
5 Day 2: Estimation of Models with One Struc-
tural Change

5.1 Relationship to Testing with Unknown Breakpoint

From the dummy variable regression

yt = x0tβ +Dt(m)x
0
tγ + εt

Dt(m) = 1 if t > m; 0 otherwise

the break data m and break fraction λ may be estimated using

m̂ = argmax
m

Fn

³m
n

´
λ̂ = m̂/n

Questions:

• Are m̂ and λ̂ consistent estimators if there is a break?

• What are the distributions of m̂ and λ̂? Can confidence intervals be con-
structed?

• What are the distributions of the model parameters β and γ given the
estimated break date m̂?

5.2 Estimating the Mean Shift Model with One Break

Reference: Bai, J. (1994). “Least Squares Estimation of a Shift in Linear
Process,” Journal of Time Series Analysis

5.2.1 Summary

• This paper considers a mean shift with an unknown shift point in a linear
process and estimates the unknown shift point by the method of least
squares.

• Pre-shift and post-shift means are estimated concurrently with the change
point.

• The consistency and the rate of convergence for the estimated change
point are established.

• The asymptotic distribution for the change point estimator is obtained
when the magnitude of shift is small. It is shown that serial correlation
affects the variance of the change point estimator via the sum of the coef-
ficients of the linear process.
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5.2.2 The Mean Shift Model

Consider a time series Yt that undergoes a mean shift at an unknown time:

Yt = μt +Xt, t = . . . ,−2,−1, 0, 1, 2, . . .
Xt = a(L)εt = linear process

a(L) =
∞X
j=0

ajL
j , a(1) 6= 0

where

μt =

½
μ1 if t ≤ k0
μ2 if t > k0

and μ1, μ2 and k0 are unknown parameters and k0 is the change point.

Example 1 ARMA(p,q) model

Yt = μt +Xt

φ(L)Xt = θ(L)εt, εt ∼ (0, σ2)

Estimation problem: estimate μ1, μ2 and k0 given T observations on Yt.
If Xt has an ARMA representation then it is also of interest to estimate the
ARMA parameters. Define

k0 = [τT ] = break date, 0 < τ < 1

τ = break fraction

λ = μ2 − μ1 = shift magnitude

5.2.3 Results for Model with Known Break Date

If k = k0 were known, then μ1 and μ2 could be consistently estimated by least
squares ignoring the dynamics in Xt by solving

min
μ1,μ2

(
k0X
t=1

(Yt − μ1)
2 +

TX
t=k0+1

(Yt − μ2)
2

)

Then μ1 and μ2 are consistent with limiting distributions

T 1/2(bμ1 − μ1)
d−→ N

©
0, τ−1a(1)2σ2

ª
T 1/2(bμ2 − μ2)

d−→ N
©
0, (1− τ)−1a(1)2σ2

ª
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5.2.4 Least Squares Estimation

The least squares (LS) estimator bk of the change point k0 ignoring the dynamics
in Xt is defined as

bk = argmin
k

"
min
μ1,μ2

(
kX
t=1

(Yt − μ1)
2 +

TX
t=k+1

(Yt − μ2)
2

)#
bτ = bk/T

i.e., the shift point is estimated by minimizing the sum of squares of residuals
among all possible sample splits ignoring the dynamics in Xt.
Remark

• Estimation of m by OLS is equivalent to estimation of m by maximizing
F − stat for testing μ1 = μ2.

The LS residual is defined as

bXt = Yt − bμ1 − (bμ2 − bμ1)I[t>bk]
where I[·] is the indicator function.
The following assumptions are made:

• Assumption A:

εt ˜ iid(0, σ
2) or εt ˜ mds(0, σ2)

• Assumption B:
∞X
j=0

j|aj | <∞

5.2.5 Consistency of bτ
Proposition 2 Theorem 3 Under Assumptions A and B, the estimator bτ sat-
isfies

|bτ − τ | = Op

µ
1

Tλ2

¶
.

so that τ̂ is a consistent estimator of τ .

Since k̂ = [τ̂T ] it follows that

bk − k = Op(λ
−2)

so that bk is not a consistent estimator for k.
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5.2.6 Limiting Distribution of Break Fraction

• To construct an asymptotic distribution for bτ that is independent of the
distribution of Xt, it is necessary to assume that λ depends on T and
diminishes as T increases.

• If λ is kept fixed independent of T then the limiting distribution of bτ
depends on the distribution of εt and on λ in a complicated way.

• The asymptotic distribution for bτ is used to construct an asymptotic con-
fidence interval for τ or k.

The dependence of λ on T is functionalized as
Assumption C:

λT −→ 0,
T 1/2λT
(log T )1/2

−→∞
.

Theorem 4 Under Assumptions A, B and C, for every M <∞,

Tλ2T (bτ − τ)
d−→ a(1)σ2 argmax

v

½
W (v)− 1

2
|v|
¾

and W (v) is a two-sided Brownian motion on <.

Remarks:

• τ converges to τ at rate T ⇒ τ is super-consistent

• The asymptotic distribution of τ is non-standard (not normal) and inde-
pendent of the distribution of Xt

• Scale of limiting distribution depends on autocorrelation in Xt through
σ2a(1)

• Confidence intervals for τ may be computed from limiting distribution -
see Bai for details

• Asymptotic distribution may not be accurate if λ = μ2 − μ1 is large

• GAUSS and R software is available

5.2.7 Limiting Distribution of Estimated Shift Coefficients

Proposition 5

T 1/2(bμ1 − μ1)
d−→ N

©
0, τ−1a(1)2σ2

ª
T 1/2(bμ2 − μ2)

d−→ N
©
0, (1− τ)−1a(1)2σ2

ª
• Since bτ converges at rate T the limiting distribution of bμ1 and bμ2 are the
same as if k0 were known
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5.2.8 Simulation Results

The simulation model is

Yt = μ+ λI[t≥k0] +Xt, t = 1, . . . , T

Xt = ρXt−1 + εt + θεt−1

εt ˜ iid N(0, 1)

where T = 100, k0 = 0.5T, λ = 2, ρ = −0.6, 0.0, 0.6 and θ = −0.5, 0.5. The main
results based on N = 100 simulations are:

• For fixed θ, the range of bk becomes larger as ρ varies from −0.6 to 0.6.
• The range of bk is smaller for θ = −0.5 than for θ = 0.5 for every given ρ
as predicted by theory.

• The ignored dynamics of the error does not have much effect on the point
estimates of the break date.

• Estimates of θ and ρ using k̂ are almost identical to estimate using true k

6 Estimation of Models with Multiple Struc-
tural Change

6.1 Estimating Multiple Breaks One-at-a-Time

Reference: Bai, J. (1997). “Estimating Multiple breaks One at a Time,”
Econometric Theory.

6.1.1 Summary

• Sequential (one-by-one) rather than simultaneous estimation of multiple
breaks is investigated.

• The number of least squares regressions required to compute all of the
break points is of order T, the sample size.

• Each estimated break point is shown to be consistent for one of the true
ones despite underspecification of the number of breaks.

• The estimated break points are shown to be T−consistent, the same rate
as the simultaneous estimation.

• Unlike simultaneous estimation, the limiting distributions are generally
not symmetric and are influenced by regression parameters of all regimes.

• A simple method is introduced to obtain break point estimators that have
the same limiting distributions as those obtained via simultaneous esti-
mation.

• A procedure is proposed to consistently estimate the number of breaks.
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6.1.2 The Two Break Model

All of the results can be determined from the simple two break model

Yt = μ1 +Xt, if t ≤ k01
Yt = μ2 +Xt if k

0
1 + 1 ≤ t ≤ k02

Yt = μ3 +Xt if k
0
2 + 1 ≤ t ≤ T

where μi is the mean of regime i and Xt is a linear process of martingale differ-
ences such that Xt = a(L)εt and k01 and k02 are the unknown break points.

6.1.3 Estimation of One Break

• The idea of sequential estimation is to consider one break at a time: that
is, the model is treated as if there were only one break point and this
break point is estimated using least squares.

• The first break point is estimated by OLS using

ST (k) =
kX
t=1

(Yt − Y k)
2 +

TX
t=k+1

(Yt − Y
∗
k)
2

Y k = mean of first k obvs

Y
∗
k = mean of last T − k obvsbk = min

k
ST (k), bτ = bk/T.

6.1.4 Asymptotic Results

• bτ is T−consistent for one of the true breaks τ0i = k0i /T

• bk is not consistent for any k0i .
• If the first break dominates in terms of the relative span of regimes and
the magnitude of shifts, i.e.

τ01
τ02
(μ1 − μ2)

2 >
1− τ02
1− τ01

(μ2 − μ3)
2,

then bτ p−→ τ01. Otherwise, bτ p−→ τ02.

6.1.5 Sequential Estimation (Two Break Model)

• When bτ = bk/T is consistent for τ01, an estimate for τ02 can be obtained by
applying the same technique to the subsample [bk, T ]. Let bk2 denote the
resulting estimator. Then bτ2 = bk2/T is T−consistent for τ02 because in the
subsample [bk, T ], k02 is the dominating break and the limiting distribution
of bk2 is the same as in the single break model.
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• For fixed magnitudes of shifts the limiting distributions depend on the
unknown distribution of the data and on the unknown magnitudes of the
shifts. To get limiting distributions that are invariant the shifts need to
shrink as the sample size increases.

• The limiting distribution from sequential estimation is not symmetric
about zero in general. In particular, if μ2 − μ1 and μ3 − μ2 have the

same sign then the distribution of bk will have a heavy right tail, reflect-
ing a tendency to overestimate the break point relative to simultaneous
estimation.

6.1.6 Repartition

Problem: Sequential estimation method has a tendency to either under or
over-estimate the true location of a break point when there are multiple breaks.
A simple re-estimation method called repartition can eliminate this asym-

metry from the asymptotic distribution and works as follows:

• Start with T− consistent estimates of ki such as from sequential estimation.
Call these bki.

• Reestimate k1 using the subsample [1,bk2] and reestimate bk2 using the
subsample [bk1, T ]. Denote the resulting estimators bk∗1 and bk∗2 .

• Because bki is close to k0i the subsample [k
0
i−1, k

0
i+1] is effectively used

to estimate k0i and so
bk∗i is T− consistent with a limiting distribution

equivalent to that for a single break model (or for a model with multiple
breaks estimated by the simultaneous method)

6.1.7 More than Two Breaks

The general multiple break model with m breaks is

Yt = μ1 +Xt, if t ≤ k01
Yt = μ2 +Xt if k

0
1 + 1 ≤ t ≤ k02

...

Yt = μm+1 +Xt if k
0
m + 1 ≤ t ≤ T.

Estimation problems:

• Determine the number of breaks m

• Estimate break dates k0i and shift parameters μi (i = 1, . . . ,m).

Sequential Procedure:
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• A subsample [k, l] is said to contain a nontrivial break point if both k
and l are bounded away from a break point for a positive fraction of
observations.

• Assuming knowledge of the number of breaks as well as the existence of
a nontrivial break in a given subsample, all the breaks can be identified
and all the estimated break fractions are T−consistent.

• A sup−F test is used to determine if a sub-interval contains a break. Such
a decision rule leads to a consistent estimate of the number of breaks.

• The number of breaks is determined using a sequential estimation proce-
dure coupled with hypothesis testing.

— First test the entire sample for parameter constancy using the sup−F
test.

— If parameter constancy is rejected identify the first break as the value
that maximizes the sup−F statistic. When the first break is identi-
fied, the whole sample is divided into two subsamples with the first
subsample consisting of the first bk observations and the second sub-
sample consisting of the rest of the observations.

— Use the sup−F test on the two subsamples and estimate a break
date on the subsample where the test fails. Divide the correspond-
ing subsample in half at the new break date and continue with the
process.

— Stop when the sup−F test does not reject on any subsample. The
number of break points is equal to the number of subsamples minus
1.

6.1.8 Simulation Results

The basic simulation model is the three break (4 regime) in mean model:

Yt = μ1 +Xt, t ≤ k01
Yt = μ2 +Xt, k

0
1 + 1 ≤ t ≤ k02

Yt = μ3 +Xt, k
0
2 + 1 ≤ t ≤ k03

Yt = μ4 +Xt, k
0
3 + 1 ≤ t ≤ T

The design parameters are

μ = (1.0, 2.0, 1.0, 0.0)0: design 1

= (1.0, 2.0,−1.0, 1.0)0: design 2
= (1.0, 2.0, 3.0, 4.0)0: design 3

T = 160

k = (40, 80, 120)0

Xt ˜ N(0, 1)
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and the number of simulations is 5, 000. In design 1, the magnitude of the breaks
are the same. In design 2, the middle break is the largest
Experiment 1: Estimate the break point assuming the number of breaks is

known using sequential, repartition and simultaneous estimation methods. Use
designs I and II only

• For design I, the distribution of the three break points are similar since the
magnitude of the breaks are identical. The distribution of sequential esti-
mates is slightly asymmetric whereas the distributions of the repartition
and simultaneous estimates are symmetric and almost identical.

• For design II, the distribution of the three break points are not identical
since the middle break is the most pronounced. For all estimation meth-
ods, the middle break has the most concentrated distribution followed
by the third and then first break. For the sequential methods, the first
and third breaks have the same distribution as the simultaneous estima-
tion. The middle break has an asymmetric distribution for the sequential
method and the asymmetry is removed by repartition.

Experiment 2: Determine the number of breaks using the sequential method
with hypothesis testing and the Schwarz BIC model selection criterion.

• The sequential method has a tendency to underestimate the true number
of breaks. The problem is caused by the inconsistent estimation of the
error variance (for the no structural change test) in the presence of multiple
breaks. When multiple breaks exist and only one is allowed in estimation,
the error variance cannot be consistently estimated, is biased upward and
thus decreases the power of the structural change test.

• The problem of the bias in the estimation of the error variance can be
overcome using a two-step method. In the first step, a consistent (or less
biased) estimate for the error variance is obtained by allowing more breaks.
Let m (= 4 in the simulations) denote the fixed number of breaks imposed
for the purpose of estimating the error variance. The error variance can be
estimated via simultaneous or the “one additional” sequential procedure.
In the second step, the number of breaks is determined by the sequential
procedure coupled with hypothesis testing where the structural change
test uses the first step estimation of the error variance.

• For design I, BIC does better at determining the true number of breaks
than the two-step method and the two-step method often only finds 1
break.

• For design II, the two methods are comparable.

• For design III, the two-step method outperforms BIC.

• The two-step method can be improved by using the Bai and Perron sup
F (l)-test for testing multiple breaks instead of the Andrews sup-F test for
a single break.
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6.2 Estimating Linear Models with Multiple Structural
Change

Reference: Bai, J. (1997). “Estimation of a Change Point in Multiple Regres-
sion,” Review of Economics and Statistics.

6.2.1 Summary

• This paper studies the least squares estimation of change points in para-
metric linear regression models

• Extends the results of Bai (1997) Econometric Theory to linear regression
models

• The model allows for lagged dependent variables and deterministically
trending regressors.

• The error process can be dependent and heteroskedastic.

• For nonstationary regressors or disturbances the asymptotic distribution
is shown to be skewed.

• The analysis applies to both pure and partial changes.

• A sequential method for estimating multiple breaks is described as well as
methods for constructing confidence intervals.

6.3 Estimation of Multiple Breaks Simultaneously

References:

1. Bai, J. and P. Perron (1998). “Estimating and Testing Linear Models with
Multiple Structural Changes,” Econometrica, 66, 47-78

2. Bai, J. and P. Perron (2003). “Computation and Analysis of Multiple
Structural Change Models,” Journal of Applied Econometrics, 18, 1-22.

6.3.1 Multiple Break Model

Linear regression with k regressors and m breaks (m+ 1 regimes)

yt = x0tβj + ut,

xt ∼ I(0)

t = Tj−1 + 1, . . . , Tj

j = 1, . . . ,m+ 1

T0 = 0, Tm+1 = T

Ti − Ti−1 ≥ h = minimal sample size
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The break dates are
(T1, . . . , Tm)

Estimation problem: Simultaneously estimate (T1, . . . , Tm) and β = (β1, . . . ,βm)
0

.
Remarks:

• Pure structural change model: all coefficients are different in each regime

• Partial structural change model: some coefficients are different in each
regime

• Case I: xt may contain lagged yt provided ut is not serially correlated

yt = β0j + β1jyt−1 + εt, εt ∼ iid (0, σ2)

• Case II: xt cannot contain lagged yt but ut may be serially correlated and
heteroskedastic

yt = β0j + β1xt + ut

ut = ARMA(p, q) with ARCH errors

6.3.2 Estimation by Least Squares: fixed number of breaks

For each m−partition {Tj} = (T1, . . . , Tm), estimate β1, . . . ,βm by minimizing

ST ({Tj}) =
m+1X
i=1

TiX
t=Ti−1

(yt − x0tβi)
2

β̂({Tj}) = Fixed break LS estimates

The LS estimates of (T1, . . . , Tm) satisfy

(T̂1, . . . , T̂m) = argmin
{Tj}

ST ({Tj})

β̂({T̂j}) = Estimated break LS estimates

Remarks:

• Bai and Perron propose an efficient dynamic programming algorithm to
compute estimates

— Software available in GAUSS and R

• Break fractions λ̂i = T̂i/T are super consistent as with sequential estima-
tion

• Asymptotic distribution of λ̂i independent of xt and εt may be derived if
magnitude of breaks shrink with T

• Approximate confidence intervals for λi and Ti may computed - details
given in Bai and Perron (1998)

• Asymptotic distribution of β̂({T̂j}) is the same as β̂({Tj}), where {Tj} is
the true partition.
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6.3.3 Estimating the Number of Breaks

Bai and Perron’s suggested procedure is

• Test for the existence of structural change (1 break, 2 breaks, etc.)

• If structural change exists, determine number of breaks using

— Sequential procedure

— Model selection criterion (modified BIC)

6.3.4 Testing for structural change

Problem: Tests for a single break (e.g. QLR) have low power if there are
multiple breaks

• M = maximum number of breaks allowed

• supFT (m) = F-statistic for testing null of no breaks against alternative
of m breaks using (T̂1, . . . , T̂m). Extension of QLR statistic to m breaks.

• Define double-max statistic

UDmax = max
1≤m≤M

FT (m)

= max{FT (1), . . . , FT (M)}

• Reject H0 :no structural change at 5% level if

UDmax > cv0.05

using the critical values from Bai and Perron.

6.3.5 Procedures for determining number of breaks

1. Given there is evidence for structural change, use supFT (m+ 1|m) = F-
statistic for testing the null of m breaks against the alternative of m + 1
breaks, where the first m breaks are estimated from the data, in a sequen-
tial manner to determine the number of breaks (see earlier discussion of
Bai’s sequential procedure)

(a) This strategy starts with supFT (2|1) and progresses forward

2. Determine the number of breaks that minimizes the BIC information cri-
terion

BIC(m) = ln σ̂2(m) + p∗ ln(T )/T

p∗ = (m+ 1)k +m+ k

σ̂2 = T−1ST (T̂1, . . . , T̂m)
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6.3.6 Implementation Issues

• Set maximum number of breaks M

• Set trimming fraction ε = h/T, h = minimum sample size per regime. For
example, ε = 0.05, 0.10 and 0.15

— This matters if errors are allowed to be serially correlated and het-
eroskedastic

6.3.7 Evaluation

• Procedures are evaluated by extensive Monte Carlo in Bai and Perron
(2003)

• Power of UDmax is almost as high as Chow test based on true break dates

• Use of UDmax together with supFT (m+ 1|m) generally works well

— Problems occur if errors are highly serially correlated and trimming
fraction ε is small

• Determining number of breaks with BIC works well

6.4 Application: Exchange Rate Regressions

References:

1. Sakoulis, G. and E. Zivot (2001). “Time-Variation and Structural
Change in the Forward Discount: Implications for the Forward Rate
Unbiasedness Hypothesis,” unpublished manuscript, Department of Eco-
nomics, University of Washington.

2. Choi, K. and E. Zivot (2002). “Long Memory and Structural Change in
the Forward Discount: An Empirical Investigation,” unpublished manuscript,
Department of Economics, Ohio University.

Idea: High persistence of forward discount is due to mean shifts in interest
rate differentials caused by economic events
Two structural break Models are considered for ft − st:

1. Pure structural change with mean shifts

yt = μj + ut

ut = serially correlated and heteroskedastic

2. Partial structural change AR(1) with intercept shifts

yt = cj + φyt−1 + εt

εt = serially uncorrelated

Analysis utilizes GAUSS routines written by Bai and Perron
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6.4.1 Model 1 results

(show ACF before break estimates)

Break Tests:

supFT (m) Tests, M = 5, ε = 0.15
m 1 2 3 4 5

0.536 14.65*** 10.87*** 16.22*** 12.82***
UDmax = supFT (4) = 16.22

∗∗∗

supFT (m+ 1|m) Tests
m+ 1|m 2|1 3|2 4|3 5|4

19.82*** 15.58*** 17.23*** 18.24***

Number of Breaks Selected
Sequential 0
BIC 5

Parameter Estimates

Mean Break Date Confidence Interval
-0.084 1977:08 [1976:02, 1978:01]
-0.412 1984:09 [1984:06, 1988:12]
-0.249 1989:09 [1988:08, 1989:10]
0.023 1991:02 [1977:09, 1991:08]
0.375 1994:04 [1994:03, 1994:05]
-0.141
(show ACF after Break estimation)

6.4.2 Model 2 Results

The full sample regression is

ft − st = −0.009
(0.005)

+ 0.939
(0.028)

(ft−1 − st−1)

Break Tests

supFT (m) Tests, M = 5, ε = 0.15
m 1 2 3 4 5

10.16*** 16.16*** 14.15*** 10.08*** 9.47***
UDmax = supFT (2) = 16.16

∗∗∗

supFT (m+ 1|m) Tests
m+ 1|m 2|1 3|2 4|3 5|4

31.18*** 10.55*** 12.81*** 29.11***

Number of Breaks Selected
Sequential 5
BIC 5

Parameter Estimates
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β1 β0/(1− β1) Break Date Confidence Interval
0.66 -0.060 1977:05 [1976:01, 1977:10]

-0.416 1984:08 [1983:09, 1990:04]
-0.246 1989:05 [1989:02, 1989:12]
0.012 1990:11 [1990:08, 1990:12]
0.383 1994:01 [1993:11, 1994:02]
-0.144
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