step,

the constraint  +  = 1 is put into homogenous form  +  − 1 = 0
In the second step, the Lagrangian function is formed by adding to 2 the

homogenous constraint multiplied by an auxiliary variable  (the Lagrange

multiplier) giving

(  ) = 2
2
 + 2

2
 + 2 + ( +  − 1)

3A review of optimization and constrained optimization is given in the appendix to this

chapter.
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This function is then minimized with respect to   and  The first

order conditions are

0 =
(  )


= 2

2
 + 2 + 

0 =
(  )


= 2

2
 + 2 + 

0 =
(  )


=  +  − 1

The first two equations can be rearranged to give

 = 

µ
2 − 

2 − 

¶


Substituting this value for  into the third equation and rearranging gives

the solution (1.10).

Example 6 Global minimum variance portfolio for example data

Using the data in Table 1.1 and (1.10) we have

min =
001323− (−0004866)

006656 + 001323− 2(−0004866) = 02021 
min
 = 07979

The expected return, variance and standard deviation of this portfolio are

 = (02021) · (0175) + (07979) · (0055) = 007925
2 = (02021)2 · (0067) + (07979)2 · (0013)

+2 · (02021)(07979)(−0004875)
= 000975

 =
√
000975 = 009782

In Figure 1.1, this portfolio is labeled “global min”. In R, the calculations

to compute the global minimum variance portfolio are

> xA.min = (sig2.B - sig.AB)/(sig2.A + sig2.B - 2*sig.AB)

> xB.min = 1 - xA.min

> xA.min

[1] 0.2021
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> xB.min

[1] 0.7979

> mu.p.min = xA.min*mu.A + xB.min*mu.B

> sig2.p.min = xA.min^2 * sig2.A + xB.min^2 * sig2.B +

+ 2*xA.min*xB.min*sig.AB

> sig.p.min = sqrt(sig2.p.min)

> mu.p.min

[1] 0.07925

> sig.p.min

[1] 0.09782

¥

1.2.2 Correlation and the Shape of the Efficient Fron-

tier

The shape of the investment possibilities set is very sensitive to the corre-

lation between assets A and B. If  is close to 1 then the investment set

approaches a straight line connecting the portfolio with all wealth invested in

asset B, ( ) = (0 1), to the portfolio with all wealth invested in asset A,

( ) = (1 0). This case is illustrated in Figure 1.2. As  approaches

zero the set starts to bow toward the  axis, and the power of diversifica-

tion starts to kick in. If  = −1 then the set actually touches the  axis.
What this means is that if assets A and B are perfectly negatively correlated

then there exists a portfolio of A and B that has positive expected return

and zero variance! To find the portfolio with 2 = 0 when  = −1 we use
(1.10) and the fact that  =  to give

min =


 + 
 min = 1− 

The case with  = −1 is also illustrated in Figure 1.2.
Example 7 Portfolio frontier when  = ±1
Suppose  = 1 Then  =  =  The portfolio variance

is then

2 = 2
2
 + 2

2
 + 2 = 2

2
 + 2

2
 + 2

= ( + )
2
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Figure 1.2: Portfolios with  = 1 and  = −1

Hence,  =  +  =  + (1 − ) which shows that  lies

on a straight line connecting  and  Next, suppose  = −1 Then
 =  = − which implies that 2 = ( − )

2 and

 = − = +(1−) In this case we can find a portfolio

that has zero volatility. We solve for  such that  = 0 :

0 =  + (1− ) ⇒  =


 + 
  = 1− 

1.2.3 Optimal Portfolios

Given the efficient set of portfolios as described in Figure 1.1, which portfolio

will an investor choose? Of the efficient portfolios, investors will choose the

one that accords with their risk preferences. Very risk averse investors will

want a portfolio that has low volatility (risk) and will choose a portfolio very

close to the global minimum variance portfolio. In contrast, very risk tolerant
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investors will ignore volatility and seek portfolios with high expected returns.

Hence, these investors will choose portfolios with large amounts of asset A

which may involve short-selling asset B.

1.3 Efficient portfolios with a risk-free asset

In the preceding section we constructed the efficient set of portfolios in the

absence of a risk-free asset. Now we consider what happens when we intro-

duce a risk-free asset. In the present context, a risk-free asset is equivalent

to default-free pure discount bond that matures at the end of the assumed

investment horizon. The risk-free rate,  , is then the nominal return on

the bond. For example, if the investment horizon is one month then the

risk-free asset is a 30-day U.S. Treasury bill (T-bill) and the risk-free rate

is the nominal rate of return on the T-bill.4 If our holdings of the risk-free

asset is positive then we are “lending money” at the risk-free rate, and if our

holdings are negative then we are “borrowing” at the risk-free rate.

1.3.1 Efficient portfolios with one risky asset and one

risk-free asset

Consider an investment in asset B and the risk-free asset (henceforth referred

to as a T-bill). Since the risk-free rate is fixed (constant) over the investment

horizon it has some special properties, namely

 = [ ] =  

var() = 0

cov( ) = 0

Let  denote the share of wealth in asset B, and  = 1 −  denote the

share of wealth in T-bills. The portfolio return is

 = (1− ) +  =  + ( − )

The quantity  −  is called the excess return (over the return on T-bills)

on asset B. The portfolio expected return is then

 =  + ([]− ) =  + ( − ) (1.11)

4The default-free assumption of U.S. debt has recently been questioned due to the in-

ability of the U.S. congress to address the long-term debt problems of the U.S. government.
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where the quantity ( − ) is called the expected excess return or risk

premium on asset B. For risky assets, the risk premium is typically positive

indicating that investors expect a higher return on the risky asset than the

safe asset. We may express the risk premium on the portfolio in terms of the

risk premium on asset B:

 −  = ( − )

The more we invest in asset B the higher the risk premium on the portfolio.

Because the risk-free rate is constant, the portfolio variance only depends

on the variability of asset B and is given by

2 = 2
2


The portfolio standard deviation is therefore proportional to the standard

deviation on asset B

 =  (1.12)

which we can use to solve for 

 =





Using the last result, the feasible (and efficient) set of portfolios follows the

equation

 =  +
 − 


·  (1.13)

which is simply straight line in ( )− space with intercept  and slope
−


. This line is often called the capital allocation line (CAL). The slope

of the CAL is called the Sharpe ratio (SR) or Sharpe’s slope (named after the

economist William Sharpe), and it measures the risk premium on the asset

per unit of risk (as measured by the standard deviation of the asset).

Example 8 Portfolios of T-Bills and risky assets

The portfolios which are combinations of asset A and T-bills and combina-

tions of asset B and T-bills, using the data in Table 1.1 with  = 003 are

illustrated in Figure 1.3 which is created using the R code
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Figure 1.3: Portfolios of T-Bills and risky assets.

> r.f = 0.03

# T-bills + asset A

> x.A = seq(from=0, to=1.4, by=0.1)

> mu.p.A = r.f + x.A*(mu.A - r.f)

> sig.p.A = x.A*sig.A

# T-bills + asset B

> x.B = seq(from=0, to=1.4, by=0.1)

> mu.p.B = r.f + x.B*(mu.B - r.f)

> sig.p.B = x.B*sig.B

# plot portfolios of T-Bills and assets A and B

> plot(sig.p.A, mu.p.A, type="b", col="black", ylim=c(0, max(mu.p.A)),

+ xlim=c(0, max(sig.p.A, sig.p.B)), pch=16,

+ xlab=expression(sigma[p]), ylab=expression(mu[p]))

> points(sig.p.B, mu.p.B, type="b", col="blue", pch=16)

> text(x=sig.A, y=mu.A, labels="Asset A", pos=4)

> text(x=sig.B, y=mu.B, labels="Asset B", pos=1)
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> text(x=0, y=r.f, labels=expression(r[f]), pos=2)

Notice that expected return-risk trade off of these portfolios is linear. Also,

notice that the portfolios which are combinations of asset A and T-bills have

expected returns uniformly higher than the portfolios consisting of asset B

and T-bills. This occurs because the Sharpe ratio for asset A is higher than

the ratio for asset B:

SR =
 − 


=
0175− 003
0258

= 0562

SR =
 − 


=
0055− 003
0115

= 0217

Hence, portfolios of asset A and T-bills are efficient relative to portfolios of

asset B and T-bills. ¥
The previous example shows that the Sharpe ratio can be used to rank

the risk return properties of individual assets. Assets with a high Sharpe

ratio have a better risk-return tradeoff than assets with a low Sharpe ratio.

Accordingly, investment analysts routinely rank assets based on their Sharpe

ratios.

1.4 Efficient portfolios with two risky assets

and a risk-free asset

Now we expand on the previous results by allowing our investor to form

portfolios of assets A, B and T-bills. The efficient set in this case will still be

a straight line in ( )− space with intercept  . The slope of the efficient
set, the maximum Sharpe ratio, is such that it is tangent to the efficient set

constructed just using the two risky assets A and B. Figure 1.4 illustrates

why this is so.

If we invest in only in asset B and T-bills then the Sharpe ratio is SR =
−


= 0217 and the CAL intersects the parabola at point B. This is clearly

not the efficient set of portfolios. For example, we could do uniformly better

if we instead invest only in asset A and T-bills. This gives us a Sharpe ratio of

SR =
−


= 0562 and the new CAL intersects the parabola at point A.

However, we could do better still if we invest in T-bills and some combination

of assets A and B. Geometrically, it is easy to see that the best we can do

is obtained for the combination of assets A and B such that the CAL is just
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Figure 1.4: Efficient portfolios of two risky assets and T-Bills.

tangent to the parabola. This point is labeled “Tangency” on the graph and

represents the tangency portfolio of assets A and B. Portfolios of T-Bills and

the tangency portfolio are the set of efficient portfolios consisting of T-Bills,

asset A and asset B.

1.4.1 Solving for the Tangency Portfolio

We can determine the proportions of each asset in the tangency portfolio by

finding the values of  and  that maximize the Sharpe ratio of a portfolio

that is on the envelope of the parabola. Formally, we solve the constrained
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maximization problem

max


SR =
 − 




 =  + 

2 = 2
2
 + 2

2
 + 2

1 =  + 

After various substitutions, the above problem can be reduced to

max


( − ) + (1− )( − )

(2
2
 + (1− )2

2
 + 2(1− ))

12


This is a straightforward, albeit very tedious, calculus problem and the so-

lution can be shown to be

 =
( − )

2
 − ( − )

( − )
2
 + ( − )

2
 − ( −  +  − )

 (1.14)

 = 1−  

Example 9 Tangency portfolio for example data

For the example data in Table 1.1 using (1.14) with  = 003 we get

 = 04625 and  = 05375 The expected return, variance and standard

deviation on the tangency portfolio are

 =  +  

= (04625)(0175) + (05375)(0055) = 01105

2 =
¡

¢2
2 +

¡

¢2
2 + 2





 

= (04625)2(006656) + (05375)2(001323)+

2(04625)(05375)(−0004866) = 001564
 =

√
001564 = 01251

In R, the computations to compute the tangency portfolio are

> top = (mu.A - r.f)*sig2.B - (mu.B - r.f)*sig.AB

> bot = (mu.A - r.f)*sig2.B + (mu.B - r.f)*sig2.A -

+ (mu.A - r.f + mu.B - r.f)*sig.AB
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> x.A.tan = top/bot

> x.B.tan = 1 - x.A.tan

> x.A.tan

[1] 0.4625

> x.B.tan

[1] 0.5375

> mu.p.tan = x.A.tan*mu.A + x.B.tan*mu.B

> sig2.p.tan = x.A.tan^2 * sig2.A + x.B.tan^2 * sig2.B +

+ 2*x.A.tan*x.B.tan*sig.AB

> sig.p.tan = sqrt(sig2.p.tan)

> mu.p.tan

[1] 0.1105

> sig.p.tan

[1] 0.1251

¥

1.4.2 Mutual Fund Separation

The efficient portfolios are combinations of the tangency portfolio and the T-

bill. Accordingly, using (1.11) and (1.12) the expected return and standard

deviation of any efficient portfolio are given by

 =  +  ( − ) (1.15)

 =   (1.16)

where  represents the fraction of wealth invested in the tangency portfolio

(and 1− represents the fraction of wealth invested in T-Bills), and  and
 are the expected return and standard deviation of the tangency portfolio,

respectively. This important result is known as the mutual fund separation

theorem. The tangency portfolio can be considered as a mutual fund of the

two risky assets, where the shares of the two assets in the mutual fund are

determined by the tangency portfolio weights ( and  determined from

(1.14)), and the T-bill can be considered as a mutual fund of risk-free assets.

The expected return-risk trade-off of these portfolios is given by the line

connecting the risk-free rate to the tangency point on the efficient frontier of

risky asset only portfolios. Which combination of the tangency portfolio and

the T-bill an investor will choose depends on the investor’s risk preferences.

If the investor is very risk averse, then she will choose a portfolio with low
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volatility which will be a portfolio with very little weight in the tangency

portfolio and a lot of weight in the T-bill. This will produce a portfolio with

an expected return close to the risk-free rate and a variance that is close

to zero. If the investor can tolerate a large amount of risk, then she would

prefer a portfolio with highest expected return regardless of the volatility.

This portfolio may involve borrowing at the risk-free rate (leveraging) and

investing the proceeds in the tangency portfolio to achieve a high expected

return.

Example 10 Efficient portfolios chosen by risk averse and risk tolerant in-

vestors

A highly risk averse investor may choose to put 10% of her wealth in the tan-

gency portfolio and 90% in the T-bill. Then she will hold (10%)×(4625%) =
4625% of her wealth in asset , (10%) × (5375%) = 5375% of her wealth

in asset  and 90% of her wealth in the T-bill. The expected return on this

portfolio is

 =  + 010( − ) = 003 + 010(01105− 003) = 003805

and the standard deviation is

 = 010 = 010(01251) = 001251

In Figure 1.5, this efficient portfolio is labeled “Safe”. A very risk tolerant

investor may actually borrow at the risk-free rate and use these funds to

leverage her investment in the tangency portfolio. For example, suppose the

risk tolerant investor borrows 100% of her wealth at the risk-free rate and

uses the proceed to purchase 200% of her wealth in the tangency portfolio.

Then she would hold (200%) × (4625%) = 9250% of her wealth in asset

A, (200%)× (5375%) = 1075% in asset B, and she would owe 100% of her

wealth to her lender. The expected return and standard deviation on this

portfolio is

 = 003 + 2(01105− 003) = 01910
 = 2(01251) = 02501

In Figure 1.5, this efficient portfolio is labeled “Risky”. ¥
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Figure 1.5: The efficient portfolio labeled “safe” has 10% invested in the

tangency portfolio and 90% invested in T-Bills; the efficien portfolio labeled

“risky” has 200% invested in the tangency portfolio and -100% invested in

T-Bills.

1.4.3 Interpreting Efficient Portfolios

As we have seen, efficient portfolios are those portfolios that have the highest

expected return for a given level of risk as measured by portfolio standard

deviation. For portfolios with expected returns above the T-bill rate, efficient

portfolios can also be characterized as those portfolios that have minimum

risk (as measured by portfolio standard deviation) for a given target expected

return.

To illustrate, consider Figure 1.6 which shows the portfolio frontier for

two risky assets and the efficient frontier for two risky assets plus T-Bills.

Suppose an investor initially holds all of his wealth in asset B. The expected

return on this portfolio is  = 0055 and the standard deviation (risk) is

 = 0115An efficient portfolio (combinations of the tangency portfolio and

T-bills) that has the same standard deviation (risk) as asset B is given by the
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portfolio on the efficient frontier that is directly above  = 0115 To find

the shares in the tangency portfolio and T-bills in this portfolio recall from

(1.16) that the standard deviation of an efficient portfolio with  invested

in the tangency portfolio and 1−  invested in T-bills is 

 =   Since

we want to find the efficient portfolio with  =  = 0115 we solve

 =



=
0115

01251
= 09195  = 1−  = 008049

That is, if we invest 9195% of our wealth in the tangency portfolio and

8049% in T-bills we will have a portfolio with the same standard deviation

as asset B. Since this is an efficient portfolio, the expected return should be

higher than the expected return on asset B. Indeed it is since

 =  +  ( − ) = 003 + 09195(01105− 003) = 01040

Notice that by diversifying our holding into assets A, B and T-bills we can

obtain a portfolio with the same risk as asset B but with almost twice the

expected return!

Next, consider finding an efficient portfolio that has the same expected

return as asset B. Visually, this involves finding the combination of the tan-

gency portfolio and T-bills that corresponds with the intersection of a hor-

izontal line with intercept  = 0055 and the line representing efficient

combinations of T-bills and the tangency portfolio. To find the shares in

the tangency portfolio and T-bills in this portfolio recall from (1.15) that

the expected return of an efficient portfolio with  invested in the tan-

gency portfolio and 1 −  invested in T-bills has expected return equal to

 =  +  ( − ) Since we want to find the efficient portfolio with

 =  = 0055 we solve

 =
 − 

 − 
=
0055− 003
01105− 003 = 03105  = 1−  = 06895

That is, if we invest 3105% of wealth in the tangency portfolio and 6895%

of our wealth in T-bills we have a portfolio with the same expected return as

asset B. Since this is an efficient portfolio, the standard deviation (risk) of

this portfolio should be lower than the standard deviation on asset B. Indeed

it is since

 =  = 03105(0124) = 003884
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Notice how large the risk reduction is by forming an efficient portfolio. The

standard deviation on the efficient portfolio is almost three times smaller

than the standard deviation of asset B!

The above example illustrates two ways to interpret the benefits from

forming efficient portfolios. Starting from some benchmark portfolio, we

can fix standard deviation (risk) at the value for the benchmark and then

determine the gain in expected return from forming a diversified portfolio5.

The gain in expected return has concrete meaning. Alternatively, we can

fix expected return at the value for the benchmark and then determine the

reduction in standard deviation (risk) from forming a diversified portfolio.

The meaning to an investor of the reduction in standard deviation is not

as clear as the meaning to an investor of the increase in expected return.

It would be helpful if the risk reduction benefit can be translated into a

number that is more interpretable than the standard deviation. The concept

of Value-at-Risk (VaR) provides such a translation.

1.4.4 Efficient Portfolios and Value-at-Risk

Recall, the VaR of an investment is the (lower bound of) loss in investment

value over a given horizon with a stated probability. For example, consider an

investor who invests0 = $100 000 in asset B over the next year. Assuming

that  ∼ (0055 (0115)2) represents the annual simple return on asset B

, the 5% VaR is

VaR005 = 

0050 = (0055 + 0115(−1645)) · $100 000 = −$13 416

If an investor holds $100,000 in asset B over the next year, then there is a

5% probability that he will lose $13,416 or more.

Now suppose the investor chooses to hold an efficient portfolio with the

same expected return as asset B. This portfolio consists of 3105% in the

tangency portfolio and 6895% in T-bills and has a standard deviation equal

to 003884 Then  ∼ (0055 003884) and the 5% VaR on the portfolio

is

VaR005 = 


0050 = (0055 + 003884(−1645)) · $100 000 = −$884
5The gain in expected return by investing in an efficient portfolio abstracts from the

costs associated with selling the benchmark portfolio and buying the efficient portfolio.
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Figure 1.6: The point e1 represents an efficient portfolio with the same stan-

dard deviation as asset B; the point e2 represents an efficient portfolio with

the same expected returns as asset B.

Notice that the 5% VaR for the efficient portfolio is almost fifteen times

smaller than the 5% VaR for the investment in asset B. Since VaR translates

risk into a dollar figure, it is more interpretable than standard deviation.

1.5 Further Reading

The classic text on portfolio optimization is Markowitz (1954). Good in-

termediate level treatments are given in Benninga (2000), Bodie, Kane and

Marcus (1999) and Elton and Gruber (1995). An interesting recent treat-

ment with an emphasis on statistical properties is Michaud (1998). Many

practical results can be found in the Financial Analysts Journal and the

Journal of Portfolio Management. An excellent treatment of value-at-risk

and risk budgeting is given in Jorian (1997).
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1.6 Appendix Review of Optimization and

Constrained Optimization

Consider the function of a single variable

 = () = 2

Clearly the minimum of this function occurs at the point  = 0 Using

calculus, we find the minimum by solving

min


 = 2

The first order (necessary) condition for a minimum is

0 =



() =




2 = 2

and solving for  gives  = 0 The second order condition for a minimum is

0 
2


()

and this condition is clearly satisfied for () = 2

Next, consider the function of two variables

 = ( ) = 2 + 2 (1.17)

This function looks like a salad bowl whose bottom is at  = 0 and  = 0

To find the minimum of (1.17), we solve

min


 = 2 + 2

and the first order necessary conditions are

0 =



= 2

0 =



= 2

Solving these two linear equations gives  = 0 and  = 0



1.6 APPENDIX REVIEWOFOPTIMIZATIONANDCONSTRAINEDOPTIMIZATION

Now suppose we want to minimize (1.17) subject to the linear constraint

+  = 1 (1.18)

The minimization problem is now a constrained minimization

min


 = 2 + 2 subject to ()

+  = 1

Given the constraint  +  = 1 the function (1.17) is no longer minimized

at the point ( ) = (0 0) because this point does not satisfy  +  = 1

One simple way to solve this problem is to substitute the restriction (1.18)

into the function (1.17) and reduce the problem to a minimization over one

variable. To illustrate, use the restriction (1.18) to solve for  as

 = 1−  (1.19)

Now substitute (1.19) into (1.17) giving

 = ( ) = ( 1− ) = 2 + (1− )2 (1.20)

The function (1.20) satisfies the restriction (1.18) by construction. The con-

strained minimization problem now becomes

min


 = 2 + (1− )2

The first order conditions for a minimum are

0 =



(2 + (1− )2) = 2− 2(1− ) = 4− 2

and solving for  gives  = 12 To solve for  use (1.19) to give  =

1−(12) = 12 Hence, the solution to the constrained minimization problem
is ( ) = (12 12)

Another way to solve the constrained minimization is to use the method

of Lagrange multipliers. This method augments the function to be minimized

with a linear function of the constraint in homogeneous form. The constraint

(1.18) in homogenous form is

+  − 1 = 0
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The augmented function to be minimized is called the Lagrangian and is

given by

(  ) = 2 + 2 − (+  − 1)
The coefficient on the constraint in homogeneous form,  is called the La-

grange multiplier. It measures the cost, or shadow price, of imposing the con-

straint relative to the unconstrained problem. The constrained minimization

problem to be solved is now

min


(  ) = 2 + 2 + (+  − 1)

The first order conditions for a minimum are

0 =
(  )


= 2+ 

0 =
(  )


= 2 + 

0 =
(  )


= +  − 1

The first order conditions give three linear equations in three unknowns.

Notice that the first order condition with respect to  imposes the constraint.

The first two conditions give

2 = 2 = −

or

 = 

Substituting  =  into the third condition gives

2 − 1 = 0

or

 = 12

The final solution is (  ) = (12 12−1)
The Lagrange multiplier,  measures the marginal cost, in terms of the

value of the objective function, of imposing the constraint. Here,  = −1
which indicates that imposing the constraint +  = 1 reduces the objective

function. To understand the roll of the Lagrange multiplier better, consider
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imposing the constraint +  = 0 Notice that the unconstrained minimum

achieved at  = 0  = 0 satisfies this constraint. Hence, imposing +  = 0

does not cost anything and so the Lagrange multiplier associated with this

constraint should be zero. To confirm this, the we solve the problem

min


(  ) = 2 + 2 + (+  − 0)

The first order conditions for a minimum are

0 =
(  )


= 2− 

0 =
(  )


= 2 − 

0 =
(  )


= + 

The first two conditions give

2 = 2 = −

or

 = 

Substituting  =  into the third condition gives

2 = 0

or

 = 0

The final solution is (  ) = (0 0 0) Notice that the Lagrange multiplier,

 is equal to zero in this case.
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