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Constant Expected Return (CER) Model

r;+ = CC return on asset ¢ in month ¢

1=1,---,N assets; t =1,---, 1" months
Assumptions (normal distribution and covariance stationarity)
rit ~ ttd N(p;, %‘2) for all 2 and t

w; = E[r;t] (constant over time)

of = var(r;z) (constant over time)

o;j = cov(ry, T¢) (constant over time)

pi; = cor(r;t, Tjt) (constant over time)



Regression Model Representation (CER Model)

rig = M; +€3 t=1,---,1; 1=1,---N
e;r ~ iid N(0,0?) or € ~ GWN(0, 0?)
cov(eit, €jt) = 045, pij = cor(eit, €jt)
cov(eit, €j5) =0 t# s, forall i, j
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® ¢;; represents random news that arrives in month ¢

Interpretation

e News affecting asset ¢« may be correlated with news affecting asset j

e News is uncorrelated over time
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€it = T = My
unexpected Actual expected
news return return

No news €¢;; = 0 = 7+ = u;
Good news €;; > 0 = 1 > u;
Bad news €;; < 0 = r;; <



CER Model Regression with Standardized News Shocks
IS
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rit =M +€¢ t=1,---.T; +=1---N

= Hi T 0§ X Zit

2y ~ iid N(0,1)

cov(zit, 2jt) = cor(zit, zjt) = pij

cov(zit, zjs) =0 t#s, foralli, j

Here, z;+ ~ iid N(0, 1) is a standardized news shock and o; is the volatility of
“news’ .
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Implied Model for Simple Returns
Rit = exp(r;t) — 1
= 1 + R;; ~ lognormal(p;, az-2)

Recall

1 5
E[R;i] = exp (Mz' + 507;) —1

var(R;;) = exp(2p; + 07)(exp(o?) — 1)



Value-at-Risk in the CER Model

For an initial investment of $W for one month, we have
VaRe = $Wy x (ea — 1)
g, = a X 100% quantile of r;
Result: In/the CER model with r = o+ o X z where z ~ N(0, 1)

do = P+ 0 X g5
qg = a X 100% quantile of z ~ N(0,1)

— |\

L pe@-g 7 |
\[\rxq&: Cﬂ’U\}OYL(@/A %



V:/‘/\*’ Pl
Derivation of g/, = u+ o X g;

Let z ~ N(0,1). Then, by the definition of g we have

Pr(z < ¢q) =«
= Pr(cxz2<oXq?)=a
= Prpt+oxz2<p+oxq?)=a
:>Pr(fr<,u—|—a><qa)—oz
= p+oxql=q,




CER Model in Matrix Notation

Define the N X 1 vectors r+ = (714, - -

(glta .

ro
e = (e
..,ent) and the N x N symmetric covariance matrix

[ 02 oy o1N )
012 0% 02N
\ OIN 02N oy )

Then the CER model matrix notation is

Iy = W+ ¢,

N¥L  N¥ el

i~ GWN(0,%), ~

which implies that r; ~ 4id N(u, X2).
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Monte Carlo Simulation

Use computer random number generator to create simulated values from as-

sumed model
e Reality check on proposed model
e Create “what if?" scenarios

e Study properties of statistics computed from proposed model
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Simulating Random Numbers from a Distribution

Goal: simulate random number x from pdf f(x) with CDF F'x(x)
e Generate U ~ Uniform [0, 1]

e Generate X ~ F'x(x) using inverse CDF technique:

x = F)El(u)
F);l = inverse CDF function (quantile function)
Pyt (Fx(z) ==



Example - Simulate monthly returns on Microsoft from CER Model

e Specify parameters based on sample statistics (use monthly data from June
1992 - Oct 2000)

t; = 0.03 (monthly expected return)
o; = 0.10 (monthly SD)
ey = 0.03 +e5, t=1,....100

e;r ~ iid N(0, (0.10)?)

e Simulation requires generating random numbers from a normal distribu-

tion. In R use rnorm().



Monte Carlo Simulation: Multivariate Returns

Example: Simulating observations from CER model for three assets

e Specify parameters based on sample statistics (e.g., use monthly data from
June 1992 - Oct 2000)

rwspux = -03, uprspr = 03, pspsoo = 01

.018 .004 .002
2 = .011 .002
.001

Tit = Wi +i¢, t=1,...,100
eyt ~ iid N (0, 0?)

cov(eit, €5t) = 04j



e Simulation requires generating random numbers from a multivariate normal
distribution.

e R package mvtnorm has function mvnorm() for simulating data from a
multivariate normal distribution.



CER Model and Multi-period cc Returns
Tt = W+ Et, Et ~~ GWN(0,0‘z)
k—1
ri(k) =re+ 11+ g1 = Y T
7=0
=(p+te)+(p+e—1)+-++e k1)

k—1

=kp+ ) ey
i=0

= u(k) + (k) Lo ég)
O L D

p(k) = kp
k—1
et(k) = Z er—j ~ GWN (0, k02> /
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Result: In the CER model

and

Elri(k)] = p(k) = kp
var (r4(k)) = o(k) = Bo?

SD (r(k) = (k) = Vo 73 P

k—1
e¢t(k) = ) et—j = accumulated news shocks
j=0



The Random Walk Model

The CER model for cc returns is equivalent to the random walk (RW) model
for log stock prices

P,
r+ = In ) = In Py — In P;_q
b1

=InP—InP_q

which implies

InP=InFP_1+ 1



Recursive substitution starting at ¢t = 1 gives
InPi =InFPy+ 1

In P, = In P; 4+ 5
=InFy+r1+rmro

NP =InFP_1+ 1
t
:|nP0—|— ZTS

s=1
Interpretation: Price at t equals initial price plus accumulation of cc returns



In CER model, rs = i + €5 so that

t
In P = In Py + Z'r’s

s=1

t
=InPo+ ) (n+es)
s=1

(4
:|nP0—|—t-,u—|—Z€3
s=1

Interpretation: Log price at £ equals initial price In Py, plus expected growth in
prices E[In P;] =t - u, plus accumulation of news Zgzl Es.



The price level at time ¢ is

t t
Py = Pyexp (t'/i‘l‘ ZES) = Ppexp (t- p)exp (Z 55)

s=1 s=1
exp (t - 1) = expected growth in price

t
exp (Z ss> — unexpected growth in price
s=1



CER Model for Simple Returns
ad &

e CER Model can also be used for simple returns

L) AN = pte Fe=0.0f
¢ ( M X et ~ GWN(0,02) L. < 0.2
e T

- .9. Dng

e Main drawbacks: (1) Normal distribution allows Ry < —1; (2) Multi-
period returns are not normally distributed

Ry(k) = (14 R)(1 4+ Ry—1) - (1 + Ry_py1) — 1
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e However, it can be shown that

E[Ry(k)] =(1+p)f—-1 = /M
var(Ry(k)) = (1 + o2 + 21 + uz)k —(1+ M)Zk
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Estimating Parameters of CER model

Parameters of CER Model Lol . T
pi = Elry]

= var(r;¢)

0i; = cov(rst, Tjt)

pij = cor(rit, 7jt)

are not known with certainty

First Econometric Task

e Estimate u;, 07;2, 0;js Pij using observed sample of historical monthly

returns
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Estimators and Estimates

Definition:  An_estimator is a rule or algorithm (mathematical formula) for

computing an estimate of a parameter based on a random sample.

Example: Sample mean as estimator of E[r;] = p;

{ri1,-..,r;7} = covariance stationary time series
— collection of random variables
1 T
fli = =) mi = sample mean
T t=1

— random variable



Definition: An estimate of a parameter is simply the ex post value (numerical
value) of an estimator based on observed data

Example: Sample mean from an observed sample

{ri1=.02,r;p = .01,r;3=—.01,...,r;,7 = .03} = observed sample

1
fii = (.024 .01 — .01 +--- + .03)
= number = 0.01 (say)



Estimators of CER Model Parameters: Plug-in Principle

Plug-in principle: Estimate model parameters using appropriate sample statis-
tics

| T
pi = Elrg] « i = =) 1t
Ty

21 ¢ X
0f = El(rie — m)°] : 67 = > (rie — )’
T'—1=

O; — \/07;2 : 67; — \/67:2
T
1

oij = El(rit — pi)(rje — py)] : 655 = 1 > (rie — Ri)(rie — fig)
=1
O ~ 6—
pij = ——: Pij = —=




Properties of Estimators

6 — parameter to be estimated

6 = estimator of 6 from random sample

N\

e 0 is a random variable — its value depends on realized values of random
sample

o f(@A) — pdf of § - depends on pdf of random variables in random sample

e Properties of 6 can be derived analytically (using probability theory) or by
using Monte Carlo simulation



Estimation Error

error(0,0) =0 — 0

Bias

bias(0,0) = E [error(é, 9)] =F [GA} — 0
0 is unbiased if E[f] = 0 = bias(d,60) =0

Remark: An unbiased estimator is “on average” correct, where “on average”
means over many hypothetical samples. It most surely will not be exactly
correct for the sample at hand!



Precision
0~ vt 5[0

— bias(f, 6)? + var(6)
var(0) = E[(0 — E[d])?

Remark: If bias(@A, 0) =~ 0 then precision is typically measured by the standard
error of @ defined by

SE(A) = standard error of §

= \var(6) = \/E[(0 - E[9])?]
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Bias of CER Model Estimates

® [i;, 37;2 and G;; are unbiased estimators:

E[f;] = pi = bias(fi;, i) =0
E 67| = of = bias(67,07) =0

1 1

E {323 = 045 = bias(c“fij, Jij) =0

e 0; and p;; are biased estimators
E[6] # 0; = bias(6;,04) # 0
E[pij] # pij = bias(pij, pij) # 0
but bias is very small except for very small samples and disappears as
sample size T gets large.



Remarks

e "“On average” being correct doesn't mean the estimate is any good for
your sample!

e The value of SE(@A) will tell you how far from @ the estimate 6 typically
will be.

e Good estimators @ have small bias and small SE(0)



Proof that E [[i;] =

Recall,

55
fli = = D Tit
'3
rit = pt; + €it, €t ~ iid N(0,0?)
Now

Elri] = p; + Elei] = p
since E[e;t] = 0.



Therefore,

E[Mz] — ZE[th]

= — i
thzl ¢

1

— T T —
T Hi = g



Note: "=" denotes "approximately equal to", where approximation error — 0

as I' — oo for normally distributed data.

Q(\Q = L(#5) g(x&ﬂ £ = ¥y)
—+ Lo wmcn d oy~



Remarks

Large SE=— imprecise estimate; Small SE= precise estimate
Precision increases with sample size: SE— 0 as T" — oo
; is generally a more precise estimate than fi; or p;;

SE formulas for ; and p;; are approximations based on the Central Limit
Theorem. Monte Carlo simulation and bootstrapping can be used to get
better approximations

SE formulas depend on unknown values of parameters = formulas are not
practically useful



e Practically useful formulas replace unknown values with estimated values:

~ G
SE(67) ~ ——, 672 replaces o2

&; replaces o;

o~ (1-p2)
SE(p;j) & \/ng , Pij replaces p;;




Deriving SE(/i;)

var(ji;) = var ( Zrzt) -\ V(g <0 iy <-
'3 T"

1 T -{ZCNCE;-@ rtr‘\f”“

Tzzvar(rzt) (since r;; are mdependent)
t_l \

% (since var(r;;) = 02) O

T2ZJ B
SE(m):\/\m— = bie
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Consistency

Definition: An estimator @ is consistent for § (converges in probability to ) if
forany e > 0

lim Pr(|d —6] >¢)=0
T—o00

/-

A A
Intuitively, as we get enough data then 6 will eventya Iyw fm) [ ¢ ]

Remark: Consistency is an asymptotic property ¢ jt|holds when we have an
infinitely large sample (i.e, in asymptopia). In the|real|{world we only have a
finite amount of datal

AN
O —> 0O
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Result: An estimator 6 is consistent for 0 if
e bias(d,0) =0as T — oo
° SE(@) —0asT —

Result: In the CER model, the estimators [i;, &
tent.

, 04, 0, and p;; are consis-



Distribution of CER Model Estimators

6 — parameter to be estimated
6 = estimator of 6 from random sample

KEY POINTS

Al

e 0O is a random variable — its value depends on realized values of random
sample

° f(QA) — pdf of 6 - depends on pdf of random variables in random sample

e Properties of 6 can be derived analytically (using probability theory) or by
using Monte Carlo simulation



Example: Distribution of i in CER Model

Result:

f1; s % times the sum of T" normally distributed random variapl¢s = [i; is also

normally distributed with

Elf;] = pg, var(iy;) =
That is,

2
N O-. e—
fi; ~ N (ui, —;;) | o

F02) = @ro?/ T V2 exp |~ (- m)z}

1



Distribution of &;, &;;, and p;;

Result: The exact distributions (for finite sample size T") of &;, 6;j, and p;;

are not normal.

However, as the sample size T' gets large the exact distributions of 6;, &;;, and
pij get closer and closer to the normal distribution. This is the due to the

famous Central Limit Theorem.




Central Limit Theorem (CLT)

Let X1,..., X7 be aiid random variables with E[X;] = p and var(X;) = o2.
Then

X—p X—p
SE(X) o/VT

Equivalently,

ﬁ(X;'u> ~ N(0,1) as T — o©

2

X ~ N (1, SE(X)?) ~ N (u, %)

for large enough T’

We say that X is asymptotically normally distributed with mean g and variance
SE(X)?.



Definition: An estimator 6 is asymptotically normally distributed if

d ~ N(6,SE(6)?)
for large enough T

2
1

pi; are asymptotically normally distributed under the CER model.

Result: An implication of the CLT is that the estimators fi;, 67, &5, G4, and
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Confidence Intervals

0 = estimate of 6

— best guess for unknown value of 6

Idea: A confidence interval for @ is an interval estimate of @ that covers 6 with
a stated probability

Intuition: think of a confidence interval like a “horse shoe”. For a given sample,
there is stated probability that the confidence interval (horse shoe thrown at

6) will cover 6.




Result: Let 6 be an asymptotically normal estimator for 6. Then

e An approximate 95% confidence interval for 0 is an interval estimate of
the form

6—2-SE(), 6+2-SE(0)]
6+2-SE(d)
that covers 6 with probability approximately equal to 0.95. That is

Pr{HA—Z-S/\E(HA)§9§9A+2-S/\E(§)}z0.95



e An approximate 99% confidence interval for 0 is an interval estimate of
the form

[é—3-sAE(é), 9“+3-SAE(9“)}
§i3-S/\E(9)

that covers 6 with probability approximately equal to 0.99.



Remarks
e 99% confidence intervals are wider than 95% confidence intervals

e For a given confidence level the width of a confidence interval depends on
the size of SE(0)

In the CER model, 95% Confidence Intervals for u;, o;, and p;; are:
J




Using Monte Carlo Simulation to Evaluate Bias, Standard Error and
Confidence Interval Coverage

e Create many simulated samples from CER model

e Compute parameter estimates for each simulated sample

e Compute mean and sd of estimates over simulated samples

e Compute 95% confidence interval for each sample

e Count number of intervals that cover true parameter



Value-at-Risk in the CER Model

In the CER model
rit ~ iid N(u;, 07) = rip = p; + 0; X 2ig, 2z ~ iid N(0,1)
The - 100% quantile g}, may be expressed as

Z
qgé = i + 05 X da
qg = standard Normal quantile

Then
VaRa = (exp(qq) — 1) - Wo



Example: r; ~ N(0.02,(0.10)?) and Wy = $10,000. Here, p1 = 0.02 and
or = 0.10 are known values. Then

¢%s = —1.645
q.05 = 0.02 + (0.10)(—1.645) = —0.1445
VaR g5 = (exp(—0.1145) — 1) - $10,000 = —$1, 345



Estimating Quantiles from CER Model
Go = fi +6i44
qg = standard Normal quantile
Estimating Value-at-Risk from CER Model
VaRq = (exp(ds) — 1) - Wo
G, = fi; + 6ia4
Wp = initial investment in $

Q: What is E [V/a\Ra} and SE (V/a\Ra)?



Computing Standard Errors for VaR

e We can compute SE(q},) using
var(dp) = var (i + 645 )
= var(ii;) + (a7 var(8;) + 27 cov(fi;, &)
= var(f;) + (q§>2var(6i), since cov(fi;,5;) =0
Then

SE(@5) = \/var() + (4Z)” var(3,)

e However, computing SE(VaRy) is not straightforward since

var (\7a\Ra) = var ((exp(q,) — 1) - Wp)



