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7.1 Rolling Regression

For a window of width k < n < T, the rolling linear regression model is

yvi(n) = Xi(n)B,(n) + e:(n), t=mn,...,T
(nx1) (nxk) (kx1) (nx1)

e Observations in y;(n) and X;(n) are n most recent values from times
t—n+1tot

e OLS estimates are computed for sliding windows of width n and increment
m

e Poor man’s time varying regression model

7.1.1 Application: Simulated Data

e compute rolling regressions for 24-month windows incremented by 1 month

7.1.2 Application: Exchange Rate Data

e compute rolling regressions for 24-month windows incremented by 1 month

e compute rolling regressions for 48-month windows incremented by 12 months

7.2 Time Varying Parameter Regression Model

References:
The most used TVP regression has the form

vy = Bor BT+ BTkt + Vi, ve ~N(0,07)
Bigr1 = Bir+&w &in ~N(0,07), i=0,....k

Remarks:

30



e Random walk specification captures variety of parameter variation

e Model is most conveniently estimated and analyzed using state space
methods

7.3 Linear Gaussian State Space Models

a1 = de + Ty - o +Hy -y

mx1 mx1l mxXm mX1l mXr pxl

Yi = ¢+ 2y -oap + G- og

Nx1 Nx1 Nxm mx1 NxN Nx1
where t =1,...,n and

a; ~ N(a,P),n, ~iid N(0,1,),e; ~ iid N(0,Iy)
Elesmi] =0

Compact notation used by SsfPack

< Heil ) = 6y + P o+ ou
Yt (m+N)x1 (m+N)xm mx1l (m+N)x1
a; ~ N(a,P)

u, ~ iid N(0,,)

_ d; (T _ ( Hm,
5t — <Ct>;@t_(zt>aut_(Gtet )
/
Q, - <Hth 0/)

Initial value parameters

where

Note: For multivariate models, i.e. N > 1, G;G; is assumed diagonal.

7.3.1 Initial Conditions
Initial state variance is assumed to be of the form
P=P,+xrP,
k=107
P, is for stationary state components

P, is for non-stationary state components
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7.3.2 Regression Model with Time Varying Parameters

Yy = Bog+ B +ve, vi ~ N(O, o2)
Boryr = BortE& & ~N(O, Ug)
Biit1 = Bietse se~ N(O, o?)

Let oy = (Bo4,81,4)"s x¢ = (1,2¢)', Hy = diag(o¢,0.) and Gy = 0,,. The state

space form is
ar (I Hn,
()= (% o (&

and has parameters

2
I o¢ 02 0
P, = ], Q= 0 o 0
X N
t 0 0 o2

The initial state matrix is

7.3.3 Regression model with fixed parameters

The regression model with fixed regressors occurs when

0220?20

7.4 Kalman Filter and Smoother

The Kalman filter is a recursive algorithm for the evaluation of moments of
the normally distributed state vector o411 conditional on the observed data
Y: = (y1,...,y:) and the state space model parameters. Let a; = E|oy|Y¢—_1]
and P, = var(ou|Y,_;)

e The filtering or updating equations compute

a;p = Elau|Y,],

Py = wvar(eu]Y,),
vi = yi—¢; — Zia; (prediction error),
F, = war(ve) (prediction error variance)

e The prediction equations of the Kalman filter compute a;; and Py

The Kalman smoothing algorithm is a backward recursion which computes
the mean and variance of specific conditional distributions based on the full
data set Yy, = (Y1,---,Yn)-
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e The smoothed estimates of the state vector a; and its variance matrix are
denoted
&y = ay, = Eloy|Y )]
Py, = wvar(é:|Y,)

The smoothed estimate & is the optimal estimate of a; using all available
information Y,,.

e The smoothed estimate of the response y; and its variance are computed
using

Vi = cit+Ziby
Ztvar(dt|Yn)Z2

var(§:[Y,,)

e The smoothed disturbance estimates are the estimates €; and m, based on
all available information Y,,, and are denoted

€ = &yn = FEle]Y,)]
. = m\nZE[len]

Remarks

e Recursions are easy to code up in matrix programming languages like
GAUSS, MATLAB, OX, S-PLUS, R

e SsfPack by Siem-Jan Koopman is a suite of C functions to efficiently im-
plement the Kalman Filter and related algorithms. SsfPack has imple-
mentations in OX and S-PLUS. Eviews also implements the algorithms of
SsfPack

7.5 Prediction Error Decomposition of Log-Likelihood

The prediction error decomposition (PED) of the log-likelihood function for the
unknown parameters ¢ of a state space model is

mL(eY,) = > Inf(yilYi1i¢)
t=1
niN 1 — _
= —Tln(%r) — §;(1H|Ft| +V7’5Ft 1Vt)

where f(y:|Y:—1; ) is a conditional Gaussian density implied by the state space
model

e The vector of prediction errors v; and prediction error variance matrices
F; are computed from the Kalman filter recursions.
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e The state-space model parameters ¢ may be estimated by maximum like-
lihood using In L(¢]Y;,) computed from the PED.

Remarks

e Care must be used to ensure that ¢ is identified

e Parameter transformations are often used to simplify estimation

Use ¢ = exp(0?) to ensure positive variance

Use ¢ = exp(p)/(1+exp(p)) to ensure probabilities lie between 0 and
1

Exploit invariance property of MLE

Use “delta method” to compute asymptotic variances of un-transformed
parameters

7.6 Example: Simulated Random Walk Slope Data

The estimated model assumes random intercept and slope

Yyr = op+ B+ et

ayiid N(0,1)

et ~ did N(0,02)
ar = o1+ &, § ~ud N(O.a?)
Be = Bi_y+my 1y~ iid N(0.07)

The true values are
0. =0.5,0¢=0,0,=0.1

7.6.1 Parameter transformations

To ensure positive variances, the log-likelihood is constructed using the param-
eterization

v, = ln(ag) = 0’2 = exp(¢;)

P = ln(U%) = 0727 = exp(pq)

@3 = In(o2) = o2 = exp(p3)
Note that
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7.6.2 Estimation results

Estimation is performed using the SsfPack functions in S4+FinMetrics. The
MLE of ¢ is

MLE of TVP Model
Coef  Std. Error t value

p;  -25.89 328.7 -0.078
py -4.045 0.499 -8.091
w3 -1.470 0.119 -12.36

By the invariance property of MLE, the estimates of o = exp(%¢) are

MLE of TVP Model
Coef Std. Error t value

oe 0.000 0.000 0.006
op, 0.132 0.033 4.000
o. 0479 0.029 16.81

7.6.3 Delta Method

Let @ be an estimator such that

\/E(‘;O - 90) - N(O’V)

Let g(¢) be a continuous and differentiable function, independent of n. Then

Vn(g(@) —g(¥)) — N(O,GVE)

(%)
G = —8go’
For example, let
¢ = (p1,99,03)
gle) = (exp(p/2),exp(py/2), exp(p3/2))

= (91(), 92(¢), g3(0))

Then
291(p)  B91(p) 991(p)
Oy Oy Op3
G = 9g2(p)  9g2(¢)  992(¢)
Oy Oy Op3
9g3(p) 9g3(e) 993(¥)
Oy Oy Op3
exp(p,/2)/2 0 0
= 0 exp(py/2)/2 0
0 0 exp(p3/2)/2
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7.7 Example: Exchange rate data
7.7.1 TVP AR(1) model for forward discount
fr—se=ar+ By(fi1 — s1-1) t &
The MLE of ¢ is

MLE of TVP Model

Coef  Std. Error t value
w1 -5.991 0.583 -10.28
vy -3.615 0.253 -14.29
ps -6.255 0.519 -12.05

By the invariance property of MLE, the estimates of o = exp(%cp) are

MLE of TVP Model

Coef Std. Error t value
o¢  0.050 0.015 3.433
op, 0.164 0.021 7.909
o. 0.044 0.011 3.853

7.7.2 TVP regression model for differences regression
Aspyr = op + By (ft — s¢) + &
The MLE of ¢ is

MLE of TVP Model

Coef  Std. Error t value
w;  -20.07 NA NA
wy -2.159 NA NA
ps 2428 NA NA

Note: Hessian fails to invert at MLE.
By the invariance property of MLE, the estimates of o = exp(%ga) are

MLE of TVP Model

Coef Std. Error t value
o¢ 0.000 NA NA
o, 0339 NA NA
o. 3.367 NA NA
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