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Abstract

To be completed.

1 Structural Time Series Models

The basic univariate unobserved components structural time series model (STSM)
for a time series yt has the form

yt = μt + γt + ψt + ξt (1)

ξt ∼ GWN(0, σ2ξ)

where μt represents the unobserved trend component, γt represents the unobserved
seasonal component, ψt represents the unobserved cycle component, and ξt represents
the unobserved irregular component.

1.1 Trend component specification

The nonstationary trend component μt has the form of a local linear trend :

μt+1 = μt + βt + ηt, ηt ∼ GWN(0, σ2η) (2)

βt+1 = βt + ςt, ς t ∼ GWN(0, σ2ς ) (3)

with μ1 ∼ N(0, κ) and β1 ∼ N(0, κ) where κ is a large number, e.g. κ = 106. If
σ2ς = 0 then μt follows a random walk with drift β1. If both σ2ς = 0 and σ2η = 0 then
μt follows a linear deterministic trend. Some special trend specifications are listed in
Table 1.
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Level Specification σξ ση
constant term * 0
local level (LL) * *
random walk (RW) 0 *
Trend Specification σξ ση σς
deterministic * 0 0
LL with fixed slope * * 0
RW with fixed drift 0 * 0
local linear (LLT) * * *
smooth trend * 0 *
second differencing 0 0 *
Hodrick-Prescott * 0 0.025σξ
Asterix * indicates any positive value

Table 1: Some special level and trend specifications

1.2 Seasonal component specification

The seasonal component may have a dummy variable form, a trigonometric form, or
a Harrison-Stevens form. The number of seasonal frequencies in a period of time,
which is usually a year, is given by the integer s. When s is even, [s/2] = s/2; when
s is odd, [s/2] = (s − 1)/2. The dummy variable form of the stochastic seasonal
component γt is

S(L)γt = ωt, ωt ∼ GWN(0, σ2ω) (4)

S(L) = 1 + L+ · · ·+ Ls−1

When σ2ω = 0, the seasonal component becomes fixed. In this case, the seasonal
component sums to zero over the year. This ensures that the seasonal effect is not
confounded with the other components.
The trigonometric form of γt is

γt =

[s/2]X
j=1

γj,t

where each γj,t is generated byµ
γj,t+1
γ∗j,t+1

¶
=

µ
cosλj sinλj
− sinλj cosλj

¶µ
γj,t
γ∗j,t

¶
+

µ
ωj,t+1

ω∗j,t+1

¶
where λj = 2πj/s is the jth seasonal frequency, in radians, and the seasonal distur-
bances ωj,t and ω

∗
j,t are mutually uncorrelated Gaussian white noise random variables

with common variance σ2ωµ
ωj,t

ω∗j,t

¶
∼ N

µµ
0
0

¶
, σ2ωI2

¶
, j = 1, . . . , s/2
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For simplicity, a common variance σ2ω is assumed for each trigonometric term. How-
ever, this assumption can be relaxed and the state space representation may involve
separate variances for each trigonometric term. For s even, the component at j = s/2
collapses to

γj,t+1 = γj,t cos(λj) + ωj,t+1

The dummy and trigonometric specifications for γj have different dynamic prop-
erties; see Harvey (1989, p. 56). For example, the trigonometric seasonal process
evolves more smoothly; it can be shown that the sum of the seasonals over the past
year follows an MA(s− 2) rather than white noise.
In the Harrison-Stevens seasonal specification, (see Harrison and Stevens, 1976)

all seasonal effects γj (j = 1 . . . , s) are assumed to follow a random walk⎛⎜⎝ γ1,t+1
...

γs,t+1

⎞⎟⎠ =

⎛⎜⎝ γ1,t
...

γs,t

⎞⎟⎠+
⎛⎜⎝ ω1,t+1

...
ωs,t+1

⎞⎟⎠
or

γt+1 = γt +ωt

where

ωt ∼ N

µ
0, σ2ω

µ
sIs − 1s10s

s− 1

¶¶
The specific covariance structure between the s disturbance terms enforces the sea-
sonal effects to sum to zero over the previous year. Also, the covariances between the
s seasonal disturbances are equal.

1.3 Cycle component specification

The stochastic cycle component ψt is specified asµ
ψt+1

ψ∗t+1

¶
= ρ

µ
cosλc sinλc
− sinλc cosλc

¶µ
ψt

ψ∗t

¶
+

µ
χt
χ∗t

¶
, (5)µ

χt
χ∗t

¶
∼ N

µµ
0
0

¶
, σ2ψ(1− ρ2)I2

¶
where ψ0 ∼ N(0, σ2ψ), ψ

∗
0 ∼ N(0, σ2ψ) and cov(ψ0, ψ

∗
0) = 0. The parameter ρ ∈ (0, 1]

is interpreted as a damping factor. The frequency of the cycle is λc = 2π/c and c is
the period. When ρ = 1 the cycle reduces to a deterministic sine-cosine wave.
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2 Specifying the State Space Form

The linear Gaussian state space model may be represented as the system of equations

αt+1
m×1

= dt
m×1

+ Tt
m×m

· αt
m×1

+Ht
m×r

· ηt
r×1

(6)

θt
N×1

= ct
N×1

+ Zt
N×m

·αt
m×1

(7)

yt
N×1

= θt
N×1

+ Gt
N×N

· εt
N×1

(8)

where t = 1, . . . , n and

α1 ∼ N(a,P), (9)

ηt ∼ iid N(0, Ir) (10)

εt ∼ iid N(0, IN) (11)

and it is assumed that
E[εtη

0
t] = 0

In (9), a and P are fixed and known but that can be generalized. The state vector αt

contains unobserved stochastic processes and unknown fixed effects and the transition
equation (6) describes the evolution of the state vector over time using a first order
Markov structure. The measurement equation (8) describes the vector of observations
yt in terms of the state vector αt through the signal θt and a vector of disturbances
εt. It is assumed that the innovations in the transition equation and the innovations
in the measurement equation are independent, but this assumption can be relaxed.
The deterministic matrices Tt, Zt, Ht, Gt are called system matrices and are usually
sparse selection matrices. The vectors dt and ct contain fixed components and may
be used to incorporate known effects or known patterns into the model; otherwise
they are equal to zero.
The state space model (6)-(11) may be compactly expressed asµ

αt+1

yt

¶
= δt

(m+N)×1
+ Φt
(m+N)×m

· αt
m×1

+ ut
(m+N)×1

, (12)

α1 ∼ N(a,P) (13)

ut ∼ iid N(0,Ωt) (14)

where

δt =

µ
dt
ct

¶
,Φt =

µ
Tt

Zt

¶
,ut =

µ
Htηt
Gtεt

¶
,Ωt =

µ
HtH

0
t 0

0 GtG
0
t

¶
The initial value parameters are summarized in the (m+ 1)×m matrix

Σ =

µ
P
a0

¶
(15)
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State Space Parameter List Component Name
δ mDelta

Φ mPhi

Ω mOmega

Σ mSigma

Table 2: S+FinMetrics/SsfPack state space form list components

For multivariate models, i.e. N > 1, it is assumed that the N × N matrix GtG
0
t is

diagonal. In general, the system matrices in (12) are time varying.
The variance matrix P of the initial state vector α1 is assumed to be of the form

P = P∗ + κP∞ (16)

where P∞ and P∗ are symmetric m×m matrices with ranks r∞ and r∗, respectively,
and κ is a large scalar value, e.g. κ = 106. The matrix P∗ captures the covariance
structure of the stationary components in the initial state vector, and the matrix P∞
is used to specify the initial variance matrix for nonstationary components. When
the ith diagonal element of P∞ is negative, the corresponding ith column and row
of P∗ are assumed to be zero, and the corresponding row and column of P∞ will
be taken into consideration. When some elements of state vector are nonstationary,
the S+FinMetrics/SsfPack algorithms implement an “exact diffuse prior” approach
as described in Durbin and Koopman (2001) and Koopman, Shephard and Doornik
(2001).

2.1 State Space Representation in S+FinMetrics/SsfPack

State space models in S+FinMetrics/SsfPack utilize the compact representation (12)
with initial value information (15). In S+FinMetrics/SsfPack, a state space model
is specified by creating either a list variable with components giving the minimum
components necessary for describing a particular state space form or by creating an
“ssf” object. In the list variable representing a state space model, the component
names must match the state space form parameters in (12) and (15) using the naming
convention summarized in Table 2 The four components in Table must be specified
for any state space model. The S+FinMetrics function CheckSsf takes a list variable
with a minimum state space form, coerces the components to matrix objects and
returns an “ssf” object giving the full parameterization of a state space model used
in many of the S+FinMetrics/SsfPack state space modeling functions.
The S+FinMetrics/SsfPack function GetSsfStsm creates the state space system

matrices for the univariate STSM (1). The arguments expected by GetSsfStsm are

> args(GetSsfStsm)

function(irregular = 1, level = 0.1, slope = NULL,
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Argument STSM parameter
irregular ση
level σξ
slope σς
seasonalDummy σω, s
seasonalTrig σω, s
seasonalHS σω, s
cycle0 σψ, λc, ρ
...

...
cycle9 σψ, λc, ρ

Table 3: Arguments to the S+FinMetrics function GetSsfStsm

seasonalDummy = NULL, seasonalTrig = NULL, seasonalHS

= NULL, cycle0 = NULL, cycle1 = NULL, cycle2 = NULL,

cycle3 = NULL, cycle4 = NULL, cycle5 = NULL, cycle6 =

NULL, cycle7 = NULL, cycle8 = NULL, cycle9 = NULL)

These arguments and the relationships to the component parameters of the STSM
are explained in Table 3.
If a component argument has a NULL value, then that component is excluded

from the STSM. If the standard deviation of a component is set equal to zero, then
the component becomes deterministic. The seasonal components are specified by
a two element vector, with the first element giving the standard deviation of the
stochastic seasonal and the second element giving the number of seasons. The cycle
components are specified by a three element vector, with the first element giving the
standard deviation of the stochastic cycle, the second element giving the frequency of
the cycle, and the third element giving the damping factor. The function GetSsfStsm
creates a list variable with the appropriate system matrices for the specified STSM.

2.2 Simulating Observations

Once a STSM has been specified, simulated observations from the model can be gen-
erated using the S+FinMetrics function SsfSim. The arguments expected by SsfSim
are:

> args(SsfSim)

function(ssf, n = 100, mRan = NULL, seed = NULL, a1 = NULL)

where ssf represents either a list with components giving a minimal state space
form or a valid “ssf” object, n is the number of simulated observations, mRan is
user-specified matrix of disturbances, and a1 is the initial state vector.
The following sub-sections describe the specification of some common STSMs

using the S+FinMetrics/SsfPack functions.
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2.3 Local Level Model

Consider the following simple model for the stochastic evolution of the level of a
variable yt

μt+1 = μt + ηt, ηt ∼ iid N(0, σ2η) (17)

yt = μt + εt, εt ∼ iid N(0, σ2ε) (18)

α1 ∼ N(a, P ) (19)

where it is assumed that E[εtηt] = 0. In the above model, the observed variable yt
is the sum of two unobserved components, μt and ε∗t . The component μt is the state
variable and represents the fundamental value (signal) of the variable. The transition
equation (17) shows that the fundamental values evolve according to a random walk.
The component ε∗t represents random deviations (noise) from the fundamental value
that are assumed to be independent from the innovations to μt. The strength of the
signal in the fundamental value relative to the random deviation is measured by the
signal-to-noise ratio of variances q = σ2η/σ

2
ε. The model (17)-(19) is called the random

walk plus noise model, signal plus noise model or the local level model.1

The state space form (12) of the local level model has time invariant parameters

δ =

µ
0
0

¶
,Φ =

µ
1
1

¶
,Ω =

µ
σ2η 0
0 σ2ε

¶
(20)

Since the state variable μt is I(1), the unconditional distribution of the initial state
μ1 doesn’t have finite variance. In this case, it is customary to set μ = E[μ1] = 0 and
P =var(μ1) to some large positive number, e.g. P = 107, in (19) to reflect that no
prior information is available. Using (16), the initial variance is specified with P∗ = 0
and P∞ = 1. Therefore, the initial state matrix (15) for the local level model has the
form

Σ =

µ
−1
0

¶
(21)

where −1 implies that P∞ = 1.
The local level model may also be parameterized in terms of the signal-to-noise

ratio q = σ2η/σ
2
ε and the noise variance σ

2
ε. This parameterization is often preferred

for estimation using the concentrated log-likelihood.

Example 1 State space form of local level model

The state space for the local level model (17)-(19) with σξ = 1 and ση = 0.5 may
be constructed using

1A detailed technical analysis of this model is given in Durbin and Koopman (2001), chapter 2.
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> ssf.stsm = GetSsfStsm(irregular=1, level=0.5)

> class(ssf.stsm)

[1] "list"

> ssf.stsm

$mPhi:

[,1]

[1,] 1

[2,] 1

$mOmega:

[,1] [,2]

[1,] 0.25 0

[2,] 0.00 1

$mSigma:

[,1]

[1,] -1

[2,] 0

The arguments irregular=1 and level=0.5 specify σε = 1 and ση = 0.5 in (18) and
(19), respectively.
Simulated data from the local level model may be constructed using the S+FinMetrics

function SsfSim.

2.4 Local Linear Trend Model

2.5 Seasonal Models

Example 2 Seasonal dummy model

Consider the following local-level model with a quarterly stochastic dummy vari-
able specification

yt = μt + γt + ξt
μt+1 = μt + ηt
γt+1 = −γt − γt−1 − γt−2 + ωt⎛⎝ ξt

ηt
ωt

⎞⎠ ∼ N

⎛⎝ σ2ξ 0 0
0 σ2η 0
0 0 σ2ω

⎞⎠
The state space form for this model with σξ = 1, ση = 0.2, σω = 0.2 and initial
seasonal values γ1 = 2.5, γ0 = 5.0, γ−1 = −2.5 is created using
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> ssf.lltdum = GetSsfStsm(irregular=1,

+ level=0.5,

+ slope=0.1,

+ seasonalDummy = c(0.2, 4))

> ssf.lltdum$mSigma[6,3:5] = c(2.5, 5.0, -2.5)

> ssf.lltdum

$mPhi:

[,1] [,2] [,3] [,4] [,5]

[1,] 1 1 0 0 0

[2,] 0 1 0 0 0

[3,] 0 0 -1 -1 -1

[4,] 0 0 1 0 0

[5,] 0 0 0 1 0

[6,] 1 0 1 0 0

$mOmega:

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.25 0.00 0.00 0 0 0

[2,] 0.00 0.01 0.00 0 0 0

[3,] 0.00 0.00 0.04 0 0 0

[4,] 0.00 0.00 0.00 0 0 0

[5,] 0.00 0.00 0.00 0 0 0

[6,] 0.00 0.00 0.00 0 0 1

$mSigma:

[,1] [,2] [,3] [,4] [,5]

[1,] -1 0 0.0 0 0.0

[2,] 0 -1 0.0 0 0.0

[3,] 0 0 -1.0 0 0.0

[4,] 0 0 0.0 -1 0.0

[5,] 0 0 0.0 0 -1.0

[6,] 0 0 2.5 5 -2.5

Eighty simulated observations from the model are computed and plotted using

> lltdum.sim = SsfSim(ssf.lltdum, n=80, seed=10)

> seriesPlot(lltdum.sim, one.plot=F)

Example 3 Trigonometric seasonal model

Example 4 Harrison-Stevens seasonal model
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3 ML Estimation

3.1 Concentrated Likelihood Function

3.2 Examples

Example 5 Local level model
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