Lectures on Structural Change

Eric Zivot Department of Economics, University of Washington

April 5, 2003

1 Overview of Testing for and Estimating Structural Change in Econometric Models

- 1. Day 1: Tests of Parameter Constancy
- 2. Day 2: Estimation of Models with Structural Change
- 3. Day 3: Time Varying Parameter Models

2 Some Preliminary Asymptotic Theory

Reference: Stock, J.H. (1994) "Unit Roots, Structural Breaks and Trends," in *Handbook of Econometrics, Vol. IV.*

3 Tests of Parameter Constancy in Linear Models

3.1 Motivation

- Diagnostics for model adequacy
- Provide information about out-of-sample forecasting accuracy
- Within-sample parameter constancy is a necessary condition for superexogeneity

3.2 Example Data Sets

3.2.1 Simulated Data

Consider the linear regression model

$$y_t = \alpha + \beta x_t + \varepsilon_t, \ t = 1, \dots, T = 200$$
$$x_t \sim iid \ N(0, 1)$$
$$\varepsilon_t \sim iid \ N(0, \sigma^2)$$

No structural change parameterization: $\alpha=0, \beta=1, \sigma=0.5$ Structural change cases

- Break in intercept: $\alpha = 1$ for t > 100
- Break in slope: $\beta = 3$ for t > 100
- Break in error variance: $\sigma = 0.25$ for t > 100
- Random walk in slope: $\beta=\beta_t=\beta_{t-1}+\eta_t,\,\eta_t\sim iid\;N(0,0.1)$ and $\beta_0=1.$

(show simulated data)

3.2.2 US/DM Monthly Exchange rate data

Let

 $s_t = \log \text{ of spot exchange rate in month } t$

 $f_t = \log \text{ of forward exchange rate in month } t$

The forward rate unbiased hypothesis is typically investigated using the so-called differences regression ${\bf r}$

$$\begin{array}{lcl} \Delta s_{t+1} & = & \alpha + \beta (f_t - s_t) + \varepsilon_{t+1} \\ f_t - s_t & = & i_t^{US} - i_t^{DM} = \text{ forward discount} \end{array}$$

If the forward rate f_t is an unbiased forecast of the future spot rate s_{t+1} then we should find

$$\alpha=0$$
 and $\beta=1$

The forward discount is often modeled as an AR(1) model

$$f_t - s_t = \delta + \phi(f_{t-1} - s_{t-1}) + u_t$$

Statistical Issues

- Δs_{t+1} is close to random walk with large variance
- $f_t s_t$ behaves like highly persistent AR(1) with small variance
- $f_t s_t$ appears to be unstable over time

3.3 Chow Forecast Test

Reference: Chow, G.C. (1960). "Tests of Equality between Sets of Coefficients in Two Linear Regressions," *Econometrica*, 52, 211-22.

Consider the linear regression model with k variables

$$y_t = \mathbf{x}_t' \boldsymbol{\beta} + u_t, \ u_t \sim (0, \sigma^2), \ t = 1, \dots, n$$

 $\mathbf{y} = \mathbf{X} \boldsymbol{\beta} + \mathbf{u}$

Parameter constancy hypothesis

 $H_0: \boldsymbol{\beta}$ is constant

Intuition

• If parameters are constant then out-of-sample forecasts should be unbiased (forecast errors have mean zero)

Test construction:

• Split sample into $n_1 > k$ and $n_2 = n - n_1$ observations

$$\mathbf{y} = \left(\begin{array}{c} \mathbf{y}_1 \\ \mathbf{y}_2 \end{array}\right) \begin{array}{c} n_1 \\ n_2 \end{array}, \mathbf{X} = \left(\begin{array}{c} \mathbf{X}_1 \\ \mathbf{X}_2 \end{array}\right) \begin{array}{c} n_1 \\ n_2 \end{array}$$

• Fit model using first n_1 observations

$$\hat{\boldsymbol{\beta}}_1 = (\mathbf{X}_1'\mathbf{X}_1)^{-1}\mathbf{X}_1'\mathbf{y}_1 \hat{\mathbf{u}}_1 = \mathbf{y}_1 - \mathbf{X}_1\hat{\boldsymbol{\beta}}_1 \hat{\sigma}_1^2 = \hat{\mathbf{u}}_1'\hat{\mathbf{u}}_1/(n_1 - k)$$

• Use $\hat{\boldsymbol{\beta}}_1$ and \mathbf{X}_2 to predict \mathbf{y}_2 using next n_2 observations

$$\mathbf{\hat{y}}_2 = \mathbf{X}_2 \mathbf{\hat{\beta}}_1$$

• Compute out-of-sample prediction errors

$$\hat{\mathbf{u}}_2 = \mathbf{y}_2 - \hat{\mathbf{y}}_2 = \mathbf{y}_2 - \mathbf{X}_2 \hat{\boldsymbol{\beta}}_1$$

Under $H_0: \boldsymbol{\beta}$ is constant

$$\hat{\mathbf{u}}_2 = \mathbf{u}_2 - \mathbf{X}_2(\hat{\boldsymbol{\beta}}_1 - \boldsymbol{\beta})$$

and

$$E[\hat{\mathbf{u}}_2] = \mathbf{0}$$

$$var(\hat{\mathbf{u}}_2) = \sigma^2 \left(\mathbf{I}_{n_2} + \mathbf{X}_2 (\mathbf{X}_1' \mathbf{X}_1)^{-1} \mathbf{X}_2' \right)$$

Further, If the errors u are Gaussian then

$$\mathbf{\hat{u}}_2 \sim N(\mathbf{0}, var(\mathbf{\hat{u}}_2))
\mathbf{\hat{u}}_2' var(\mathbf{\hat{u}}_2)^{-1} \mathbf{\hat{u}}_2 \sim \chi^2(n_2)
(n_1 - k)\hat{\sigma}_1^2/\sigma^2 \sim \chi^2(n_1 - k)$$

This motivates the Chow forecast test statistic

$$Chow_{FCST}(n_2) = \frac{\hat{\mathbf{u}}_2' \left(\mathbf{I}_{n_2} + \mathbf{X}_2 (\mathbf{X}_1' \mathbf{X}_1)^{-1} \mathbf{X}_2' \right) \hat{\mathbf{u}}_2}{n_2 \hat{\sigma}_1^2} \sim F(n_2, n_1 - k)$$

Decision: Reject H_0 at 5% level if

$$Chow_{FCST}(n_2) > cv_{0.05}$$

Remarks:

- Test is a general specification test for unbiased forecasts
- Popular with LSE methodology
- Implementation requires *a priori* splitting of data into fit and forecast samples

3.3.1 Application: Simulated Data

Chow Forecast Test				
	n_2			
Model	100	50	25	
No SC	1.121	1.189	1.331	
Mean shift	9.130***	1.329*	1.061	
Slope shift	9.055***	2.067***	1.545*	
Var shift	0.568	0.726	0.864	
RW slope	2.183***	1.302	0.550	

3.4 CUSUM and CUSUMSQ Tests

Reference: Brown, R.L., J. Durbin and J.M. Evans (1975). "Techniques for Testing the Constancy of Regression Relationships over Time," *Journal of the Royal Statistical Society*, Series B, 35, 149-192.

3.4.1 Recursive least squares estimation

The recursive least squares (RLS) estimates of β are based on estimating

$$y_t = \boldsymbol{\beta}_t' \mathbf{x}_t + \boldsymbol{\xi}_t, \ t = 1, \dots, n$$

by least squares recursively for $t=k+1,\ldots,n$ giving n-k least squares (RLS) estimates $(\hat{\boldsymbol{\beta}}_{k+1},\ldots,\hat{\boldsymbol{\beta}}_T)$.

- RLS estimates may be efficiently computed using the Kalman Filter
- If β is constant over time then $\hat{\beta}_t$ should quickly settle down near a common value.

3.4.2 Recursive residuals

Formal tests for structural stability of the regression coefficients may be computed from the standardized 1 - step ahead recursive residuals

$$w_t = \frac{v_t}{\sqrt{f_t}} = \frac{y_t - \hat{\boldsymbol{\beta}}'_{t-1} \mathbf{x}_t}{\sqrt{f_t}}$$
$$f_t = \hat{\sigma}^2 \left[1 + \mathbf{x}'_t (\mathbf{X}'_t \mathbf{X}_t)^{-1} \mathbf{x}_t \right]$$

Intuition:

- If β_i changes in the next period then the forecast error will not have mean zero
- w_t are recursive Chow Forecast "t-statistics" with $n_2=1$

3.4.3 CUSUM statistic

The CUSUM statistic of Brown, Durbin and Evans (1975) is

$$CUSUM_t = \sum_{j=k+1}^t \frac{\hat{w}_j}{\hat{\sigma}_w}$$
$$\hat{\sigma}_w^2 = \frac{1}{n-k} \sum_{t=1}^n (w_t - \bar{w})^2$$

Under the null hypothesis that β is constant, $CUSUM_t$ has mean zero and variance that is proportional to t - k - 1.

3.4.4 CUSUMSQ statistic

THE CUSUMSQ statistic is

$$CUSUMSQ_t = \frac{\sum_{j=k+1}^t \hat{w}_j^2}{\sum_{j=k+1}^n \hat{w}_j^2}$$

Under the null that β is constant, $CUSUMSQ_t$ behaves like a $\chi^2(t)$ and confidence bounds can be easily derived.

3.4.5 Application: Simulated Data

(insert graphs here)

Remarks

• Ploberger and Kramer (1990) show the CUSUM test can be constructed with OLS residuals instead of recursive residuals

- CUSUM Test is essentially a test to detect instability in intercept alone
- CUSUM Test has power only in direction of the mean regressors
- CUSUMSQ has power for changing variance
- There are tests with better power

3.4.6 Application: Exchange Rate Regression

(insert graphs here)

3.5 Nyblom's Parameter Stability Test

Reference: Nyblom, J. (1989). "Testing for the Constancy of Parameters Over Time," *Journal of the American Statistical Association*, 84 (405), 223-230.

Consider the linear regression model with k variables

$$y_t = \mathbf{x}_t' \boldsymbol{\beta} + \varepsilon_t, \ t = 1, \dots, n$$

The time varying parameter (TVP) alternative model assumes

$$\boldsymbol{\beta} = \boldsymbol{\beta}_t = \boldsymbol{\beta}_{t-1} + \boldsymbol{\eta}_t, \ \eta_{it} \sim (0, \sigma_{\eta_i}^2), \ i = 1, \dots, k$$

The hypotheses of interest are

 H_0 : $\boldsymbol{\beta}$ is constant $\Leftrightarrow \sigma_{\eta_i}^2 = 0$ for all i

 H_1 : $\sigma_{\eta_i}^2 > 0$ for some i

Nyblom (1989) derives the locally best invariant test as the Lagrange multiplier test. The score assuming Gaussian errors is

$$\sum_{t=1}^{n} \mathbf{x}_{t} \hat{\varepsilon}_{t} = \mathbf{0}$$

$$\hat{\varepsilon}_{t} = y_{t} - \mathbf{x}_{t}' \hat{\boldsymbol{\beta}}$$

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}' \mathbf{y}$$

Define

$$\mathbf{f}_t = \mathbf{x}_t \hat{\varepsilon}_t$$

$$\mathbf{S}_t = \sum_{j=1}^t \mathbf{f}_t = \text{cumulative sums}$$

$$\mathbf{V} = n^{-1} \mathbf{X}' \mathbf{X}$$

Note that

$$\sum_{i=1}^n \mathbf{f}_t = \mathbf{0}$$

Nyblom derives the LM statistic

$$L = \frac{1}{n\hat{\sigma}^2} \sum_{t=1}^n \mathbf{S}_t \mathbf{V}^{-1} \mathbf{S}_t$$
$$= \frac{1}{n\hat{\sigma}^2} tr \left[\mathbf{V}^{-1} \sum_{t=1}^n \mathbf{S}_t \mathbf{S}_t' \right]$$

Under mild assumptions regarding the behavior of the regressors, the limiting distribution of L under the null is a Camer-von Mises distribution:

$$\begin{array}{rcl} L & \Rightarrow & \int_0^1 \mathbf{B}_k^{\mu}(\lambda) \mathbf{B}_k^{\mu}(\lambda)' d\lambda \\ \\ \mathbf{B}_k^{\mu}(\lambda) & = & \mathbf{W}_k(\lambda) - \lambda \mathbf{W}_k(1) \\ \\ \mathbf{W}_k(\lambda) & = & \mathrm{k \ dimensional \ Brownian \ motion} \end{array}$$

Decision: Reject H_0 at 5% level if

$$L > cv_{0.05}$$

Remarks:

- Distribution of L is non-standard and depends on k.
- Critical values are computed by simulation and are given in Nyblom, Hansen (1992) and Hansen (1997)
- Test is for constancy of all parameters
- Test is not informative about the date or type of structural change
- Test is applicable for models estimated by methods other than OLS
- Distribution of L is different if \mathbf{x}_t is non-stationary (unit root, deterministic trend). See Hansen (1992).

3.5.1 Application: Simulated Data

Nyblom Test		
Model	L_c	
No SC	.332	
Mean shift	13.14***	
Slope shift	14.13***	
var shift	.351	
RW slope	9.77***	

3.5.2 Application: Exchange rate regression

Nyblom Test		
Model	L_c	
$\overline{AR(1)}$	1.27***	
Diff reg	.413	

3.6 Hansen's Parameter Stability Tests

References

- 1. Hansen, B.E. (1992). "Testing for Parameter Instability in Linear Models" *Journal of Policy Modeling*, 14(4), 517-533.
- 2. Hansen, B.E. (1992). "Tests for Parameter Instability in Regressions with I(1) Processes," *Journal of Business and Economic Statistics*, 10, 321-336.

Idea: Extension of Nyblom's LM test to individual coefficients.

Under the null of constant parameters, the score vector from the linear model with Gaussian errors is

$$\sum_{t=1}^{n} x_{it} \hat{\varepsilon}_{t} = 0, i = 1, \dots, k$$

$$\sum_{t=1}^{n} (\hat{\varepsilon}_{t}^{2} - \hat{\sigma}^{2}) = 0$$

$$\hat{\varepsilon}_{t} = y_{t} - \mathbf{x}_{t}' \hat{\boldsymbol{\beta}}$$

$$\hat{\sigma}^{2} = n^{-1} \sum_{t=1}^{n} \hat{\varepsilon}_{t}^{2}$$

Define

$$f_{it} = \begin{cases} x_{it}\hat{\varepsilon}_t & i = 1, \dots k \\ \hat{\varepsilon}_t^2 - \hat{\sigma}^2 & i = k+1 \end{cases}$$

$$S_{it} = \sum_{j=1}^t f_{ij}, i = 1, \dots, k+1$$

Note that

$$\sum_{i=1}^{n} f_{it} = 0, \ i = 1, \dots, k+1$$

3.6.1 Individual Coefficient Tests

Hansen's LM test for

$$H_0: \beta_i$$
 is constant, $i = 1, \ldots, k$

and for

 $H_0: \sigma^2$ is constant

is

$$L_{i} = \frac{1}{nV_{i}} \sum_{t=1}^{n} S_{it}^{2}, i = 1, \dots, k$$

$$V_{i} = \sum_{t=1}^{n} f_{it}^{2}$$

Under $H_0: \beta_i$ is constant or $H_0: \sigma^2$ is constant

$$L_i \Rightarrow \int_0^1 B_1^{\mu}(\lambda) B_1^{\mu}(\lambda) d\lambda$$

Decision: Reject H_0 at 5% level if

$$L_i > cv_{0.05} = 0.470$$

3.6.2 Joint Test for All Coefficients

For testing the joint hypothesis

$$H_0: \boldsymbol{\beta}$$
 and σ^2 are constant

define the $(k+1) \times 1$ vectors

$$\mathbf{f}_t = (f_{1t}, \dots, f_{k+1,t})'$$

$$\mathbf{S}_t = (S_{1t}, \dots, S_{k+1,t})'$$

Hansen's LM statistic for testing the constancy of all parameters is

$$L_c = \frac{1}{n} \sum_{t=1}^{n} \mathbf{S}_t' \mathbf{V}^{-1} \mathbf{S}_t = \frac{1}{n} tr \left(\mathbf{V}^{-1} \sum_{t=1}^{n} \mathbf{S}_t \mathbf{S}_t' \right)$$

$$\mathbf{V} = \sum_{t=1}^{n} \mathbf{f}_t \mathbf{f}_t'$$

Under the null of no-structural change

$$L_c \Rightarrow \int_0^1 \mathbf{B}_{k+1}^{\mu}(\lambda) \mathbf{B}_{k+1}^{\mu}(\lambda) d\lambda$$

Decision: Reject H_0 at 5% level if

$$L_c > cv_{0.05}$$

Remarks

- Tests are very easy to compute and are robust to heteroskedasticity
- Null distribution is non-standard and depends upon number of parameters tested for stability
- Individual tests are informative about the type of structural change
- Tests are not informative about the date of structural change
- Hansen's L₁ test for constancy of intercept is analogous to the CUSUM test
- Hansen's L_{k+1} test for constancy of variance is analogous to CUSUMSQ test.
- Hansen's L_c test for constancy of all parameters is similar to Nybolom's test
- Distribution of tests is different if data are nonstationary (unit root, deterministic trend) see Hansen (1992), JBES.

3.6.3 Application: Simulated Data

Hansen Tests				
Model	α	β	σ^2	Joint
No SC	.179	.134	.248	.503
Mean shift	13.19***	.234	.064	13.3***
Slope shift	.588	5.11***	.067	5.25***
var shift	.226	.119	.376*	.736
RW slope	.253	4.08***	.196	4.4^{***}

3.6.4 Application: Exchange rate regression cont'd

Hansen Tests				
Model	intercept	slope	variance	Joint
$\overline{AR(1)}$.382	.147	2.94***	3.90***
Diff reg	.104	.153	.186	.520

4 Tests for Single Structural Change

Consider the linear regression model with k variables

$$y_t = \mathbf{x}_t' \boldsymbol{\beta}_t + \varepsilon_t, \ t = 1 \dots, n$$

No structural change null hypothesis

$$H_0: \boldsymbol{\beta}_t = \boldsymbol{\beta}$$

Single break date alternative hypothesis

$$\begin{array}{ll} H_1 & : & \left\{ \begin{array}{l} \boldsymbol{\beta}_t \! = \! \boldsymbol{\beta}, \ t \leq m = \text{break date} \\ \boldsymbol{\beta}_t = \! \boldsymbol{\beta} + \! \boldsymbol{\gamma}, \ t > m \ \text{and} \ \boldsymbol{\gamma} \neq \boldsymbol{0} \end{array} \right. \\ k & < m < n - k \\ \lambda & = \frac{m}{n} = \text{break fraction} \end{array}$$

Remarks:

- Under no break null $\gamma = 0$.
- Pure structural change model: all coefficients change $(\gamma_i \neq 0 \text{ for } i = 1, \dots, k)$
- $m = [\lambda \cdot n], [\cdot] = \text{integer part}$

4.1 Chow's Test with Known Break Date

Assume: m or λ is known

For a data interval $[r, \ldots, s]$ such that s - r > k define

- $\hat{\boldsymbol{\beta}}_{r,s} = \text{OLS estimate of } \boldsymbol{\beta}$
- $\hat{\boldsymbol{\varepsilon}}_{r,s} = \text{OLS residual vector}$
- $SSR_{r,s} = \hat{\boldsymbol{\varepsilon}}'_{r,s}\hat{\boldsymbol{\varepsilon}}_{r,s} = \text{sum of squared residuals}$

Chow's breakpoint test for testing H_0 vs. H_1 with m known is

$$F_n\left(\frac{m}{n}\right) = F_n\left(\lambda\right) = \frac{\left(SSR_{1,n} - \left(SSR_{1,m} + SSR_{m+1,n}\right)\right)/k}{\left(SSR_{1,m} + SSR_{m+1,n}\right)/(n-2k)}$$

The Chow test may also be computed as the F-statistic for testing $\gamma=0$ from the dummy variable regression

$$y_t = \mathbf{x}_t' \boldsymbol{\beta} + D_t(m) \mathbf{x}_t' \boldsymbol{\gamma} + \varepsilon_t$$

 $D_t(m) = 1 \text{ if } t > m; 0 \text{ otherwise}$

Under $H_0: \boldsymbol{\gamma} = \mathbf{0}$ with m known

$$F_n(\lambda) \sim F(k, n - 2k)$$

 $k \cdot F_n(\lambda) \xrightarrow{d} \chi^2(k)$

Decision: Reject H_0 at 5% level if

$$F_n(\lambda) > F_{0.95}(k, n-k)$$

 $k \cdot F_n(\lambda) > \chi^2_{0.95}(k)$

4.1.1 Application: Simulated Data

Chow Breakpoint Test				
	$F_{200}(0.5)$	$F_{200}(0.25)$	$F_{200}(0.75)$	
No SC	0.808	0.081	1.55	
Mean shift	377***	13.03***	11.21***	
Slope shift	374***	10.97***	17.57***	
Var shift	1.071	0.117	1.204	
RW slope	80.14***	4.058**	2.218	

4.2 Quandt's LR Test with Unknown Break Date

References:

- 1. Quander, R.E. (1960). "Tests of Hypotheses that a Linear System Obeys Two Separate Regimes," *Journal of the American Statistical Association*, 55, 324-330.
- 2. Davies, R.A. (1977). "Hypothesis Testing When a Nuisance Parameter is Present only Under the Alternative," *Biometrika*, 64, 247-254.
- 3. Kim, H.-J., and D. Siegmund (1989). "The Likelihood Ratio Test for a Change-Point in Simple Linear Regression," *Biometrika*, 76, 3, 409-23.
- 4. Andrews, D.W.K. (1993). "Tests for Parameter Instability and Structural Change with Unknown Change Point," *Econometrica*, 59, 817-858.
- 5. Hansen, B.E. (1997). "Approximate Asymptotic P Values for Structural-Change Tests," *Journal of Business and Economic Statistics*, 15, 60-67.

Assume: m or λ is unknown.

Quandt considered the LR statistic for testing $H_0: \gamma = \mathbf{0}$ vs. $H_1: \gamma \neq \mathbf{0}$ when m is unknown. This turns out to be the maximal $F_n(\lambda)$ statistic over a range of break dates m_0, \ldots, m_1 :

$$QLR = \max_{m \in [m_0, m_1]} F_n\left(\frac{m}{n}\right) = \max_{\lambda \in [\lambda_0, \lambda_1]} F_n(\lambda)$$

$$\lambda_i = \frac{m_i}{n} = \text{trimming parameters, } i = 0, 1$$

Remarks

- QLR is also know as Andrews' $\sup -F$ statistic
- Trimming parameters λ_0 and λ_1 must be set
 - Cannot have $\lambda_0 = 1$ and $\lambda_1 = 1$ because breaks are hard to identify near beginning and end of sample
 - Information about location of break can be used to specify λ_0 and λ_1

- Andrews recommends $\lambda_0=0.15$ and $\lambda_1=0.85$ if there is no knowledge of break date
- Implicitly, the break data m and break fraction λ are estimated using

$$\hat{m} = \arg \max_{m} F_{n} \left(\frac{m}{n}\right)$$

 $\hat{\lambda} = \hat{m}/n$

- Under the null, m defined under the alternative is not identified. This is an example of the "Davies problem".
- Davies (1977) showed that if estimated parameters are unidentified under the null, standard χ^2 inference does not obtain.

Under $H_0: \gamma = \mathbf{0}$, Kim and Siegmund (1989) showed

$$k \cdot QLR \quad \Rightarrow \quad \sup_{\lambda \in [\lambda_0, \lambda_1]} \frac{\mathbf{B}_k^{\mu}(\lambda)' \mathbf{B}_k^{\mu}(\lambda)}{\lambda (1 - \lambda)}$$
$$\mathbf{B}_k^{\mu}(\lambda) \quad = \quad \mathbf{W}_k(\lambda) - \lambda \mathbf{W}_k(1) = \text{ Brownian Bridge}$$

Decision: Reject H_0 at 5% level if

$$k \cdot QLR > cv_{0.05}$$

Remarks

- Distribution of QLR is non-standard and depends on the number of variables k and the trimming parameters λ_0 and λ_1
- Critical values for various values of λ_0 and λ_1 computed by simulation are given in Andrews (1993), and are larger than $\chi^2(k)$ critical values. For $\lambda_0 = 0.15$ and $\lambda_1 = 0.85$

5%	critical r	values	
\overline{k}	$\chi^2(k)$	QLR	$k \cdot QLR$
1	3.84	8.85	
10	18.3	27.03	

- P-values can be computed using techniques from Hansen (1997)
- Graphical plot of $F_n(\lambda)$ statistics is informative to locate the break date

4.2.1 Application: Simulated data

QLR or sup-F Test				
	QLR	\widehat{m}	$\widehat{\lambda}$	
No SC	2.87	142	0.71	
Mean shift	377***	101	0.51	
Slope shift	374***	101	0.51	
Var shift	2.36	142	0.71	
RW slope	113***	77	0.39	

(insert graphs here)

4.2.2 Application: Exchange rate data

QLR or sup-F Test				
	QLR	\widehat{m}	$\widehat{\lambda}$	
$\overline{AR(1)}$	12.13***	1989:05	0.65	
Diff reg	4.08	1991:03	0.74	

4.3 Optimal Tests with Unknown Break Date

References:

 Andrews, D.W.K. and W. Ploberger (1994). "Optimal Tests When a Nuisance Parameter Is Present Only Under the Alternative," *Econometrica*, 62, 1383-1414.

Andrews and Ploberger (1994) derive tests for structural change with an unknown break date with optimal power. These tests turn out to be weighted averages of the Chow breakpoint statistics $F_n(\frac{m}{n})$ used to compute the QLR statistic:

$$ExpF_n = \ln\left(\frac{1}{m_2 - m_1 + 1} \sum_{t=m_1}^{m_2} \exp\left(\frac{1}{2}k \cdot F_n\left(\frac{t}{n}\right)\right)\right)$$

$$AveF_n = \frac{1}{m_2 - m_1 + 1} \sum_{t=m_1}^{m_2} k \cdot F_n\left(\frac{t}{n}\right)$$

$$k = \text{number of regressors being tested}$$

Remarks

- Asymptotic null distributions are non-standard and depend on k, λ_0 and λ_1
- Critical values are given in Andrews and Ploberger; P-values can be computed using techniques of Hansen (1997)
- Tests can have higher power than QLR statistic
- Tests are not informative about location of break date

4.4 Empirical Application

Reference: Stock and Watson (199?), "" Journal of Business and Economic Statistics.