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Constant Ex d Return (CER) Mod

5+ = cc return on asset ¢ in month ¢
i=1,---,N assets; t =1, ---, T months
Assumptions (normal distribution and covariance stationarity):
rit ~ iid N(u;s, o?) for all i and ¢
wi = E[ry] (constant over time)
0? = var(r;) (constant over time)

o = cov(ry, 1) (constant over time)

pij = cor(ry, rj) (constant over time)
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on Model Representation (CER Model)

Tit:Mi+6it tzla 7T7 7’:17N
€t ~ iid N(0,02) or e ~ GWN(0,07)
cov(e, €jt) = 04, pi = cor(ei, €jr)

cov(ei, €j) =0, t #s, forall i, j
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Interpretation
f; /.fl;*éjh =Y r*:c"'/".: = E*-‘E

@ ¢;; represents random news that arrives in month ¢

o News affecting asset ¢ may be correlated with news affecting asset j

@ News is uncorrelated over time

€it = Tit - 22
unexpected Actual expected
news return return

No news €3 =0 = 1y = 5
Good news € > 0= ry > u;

Bad news ¢;; < 0 = 13 < py
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CER Model Re sion with Standardized News Shocks

06) — X = v \Mr(\ \ “
w\)(_.('%

g =i+ € t=1,--- ,T;i=1,---N
= Wi+ 0; X Zj
-
zip ~ 1id N(O, 1)
cov(zit, th) = cor(zit, zjt) = pij

cov(zit, 2s) =0, t#s, forall i, j

Here, z; ~ iid N(0,1) is a standardized news shock and o; is the
volatility of “news”.
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Implied Model for Simple Returns

Ry = exp(ry) — 1
= 14 Rj ~ lognormal(pu;, 0?)

Recall,
L,
E[Ry] = exp | i + 5% )~ 1

var(Ry) = exp(2p1; + 02 (exp(o?) — 1)
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Value-at-Risk in the CER Model

For an initial investment of $ W for one month, we have:
VaR, = $Wo x (e% — 1)
¢, = a x 100% quantile of r,
Result: In the CER model with r = 4 0 X z where z ~ N(0, 1).
@o=H+0Xq;

¢Z = a x 100% quantile of z ~ N(0,1)
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Value-at-Risk in the CER Model cont.

Derivation of ¢/, = p+ o0 x ¢ ‘1.1' 0 Py
Iy
Let z ~ N(0,1). Then, by the definition of ¢Z we have:
Pr(s< %) =a
=Prloxz<ox¢’)=a
=>Prpt+oxz<put+ox¢’)=a
=Pr(r<pu+ox qg):a

T

= put+oxql=q,
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CER Model in Matrix Notation

Define the N x 1 vectors r¢ = (714, ..., rne)’s o= (p1, -, un)’s
ey = (e1t,--.,ent) and the N x N symmetric covariance matrix:

2
o{ 012 - OIN
2
012 05 - 02N
2:
2
OIN O2N -+ Oy

Then the CER model matrix notation is:
ry = p+ ey,
&t~ GWN(O, 2),

which implies that r; ~ iid N(u, X).
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@® Monte Carlo Simulation of the CER Model
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Monte Carlo Simtu

Use computer random number generator to create simulated values
from assumed model.

o Reality check on proposed model
o Create “what if?” scenarios

e Study properties of statistics computed from proposed model
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Simulating Random Numbers from a Distribution

Goal: simulate random number z from pdf f(z) with CDF Fx(z).
e Generate U ~ Uniform [0, 1]

o Generate X ~ F'x(z) using inverse CDF technique:
= Fy'(u)
Fy' = inverse CDF function (quantile function)

Fy' (Fx(2) =
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Example

Example: Simulate monthly returns on Microsoft from CER Model

e Specify parameters based on sample statistics (use monthly data
from January 1998 - May 2012)

pi = 0.004 (monthly expected return)
o; = 0.10 (monthly SD)
rit = 0.004+ ¢4, t=1,...,172

eit ~ iid N(0, (0.10)?)

e Simulation requires generating random numbers from a normal
distribution. In R use rnorm().
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Monte Carlo Simulation: Multivariate Returns

Example: Simulating observations from CER model for three assets

e Specify parameters based on sample statistics (e.g., use monthly
data from January 1998 - May 2012)

pusrr = 004, pspux = .015, pspsoo = .002

010 .004 .003 Cenec
Y= 012 .002 by f?., A
.002 Ney

Tit = Mg + i, t=1,...,172 GACVN[Ol Z\
g ~ iid N(0,07)

COV(&it, 5jt) = Uij
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Monte Carlo Simulation: Multivariate Returns cont.

Example: Simulating observations from CER model for three assets
e Simulation requires generating random numbers from a
multivariate normal distribution.
e R package mvtnorm has function mvnorm() for simulating data
from a multivariate normal distribution.
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CER Model and Multi-period cc Returns

Tt =Wu+E, €t~ GWN(O,O’Q)
k—1
Tt(k) =71+ 11+ + Tt—k+1 = Z Tt—j
j=0

=(p+e)+(p+e1)+-+(+et—kt1)

k—1

=kp+ Z Et—j
=0

— (k) + (k)
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CER Model and Multi-period cc Returns cont.

where,
p(k) = kp
k—1
€t(l€) = Z&t_j ~ GWN (0, k02>
§=0
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CER Model and Multi-period cc Returns cont.

Result: In the CER model,
Elri(k)] = u(k) = kp

var (ri(k)) = o?(k) = ko?

SD (r,(k)) = o(k) = Vko

and,

k—1
ei(k) = Z £¢—;j = accumulated news shocks
§=0
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The Random Walk Model

The CER model for cc returns is equivalent to the random walk (RW)
model for log stock prices:

r zln( Py ) —InP;—InP, 4
Py

=In Pt —In Pt—l

which implies,

InPi=InP;_1+ 4.
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The Random lk Model cont.

Recursive substitution starting at ¢ = 1 gives:
InPi=InPy+n
InP,=InP; +nr

:lnP0+7“1+7“2

lnPtIIHPt_1+Tt

t
=InPy+ )
s=1

Interpretation: Price at ¢ equals initial price plus accumulation of cc
returns.
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The CER Model

In CER model, r; = u + €5 so that:

t
In P, =In Py +er
s=1

Pw + dedy e

1nPo+ZM+€s/ G \°3 rm-tg

:lnPO"‘t',Uf"‘ng
s=1

Interpretation: Log price at ¢ equals initial price In Py, plus expected
growth in prices E[ln Py] = ¢ - u, plus accumulation of news Y %_; es.
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The CER Model cont.

The price level at time ¢ is:

t

¢
Py = Pyexp (t-u—l—ZEs) = Pyexp (t-p)exp <Z€s>

s=1 s=1

exp (t - u) = expected growth in price

t
exp (Z €5> = unexpected growth in price

s=1
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CER Model for Simple Returns

e CER Model can also be used for simple returns

o B0V 2 (4R ) Lie
ee ~ GWN(0,0?) Sl e, +

e Main drawbacks: (1) Normal distribution allows R; < —1; (2)
Multi-period returns are not normally distributed

Ru(k) = (1+ R)A+ Riy) -+ (1+ Ry_pyp1) — 1
~ N(kp, ko?) Yy vN(o. )
o However, it can be shown that: X -X = X ° >0
E[Ry(k)] = (1 +p)* -1

var(Ry(k)) = (1+ 0% + 2p+ i)k — (1 + p)*
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@ Estimation of the CER Model
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mating Parameters of CER model

Parameters of CER Model:
wi = Elry] ‘:Cf/lv ¢ Gu\:
o? = var(ri)
o4 = cov(ri, Tjt)
pij = cor (T, Tjt)
are not known with certainty.

First Econometric Task:

o Estimate p;, o7, 04, pij using observed sample of historical

monthly returns
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s and Estimates

Definition: An estimator is a rule or algorithm (mathematical
formula) for computing an ez ante estimate of a parameter based on a
random sample.

Example: Sample mean as estimator of E[ry] = yu;
{ri1,..., 7} = covariance stationary time series

= collection of random variables
17
[ = T ; r;y = sample mean

= random variable
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Estimators and Estimates cont.

Definition: An estimate of a parameter is simply the ex post value
(numerical value) of an estimator based on observed data.

Example: Sample mean from an observed sample

{ri1 = .02, ;5 = .01, 453 = —.01,..., ;7 = .03} = observed sample

1
fii = 75 (02 + .01 = .01 + - +.03)

= number = 0.01 (say)

Eric Zivot (Copyright © 2015) CER Model



http://faculty.washington.edu/ezivot/

Estimators of CER Model Parameters: Plug-in Principle

Plug-in principle: Estimate model parameters using approprigte
sample statistics.

7
T
= Elry] : fu; = %Zm nq/) ‘h]_
=1

1L
' el o .; Dy
Aok
1
2 2], 22 52 o
07 = Bl(ry — 1)) : 67 = " (ra — i) P
e 1 N
oi=1\/02:6;=1/62
T
oy = El(ry — pa)(rje — py)] = 645 = T _ 12 rit — Qi) (rje — )
t=1
o &
pij=—r iy =
O',L’O'j (o -O'j
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Properties of Estimators

0 = parameter to be estimated

0 = estimator of # from random sample

@ f is a random variable — its value depends on realized values of
random sample

°of (é) = pdf of 4 - depends on pdf of random variables in random
sample

e Properties of § can be derived analytically (using probability
theory) or by using Monte Carlo simulation
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Properties of Estimators cont.

Estimation Error:
error(9,0) =0 — 0
Bias:
bias(,0) = E [error(é,G)] =F [9} -0
0 is unbiased if E[f] = 6 = bias(d,6) = 0

Remark: An unbiased estimator is “on average” correct, where “on
average” means over many hypothetical samples. It most surely will
not be exactly correct for the sample at hand!
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Properties of Estimators cont.

Precision:

A

mse(0,0) = E {ermr(é, 0)2] =F [(é - 9)2]
var(f) = E[(6 — E[§))?

Remark: If bias(é, ) ~ 0 then precision is typically measured by the
standard error of 6 defined by:

SE(f) = standard error of 0

= var(é) = \/E[(é — E[é])z]
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Bias of CER Model Estimates

® [, 6? and 64 are unbiased estimators:
Elp;] = pi = bias(fis, pg) = 0
E[6%] = 0% = bias(6},0%) = 0
E [64] = 045 = bias(64,04) =0
e 0; and py; are biased estimators
E[6i] # 0; = bias(64,0;) #0
E[pg] # pij = bias(py, py) # 0

but bias is very small except for very small samples and
disappears as sample size T gets large.
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Remarks

e “On average” being correct doesn’t mean the estimate is any good
for your sample!

o The value of SE(0) will tell you how far from 0 the estimate 0
typically will be.

o Good estimators § have small bias and small SE().
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Proof: F ;] = u;

Recall,

1 T
Hi = ?;m

it = Wi + €, €y ~ iid N(0,0?)
Now,

Elrit] = pi + Elen] = p;

since Ele;] = 0.
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Proof cont.

Therefore,
1 T
E[ﬂz] - TZE[rzt]
t=1
1L
Tt:l
1
=7 Tpi = pq
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Standard Error formulas

Standard Error formulas for [i;, &;, 64, and py

SE(67) ~ 2 < e f)
\ N
SE(64) : no easy formulal & =0

) ) / \E; ‘L‘L
SE(pij) ~ 4= ry) \

VT gigzo, syl = o=

Note: "a” denotes "approximately equal to”, where approximation
error — 0 as T' — oo for normally distributed data.

Eric Zivot (Copyright © 2015) CER Model


http://faculty.washington.edu/ezivot/

Remarks

o Large SE= imprecise estimate; Small SE=> precise estimate
e Precision increases with sample size: SE— 0 as T — o0
@ 0; is generally a more precise estimate than fi; or py;

e SE formulas for 6; and p;; are approximations based on the
Central Limit Theorem. Monte Carlo simulation and
bootstrapping can be used to get better approximations.

e SE formulas depend on unknown values of parameters = formulas
are not practically useful
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Standard Error formulas cont.

e Practically useful formulas replace unknown values with estimated

values:

of

T/2
SH(61) = =, &1 xepl
6;) ~ ———, 6, replaces o;
2T
=)
SE(py;) ~ \/TZ] , pij replaces p;;

CER Model

© 2015)
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oA _ 6 N T
56’(/4;\ - /F( JU”'(/“;\ =S

T
R 1
var(fl;) = var (sz>
t=1
1z
= 72 Zvar (r3) (since 1 are independent)
t=1
o2
= T2 ZO’ = 71 since var(ry) = o?)
(o)

SE(fi) = y/var(fi;) = T
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Consistency

Definition: An estimator  is consistent for  (converges in
probability to ) if for any ¢ > 0.

lim Pr(]§ —6] >¢)=0

T—o00
Intuitively, as we get enough data then 6 will eventually equal 6.
Remark: Consistency is an asymptotic property - it holds when we

have an infinitely large sample (i.e, in asymptopia). In the real world
we only have a finite amount of data!
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cont.

Result: An estimator @ is consistent for  if:
o bias(d,0) =0 as T — oo
° SE(@) =0as T —

Result: In the CER model, the estimators ji;, 62, &, 04, and py; are
consistent.
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Distribution of CER Model Estimators

0 = parameter to be estimated

0 = estimator of # from random sample

KEY POINTS:

o 0 is a random variable — its value depends on realized values of
random sample

°of (é) = pdf of § - depends on pdf of random variables in random
sample

e Properties of § can be derived analytically (using probability
theory) or by using Monte Carlo simulation
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Example

Example: Distribution of i in CER Model
1T
fui = ?Zm, rit = pi + €, € ~ iid N(0,07)
t=1

Result:

[ is % times the sum of T normally distributed random variables
= [i; is also normally distributed with:

Elfi;] = pi, var(fi;) = —
That is,
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Example cont.

Distribution of 5;, 6;;, and py;

Result: The exact distributions (for finite sample size T') of
0, 04, and p;; are not normal.

However, as the sample size T gets large the exact distributions of
04, 04, and py; get closer and closer to the normal distribution. This is
the due to the famous Central Limit Theorem.
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Central Limit Theorem (CLT)

Let Xj,..., X7 be a iid random variables with E[X;| = p and
var(X;) = 0. Then,

Xop X-p_ o (X-p)
SE(X)_a/ﬁ_ﬁ< - ) N(0,1) as T — oo

Equivalently,

X~N (u, SE(X)Q) ~ N (,u, U;)

for large enough T

We say that ):( is asymptotically normally distributed with mean p and
variance SE(X)2.
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Central Limit Theorem (CLT) cont.

Definition: An estimator 6 is asymptotically normally distributed if:
0 ~ N(0,SE(6)?)
for large enough T

Result: An implication of the CLT is that the estimators fi;, 62, 6, Gijs
and py; are asymptotically normally distributed under the CER model.
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Confidence Intervals

6 = estimate of 6
= best guess for unknown value of

Idea: A confidence interval for 6 is an interval estimate of 6 that covers
f with a stated probability.

Intuition: think of a confidence interval like a “horse shoe”. For a given
sample, there is stated probability that the confidence interval (horse
shoe thrown at ) will cover 6.
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Confidence Intervals cont.

Result: Let 6 be an asymptotically normal estimator for 6. Then,

e An approximate 95% confidence interval for # is an interval
estimate of the form:

0-2-SE(0), 0+2-SE(d)]
éi2-8/]\3<§)

that covers € with probability approximately equal to 0.95. That
is,

Pr{é—2~§ﬁ(9)§9§§+2-§E(5)}z0.95
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Confidence Intervals cont.

e An approximate 99% confidence interval for # is an interval
estimate of the form:

[§—3-S/E(67), é+3-SAE(é)}
éi3-§]§)(é)

that covers 6§ with probability approximately equal to 0.99.
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Remarks

o 99% confidence intervals are wider than 95% confidence intervals

o For a given confidence level the width of a confidence interval
depends on the size of SE(6)

In the CER model, 95% Confidence Intervals for y;, o;, and p; are:

. lop
1223 T
6. +92. 2
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Using Monte Carlo Simulation to Evaluate Bias,

Standard Error and Confidence Interval Coverage

Create many simulated samples from CER model

Compute parameter estimates for each simulated sample

Compute mean and sd of estimates over simulated samples

Compute 95% confidence interval for each sample

e Count number of intervals that cover true parameter
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Value-at-Risk in the CER Model

In the CER model:

Ty ~ 1id N(,ui,(;'?) = ry = Wi + 0 X zi, zyg ~ itd N(0,1)
The « - 100% quantile ¢}, may be expressed as:

Qo = Hi + 0 X qf

¢Z = standard Normal quantile
Then,

VaR, = (exp(q,) — 1) - Wo
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Example

Example: 7, ~ N(0.02,(0.10)?) and Wy = $10,000. Here, p, = 0.02
and o, = 0.10 are known values. Then,

q5s = —1.645
qo5 = 0.02 + (0.10)(—1.645) = —0.1445

VaR. g5 = (exp(—0.1145) — 1) - $10,000 = —$1, 345
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Estimating Quantiles from CER Model

an = fu+6:q7
¢Z = standard Normal quantile
Estimating Value-at-Risk from CER Model:
VaR, = (exp(g}) — 1) - Wy
Qo = fbi + i ‘Zc%
Wy = initial investment in $

Q: What is [\Taﬁa] and SE (\Tzﬁia)?
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Computing Standard Errors for VaR

e We can compute SE(q}) using:
var(qy) = var (ﬂi + 6iq§)
2
= var(fi;) + (qf) var(8;) + 2¢Z cov(jis, 65)
N 7\ 2 ~ . A~ A
= var(fi;) + (qa> var(6;), since cov(fi;,d;) =0

Then,

SE(a;) = \/var(s) + (a7)? var(5:)
e However, computing SE(\ZE{Q) is not straightforward since:

var (Va’ﬁa) = var ((exp(g7) — 1) - W)

Eric Zivot (Copyright © 2015) CER Model


http://faculty.washington.edu/ezivot/

faculty.washington.edu/ezivot/

Eric Zivot


http://faculty.washington.edu/ezivot/
http://faculty.washington.edu/ezivot/

	Constant Expected Return (CER) Model Assumptions
	Monte Carlo Simulation of the CER Model
	Estimation of the CER Model

