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1 Overview of Testing for and Estimating Struc-
tural Change in Econometric Models

1. Day 1: Tests of Parameter Constancy

2. Day 2: Estimation of Models with Structural Change

3. Day 3: Time Varying Parameter Models

2 Some Preliminary Asymptotic Theory

Reference: Stock, J.H. (1994) “Unit Roots, Structural Breaks and Trends,”
in Handbook of Econometrics, Vol. IV.

3 Tests of Parameter Constancy in Linear Mod-
els

3.1 Motivation

• Diagnostics for model adequacy

• Provide information about out-of-sample forecasting accuracy
• Within-sample parameter constancy is a necessary condition for super-
exogeneity

3.2 Example Data Sets

3.2.1 Simulated Data

Consider the linear regression model

yt = α+ βxt + εt, t = 1, . . . , T = 200

xt ∼ iid N(0, 1)

εt ∼ iid N(0, σ2)
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No structural change parameterization: α = 0, β = 1, σ = 0.5
Structural change cases

• Break in intercept: α = 1 for t > 100

• Break in slope: β = 3 for t > 100

• Break in error variance: σ = 0.25 for t > 100

• Random walk in slope: β = βt = βt−1+ηt, ηt ∼ iid N(0, 0.1) and β0 = 1.

(show simulated data)

3.2.2 US/DM Monthly Exchange rate data

Let

st = log of spot exchange rate in month t

ft = log of forward exchange rate in month t

The forward rate unbiased hypothesis is typically investigated using the so-called
differences regression

∆st+1 = α+ β(ft − st) + εt+1

ft − st = iUSt − iDM
t = forward discount

If the forward rate ft is an unbiased forecast of the future spot rate st+1 then
we should find

α = 0 and β = 1

The forward discount is often modeled as an AR(1) model

ft − st = δ + φ(ft−1 − st−1) + ut

Statistical Issues

• ∆st+1 is close to random walk with large variance

• ft − st behaves like highly persistent AR(1) with small variance

• ft − st appears to be unstable over time

3.3 Chow Forecast Test

Reference: Chow, G.C. (1960). “Tests of Equality between Sets of Coeffi-
cients in Two Linear Regressions,” Econometrica, 52, 211-22.
Consider the linear regression model with k variables

yt = x0tβ + ut, ut ∼ (0, σ2), t = 1, . . . , n

y = Xβ + u
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Parameter constancy hypothesis

H0 : β is constant

Intuition

• If parameters are constant then out-of-sample forecasts should be unbiased
(forecast errors have mean zero)

Test construction:

• Split sample into n1 > k and n2 = n− n1 observations

y =

µ
y1
y2

¶
n1
n2

,X =

µ
X1

X2

¶
n1
n2

• Fit model using first n1 observations

β̂1 = (X0
1X1)

−1X0
1y1

û1 = y1 −X1β̂1
σ̂21 = û01û1/(n1 − k)

• Use β̂1 and X2 to predict y2 using next n2 observations

ŷ2 = X2β̂1

• Compute out-of-sample prediction errors

û2 = y2−ŷ2 = y2−X2β̂1

Under H0 : β is constant

û2 = u2 −X2(β̂1−β)

and

E[û2] = 0

var(û2) = σ2
³
In2 +X2(X

0
1X1)

−1X0
2

´
Further, If the errors u are Gaussian then

û2 ∼ N(0, var(û2))

û02var(û2)
−1û2 ∼ χ2(n2)

(n1 − k)σ̂21/σ
2 ∼ χ2(n1 − k)

This motivates the Chow forecast test statistic

ChowFCST (n2) =
û02

³
In2 +X2(X

0
1X1)

−1
X0
2

´
û2

n2σ̂
2
1

∼ F (n2, n1 − k)
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Decision: Reject H0 at 5% level if

ChowFCST (n2) > cv0.05

Remarks:

• Test is a general specification test for unbiased forecasts

• Popular with LSE methodology

• Implementation requires a priori splitting of data into fit and forecast
samples

3.3.1 Application: Simulated Data

Chow Forecast Test
n2

Model 100 50 25
No SC 1.121 1.189 1.331
Mean shift 9.130*** 1.329* 1.061
Slope shift 9.055*** 2.067*** 1.545*
Var shift 0.568 0.726 0.864
RW slope 2.183*** 1.302 0.550

3.4 CUSUM and CUSUMSQ Tests

Reference: Brown, R.L., J. Durbin and J.M. Evans (1975). “Techniques
for Testing the Constancy of Regression Relationships over Time,” Journal of
the Royal Statistical Society, Series B, 35, 149-192.

3.4.1 Recursive least squares estimation

The recursive least squares (RLS) estimates of β are based on estimating

yt = β0txt + ξt, t = 1, . . . , n

by least squares recursively for t = k+1, . . . , n giving n−k least squares (RLS)
estimates (β̂k+1, . . . , β̂T ).

• RLS estimates may be efficiently computed using the Kalman Filter

• If β is constant over time then β̂t should quickly settle down near a com-
mon value.
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3.4.2 Recursive residuals

Formal tests for structural stability of the regression coefficients may be com-
puted from the standardized 1− step ahead recursive residuals

wt =
vt√
ft
=

yt − β̂
0
t−1xt√
ft

ft = σ̂2
h
1 + x0t(X

0
tXt)

−1
xt

i
Intuition:

• If βi changes in the next period then the forecast error will not have mean
zero

• wt are recursive Chow Forecast “t-statistics” with n2 = 1

3.4.3 CUSUM statistic

The CUSUM statistic of Brown, Durbin and Evans (1975) is

CUSUMt =
tX

j=k+1

ŵj

σ̂w

σ̂2w =
1

n− k

nX
t=1

(wt − w̄)2

Under the null hypothesis that β is constant, CUSUMt has mean zero and
variance that is proportional to t− k − 1.

3.4.4 CUSUMSQ statistic

THE CUSUMSQ statistic is

CUSUMSQt =

Pt
j=k+1 ŵ

2
jPn

j=k+1 ŵ
2
j

Under the null that β is constant, CUSUMSQt behaves like a χ
2(t) and con-

fidence bounds can be easily derived.

3.4.5 Application: Simulated Data

(insert graphs here)

Remarks

• Ploberger and Kramer (1990) show the CUSUM test can be constructed
with OLS residuals instead of recursive residuals
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• CUSUM Test is essentially a test to detect instability in intercept alone

• CUSUM Test has power only in direction of the mean regressors

• CUSUMSQ has power for changing variance

• There are tests with better power

3.4.6 Application: Exchange Rate Regression

(insert graphs here)

3.5 Nyblom’s Parameter Stability Test

Reference:Nyblom, J. (1989). “Testing for the Constancy of Parameters Over
Time,” Journal of the American Statistical Association, 84 (405), 223-230.
Consider the linear regression model with k variables

yt = x
0
tβ + εt, t = 1, . . . , n

The time varying parameter (TVP) alternative model assumes

β = βt = βt−1 + ηt, ηit ∼ (0, σ2ηi), i = 1, . . . , k

The hypotheses of interest are

H0 : β is constant ⇔ σ2ηi = 0 for all i

H1 : σ2ηi > 0 for some i

Nyblom (1989) derives the locally best invariant test as the Lagrange multiplier
test. The score assuming Gaussian errors is

nX
t=1

xtε̂t = 0

ε̂t = yt − x0tβ̂
β̂= (X0X)−1X0y

Define

ft = xtε̂t

St =
tX

j=1

ft = cumulative sums

V = n−1X0X

Note that
nX
j=1

ft = 0
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Nyblom derives the LM statistic

L =
1

nσ̂2

nX
t=1

StV
−1St

=
1

nσ̂2
tr

"
V−1

nX
t=1

StS
0
t

#

Under mild assumptions regarding the behavior of the regressors, the limiting
distribution of L under the null is a Camer-von Mises distribution:

L ⇒
Z 1

0

Bμ
k(λ)B

μ
k(λ)

0dλ

Bμ
k(λ) = Wk(λ)− λWk(1)

Wk(λ) = k dimensional Brownian motion

Decision: Reject H0 at 5% level if

L > cv0.05

Remarks:

• Distribution of L is non-standard and depends on k.

• Critical values are computed by simulation and are given in Nyblom,
Hansen (1992) and Hansen (1997)

• Test is for constancy of all parameters

• Test is not informative about the date or type of structural change

• Test is applicable for models estimated by methods other than OLS

• Distribution of L is different if xt is non-stationary (unit root, determin-
istic trend). See Hansen (1992).

3.5.1 Application: Simulated Data

Nyblom Test
Model Lc
No SC .332
Mean shift 13.14∗∗∗

Slope shift 14.13∗∗∗

var shift .351
RW slope 9.77∗∗∗
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3.5.2 Application: Exchange rate regression

Nyblom Test
Model Lc
AR(1) 1.27∗∗∗

Diff reg .413

3.6 Hansen’s Parameter Stability Tests

References

1. Hansen, B.E. (1992). “Testing for Parameter Instability in Linear Mod-
els ”Journal of Policy Modeling, 14(4), 517-533.

2. Hansen, B.E. (1992). “Tests for Parameter Instability in Regressions
with I(1) Processes,” Journal of Business and Economic Statistics, 10,
321-336.

Idea: Extension of Nyblom’s LM test to individual coefficients.
Under the null of constant parameters, the score vector from the linear model

with Gaussian errors is

nX
t=1

xitε̂t = 0, i = 1, . . . , kX
(ε̂2t − σ̂2) = 0

ε̂t = yt − x0tβ̂

σ̂2 = n−1
nX
t=1

ε̂2t

Define

fit =

½
xitε̂t

ε̂2t − σ̂2
i = 1, . . . k
i = k + 1

Sit =
tX

j=1

fij , i = 1, . . . , k + 1

Note that
nX
i=1

fit = 0, i = 1, . . . , k + 1

3.6.1 Individual Coefficient Tests

Hansen’s LM test for

H0 : βi is constant, i = 1, . . . , k
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and for
H0 : σ

2 is constant

is

Li =
1

nVi

nX
t=1

S2it, i = 1, . . . , k

Vi =
nX
t=1

f2it

Under H0 : βi is constant or H0 : σ
2 is constant

Li ⇒
Z 1

0

Bμ
1 (λ)B

μ
1 (λ)dλ

Decision: Reject H0 at 5% level if

Li > cv0.05 = 0.470

3.6.2 Joint Test for All Coefficients

For testing the joint hypothesis

H0 : β and σ2 are constant

define the (k + 1)× 1 vectors

ft = (f1t, . . . , fk+1,t)
0

St = (S1t, . . . , Sk+1,t)
0

Hansen’s LM statistic for testing the constancy of all parameters is

Lc =
1

n

nX
t=1

S0tV
−1St =

1

n
tr

Ã
V−1

nX
t=1

StS
0
t

!

V =
nX
t=1

ftf
0
t

Under the null of no-structural change

Lc ⇒
Z 1

0

Bμ
k+1(λ)B

μ
k+1(λ)dλ

Decision: Reject H0 at 5% level if

Lc > cv0.05

Remarks
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• Tests are very easy to compute and are robust to heteroskedasticity

• Null distribution is non-standard and depends upon number of parameters
tested for stability

• Individual tests are informative about the type of structural change

• Tests are not informative about the date of structural change

• Hansen’s L1 test for constancy of intercept is analogous to the CUSUM
test

• Hansen’s Lk+1 test for constancy of variance is analogous to CUSUMSQ
test

• Hansen’s Lc test for constancy of all parameters is similar to Nybolom’s
test

• Distribution of tests is different if data are nonstationary (unit root, de-
terministic trend) - see Hansen (1992), JBES.

3.6.3 Application: Simulated Data

Hansen Tests
Model α β σ2 Joint
No SC .179 .134 .248 .503
Mean shift 13.19∗∗∗ .234 .064 13.3∗∗∗

Slope shift .588 5.11∗∗∗ .067 5.25∗∗∗

var shift .226 .119 .376∗ .736
RW slope .253 4.08∗∗∗ .196 4.4∗∗∗

3.6.4 Application: Exchange rate regression cont’d

Hansen Tests
Model intercept slope variance Joint
AR(1) .382 .147 2.94∗∗∗ 3.90∗∗∗

Diff reg .104 .153 .186 .520

4 Tests for Single Structural Change

Consider the linear regression model with k variables

yt = x
0
tβt + εt, t = 1 . . . , n

No structural change null hypothesis

H0 : βt= β
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Single break date alternative hypothesis

H1 :

½
βt= β, t ≤ m = break date
βt = β + γ, t > m and γ 6= 0

k < m < n− k

λ =
m

n
= break fraction

Remarks:

• Under no break null γ = 0.

• Pure structural change model: all coefficients change (γi 6= 0 for i =
1, . . . , k)

• Partial structural change model: some coefficients change (γi 6= 0 for some
i)

• m = [λ · n], [·] = integer part

4.1 Chow’s Test with Known Break Date

Assume: m or λ is known
For a data interval [r, . . . , s] such that s− r > k define

• β̂r,s = OLS estimate of β

• ε̂r,s = OLS residual vector

• SSRr,s = ε̂0r,sε̂r,s = sum of squared residuals

Chow’s breakpoint test for testing H0 vs. H1 with m known is

Fn

³m
n

´
= Fn (λ) =

(SSR1,n − (SSR1,m + SSRm+1,n))/k

(SSR1,m + SSRm+1,n) /(n− 2k)

The Chow test may also be computed as the F-statistic for testing γ = 0 from
the dummy variable regression

yt = x0tβ +Dt(m)x
0
tγ + εt

Dt(m) = 1 if t > m; 0 otherwise

Under H0 : γ = 0 with m known

Fn(λ) ∼ F (k, n− 2k)
k · Fn(λ) d→ χ2(k)

Decision: Reject H0 at 5% level if

Fn(λ) > F0.95(k, n− k)

k · Fn(λ) > χ20.95(k)
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4.1.1 Application: Simulated Data

Chow Breakpoint Test
F200(0.5) F200(0.25) F200(0.75)

No SC 0.808 0.081 1.55
Mean shift 377*** 13.03*** 11.21***
Slope shift 374*** 10.97*** 17.57***
Var shift 1.071 0.117 1.204
RW slope 80.14*** 4.058** 2.218

4.2 Quandt’s LR Test with Unknown Break Date

References:

1. Quandt, R.E. (1960). “Tests of Hypotheses that a Linear System Obeys
Two Separate Regimes,” Journal of the American Statistical Association,
55, 324-330.

2. Davies, R.A. (1977). “Hypothesis Testing When a Nuisance Parameter
is Present only Under the Alternative,“ Biometrika, 64, 247-254.

3. Kim, H.-J., and D. Siegmund (1989). “The Likelihood Ratio Test for
a Change-Point in Simple Linear Regression,” Biometrika, 76, 3, 409-23.

4. Andrews, D.W.K. (1993). “Tests for Parameter Instability and Struc-
tural Change with Unknown Change Point,” Econometrica, 59, 817-858.

5. Hansen, B.E. (1997). “Approximate Asymptotic P Values for Structural-
Change Tests,” Journal of Business and Economic Statistics, 15, 60-67.

Assume: m or λ is unknown.
Quandt considered the LR statistic for testing H0 : γ = 0 vs. H1 : γ 6= 0

when m is unknown. This turns out to be the maximal Fn(λ) statistic over a
range of break dates m0, . . . ,m1 :

QLR = max
m∈[m0,m1]

Fn

³m
n

´
= max

λ∈[λ0,λ1]
Fn(λ)

λi =
mi

n
= trimming parameters, i = 0, 1

Remarks

• QLR is also know as Andrews’ sup−F statistic

• Trimming parameters λ0 and λ1 must be set

— Cannot have λ0 = 1 and λ1 = 1 because breaks are hard to identify
near beginning and end of sample

— Information about location of break can be used to specify λ0 and
λ1
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— Andrews recommends λ0 = 0.15 and λ1 = 0.85 if there is no knowl-
edge of break date

• Implicitly, the break data m and break fraction λ are estimated using

m̂ = argmax
m

Fn

³m
n

´
λ̂ = m̂/n

• Under the null, m defined under the alternative is not identified. This is
an example of the “Davies problem”.

• Davies (1977) showed that if estimated parameters are unidentified under
the null, standard χ2 inference does not obtain.

Under H0 : γ = 0, Kim and Siegmund (1989) showed

k ·QLR ⇒ sup
λ∈[λ0,λ1]

Bμ
k(λ)

0Bμ
k(λ)

λ(1− λ)

Bμ
k(λ) = Wk(λ)− λWk(1) = Brownian Bridge

Decision: Reject H0 at 5% level if

k ·QLR > cv0.05

Remarks

• Distribution of QLR is non-standard and depends on the number of vari-
ables k and the trimming parameters λ0 and λ1

• Critical values for various values of λ0 and λ1 computed by simulation are
given in Andrews (1993), and are larger than χ2(k) critical values. For
λ0 = 0.15 and λ1 = 0.85

5% critical values
k χ2(k) QLR k ·QLR
1 3.84 8.85
10 18.3 27.03

• P-values can be computed using techniques from Hansen (1997)

• Graphical plot of Fn(λ) statistics is informative to locate the break date

4.2.1 Application: Simulated data

QLR or sup-F Test

QLR bm bλ
No SC 2.87 142 0.71
Mean shift 377*** 101 0.51
Slope shift 374*** 101 0.51
Var shift 2.36 142 0.71
RW slope 113*** 77 0.39

(insert graphs here)
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4.2.2 Application: Exchange rate data

QLR or sup-F Test

QLR bm bλ
AR(1) 12.13*** 1989:05 0.65
Diff reg 4.08 1991:03 0.74

4.3 Optimal Tests with Unknown Break Date

References:

1. Andrews, D.W.K. and W. Ploberger (1994). “Optimal Tests When
a Nuisance Parameter Is Present Only Under the Alternative,” Economet-
rica, 62, 1383-1414.

Andrews and Ploberger (1994) derive tests for structural change with an
unknown break date with optimal power. These tests turn out to be weighted
averages of the Chow breakpoint statistics Fn(

m
n ) used to compute the QLR

statistic:

ExpFn = ln

Ã
1

m2 −m1 + 1

m2X
t=m1

exp

µ
1

2
k · Fn

µ
t

n

¶¶!

AveFn =
1

m2 −m1 + 1

m2X
t=m1

k · Fn
µ
t

n

¶
k = number of regressors being tested

Remarks

• Asymptotic null distributions are non-standard and depend on k, λ0 and
λ1

• Critical values are given in Andrews and Ploberger; P-values can be com-
puted using techniques of Hansen (1997)

• Tests can have higher power than QLR statistic

• Tests are not informative about location of break date

4.4 Empirical Application

Reference: Stock and Watson (199?), “ ” Journal of Business and Economic
Statistics.
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